
Proceedings of Recent Advances in Natural Language Processing, pages 1234–1245
Varna, Sep 4–6, 2023

https://doi.org/10.26615/978-954-452-092-2_131

1234

Comparative Analysis of Anomaly Detection Algorithms in Text Data
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Abstract

Text anomaly detection (TAD) is a crucial task
that aims to identify texts that deviate signif-
icantly from the norm within a corpus. De-
spite its importance in various domains, TAD
remains relatively underexplored in natural lan-
guage processing. This article presents a sys-
tematic evaluation of 22 TAD algorithms on 17
corpora using multiple text representations, in-
cluding monolingual and multilingual SBERT.
The performance of the algorithms is compared
based on three criteria: degree of supervision,
theoretical basis, and architecture used. The
results demonstrate that semi-supervised meth-
ods utilizing weak labels outperform both un-
supervised methods and semi-supervised meth-
ods using only negative samples for training.
Additionally, we explore the application of
TAD techniques in hate speech detection. The
results provide valuable insights for future TAD
research and guide the selection of suitable al-
gorithms for detecting text anomalies in differ-
ent contexts.

1 Introduction

Anomaly detection is a fundamental process in data
analysis, aiming to identify inconsistent data points
that deviate significantly from expected behaviors
or established norms within a dataset. Such anoma-
lies can emerge from various factors, including
human errors, malicious behaviors, unusual events,
or unexpected changes. Effective anomaly detec-
tion can facilitate swift problem recognition, proac-
tive measures for error correction, and future prob-
lem prevention. It enhances data quality, aids in
risk identification, and empowers decision-making
across diverse domains, with its utility extending
to various data types such as tabular data, graphs,
time series, texts, images, and videos.

In the context of text data, the anomalies refer
to specific texts or textual fragments that deviate
significantly from established norms, which can

be determined based on the overall text or cor-
pus, regular language usage, or common sense.
These anomalies may manifest at various linguis-
tic levels, such as orthographic (spelling), lexical
(word usage), syntactic (sentence structure), se-
mantic (meaning), and discourse (overall context)
levels (Wang et al., 2014; Saranya et al., 2014;
Wahl, 2021; Sufi and Alsulami, 2021). Detecting
anomalies in text data holds vital importance in ap-
plications like language development assessment,
plagiarism detection, quality control in data pro-
cessing, and identifying abnormal language usage
in cybersecurity (Cichosz, 2020; Szoplák and An-
drejková, 2021).

In this article, we concentrate on Text Anomaly
Detection (TAD) at the semantic and discourse lev-
els, where norms are established on a corpus scale.
It is important to note that the definition of anoma-
lies can be further refined and may slightly differ
according to specific contexts. For instance, in the
realm of competitive intelligence, anomalies often
relate to abnormal themes or topics, while in the
field of online reputation monitoring, they typically
pertain to negative sentiments.

Despite the broad utility of TAD and the po-
tential benefits it offers, TAD has not been as ex-
tensively explored as other topics within Nature
Language Processing (NLP). While previous re-
search works have approached the field of TAD,
they have often been limited either by the scope
of algorithms considered or by the range of tex-
tual representations evaluated (Barrett et al., 2019;
Pantin et al., 2022). Unlike these studies, this pa-
per aims to provide a comprehensive overview of
TAD by evaluating a wide array of algorithms on
several corpora across different languages, making
our approach distinctive in its breadth and depth.

Our primary objective is to provide a systematic
evaluation of 22 TAD algorithms applied to 17 cor-
pora across three languages. We assess these algo-
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rithms’ performance in detecting textual anomalies
and examine the use of various text representations,
including monolingual and multilingual Sentence-
BERT (SBERT) (Reimers and Gurevych, 2019).
Additionally, we investigate the potential applica-
tion of TAD techniques in detecting hate speech,
aiming to gain insights into the effectiveness of
TAD in this specific domain.

2 Related Work

Text Anomaly Detection (TAD) stands as a com-
paratively less explored intersection of Data Min-
ing (DM) and Natural Language Processing (NLP).
While extensive research has been conducted in
DM dedicated to anomaly detection, scant atten-
tion has been given to the application of these tech-
niques to text data. On the other side of the spec-
trum, NLP, despite significant progress in text un-
derstanding and generation, exhibits a noticeable
deficiency in research focusing on the detection
of anomalous text. Consequently, dedicated algo-
rithms for text data anomaly detection are rare, and
corpora specific to this task are either completely
inaccessible or simply nonexistent.

Anomaly Detection Algorithms In the DM field,
a wealth of systematic analyses and evaluations of
anomaly detection algorithms have been carried out
(Markou and Singh, 2003a,b; Chandola et al., 2009;
Pimentel et al., 2014; Aggarwal, 2015, 2017; Cha-
lapathy and Chawla, 2019; Pang et al., 2021). How-
ever, these studies have largely overlooked the per-
formance of these algorithms on text data. In con-
trast, within the NLP realm, research efforts were
largely channeled towards adapting techniques pro-
posed for other domains, such as image and video
data, to handle text data. However, these studies
often adopted a narrow focus, examining a partic-
ular algorithm and contrasting it against a limited
set of others (Drozdyuk and Eke, 2017; Ruff et al.,
2019; Jafari, 2022). This resulted in a fragmented
and insufficiently broad approach that fell short of
providing an all-encompassing assessment of vari-
ous anomaly detection methods’ performance on
text data. To address this deficiency, recent efforts
have been made by researchers. Yap et al. (2020)
proposed an algorithm based on Generative Adver-
sarial Networks (GAN) (Goodfellow et al., 2014),
contrasting its performance against state-of-the-art
methods like CVDD (Ruff et al., 2019). Barrett
et al. (2019) undertook a comparative study of
six algorithms using three corpora and four repre-

sentation strategies, namely TF-IDF, One-hot, Bag
of Words, and PCA. In a significant systematic
endeavor, Pantin et al. (2022) compared ten al-
gorithms on two corpora using a novel anomaly
generator, GenTO.

Data The scarcity or complete absence of human-
annotated anomaly detection corpora presents a
considerable challenge in anomaly detection. The
rarity of anomalies and the subjectivity involved
in defining and annotating them contribute to this
scarcity. To counteract this problem, three main
strategies have been proposed in the literature. The
first strategy involves leveraging artificially gener-
ated data to construct a corpus, with a particular
focus on creating anomaly samples (Christophe
et al., 2019). The second strategy combines diverse
text sources to create a corpus, drawing “normal”
examples from one source and anomalies from an-
other (Dasigi and Hovy, 2014). The third and
most common approach involves adapting exist-
ing corpora originally created for different tasks for
anomaly detection. In this approach, researchers
often repurpose corpora that are initially designed
for tasks such as topic or sentiment classification.
Datasets commonly used in this context include
Reuters (Barrett et al., 2019; Yap, 2020; Han et al.,
2022; Pantin et al., 2022), AGNews (Zeng et al.,
2022; Han et al., 2022), 20NewsGroups (Barrett
et al., 2019; Hu et al., 2021; Pantin et al., 2022),
and IMDB (de la Torre-Abaitua et al., 2021; Han
et al., 2022).

Text Representation Techniques Finally, in
TAD, as with many other text classification tasks,
the choice of text representation techniques is criti-
cal. While traditional encoding strategies such as
Bag of Words (BoW) and Term Frequency-Inverse
Document Frequency (TF-IDF) are prevalent (Bar-
rett et al., 2019; Pantin et al., 2022), the text em-
beddings generated by pre-trained models, like
Sentence-BERT (SBERT)(Reimers and Gurevych,
2019), remain relatively underutilized in this field.
This limited adoption of contextual embeddings
presents promising area for exploration and poten-
tial improvement in TAD methodology. The sys-
tematic evaluation of TAD algorithms on various
text representation techniques could yield signifi-
cant insights and drive advancements in this field.
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3 Comparative Analysis of Text Anomaly
Detection Algorithms

3.1 Corpus Assembly

Dataset Selection Due to the absence of a ded-
icated corpus to Text Anomaly Detection (TAD),
we have repurposed various datasets that were orig-
inally designed for different NLP tasks. In this
study, we utilized a collection of 14 datasets, each
primarily designed to address either binary or multi-
class text classification challenges, covering a wide
range of application scenarios (refer to Table 1).
Our selection includes datasets employed for topic
or thematic classification (TC) and sentiment anal-
ysis (SA), which are common in the literature, and
those used for hate speech detection (HD). The
inclusion of the latter is intended to explore the
potential of considering hate speech and offensive
language as forms of textual anomalies. In contrast
to many previous studies that have solely focused
on English, our datasets encompass texts in three
different languages: English, French, and Chinese.
The data we used were collected from a variety of
sources, including news agencies (such as ABC
News and Reuters), forums (like Stormfront), so-
cial media platforms (Twitter, Weibo, and others),
and various websites (Amazon, IMDB, etc.).

Dataset Adaptation We curated 17 different cor-
pora for TAD based on the datasets mentioned
above (see Table 1). In order to adapt these datasets
to TAD, we employed the following strategies:

1. For TC data, we selected pairs of top-
ics/themes, designating one as the “normal”
class and the other as the “anomalous” class.
If the available number of documents for a
topic/theme was insufficient to form a class,
we combined two or more topics/themes into
one class.

2. For SA data, if labels were in the form of
sentiment polarity, we labeled the “positive”
class as “normal” and the “negative” class as
“anomalous”. If the data was annotated on a
5-point evaluation scale, we classified texts
with 1 or 2 points as “anomalous” and those
with 4 or 5 points as “normal”.

3. For HD data, in the case of binary classi-
fication, we designated the “positive (hate-
ful/offensive)” class as “anomalous” and the
“negative” class as “normal”. For multi-class

classification, we grouped different types of
hate speech into an “anomalous” class and
non-hateful texts into a “normal” class.

4. To ensure comparability across datasets, we
uniformly set the anomaly ratio to 10%. This
decision aligns with common practice in the
field, where a 10% anomaly ratio is frequently
used (Pantin et al., 2022). Moreover, it is
consistent with the default contamination rate
usually adopted in anomaly detection tools
(Buitinck et al., 2013; Zhao et al., 2019).

5. We created the corpora by conducting strati-
fied random sampling from the datasets, re-
specting the predefined anomaly ratio.

3.2 Text Representation
The texts in the corpora are transformed into vec-
tors using two distinct strategies: TF-IDF (Term
Frequency-Inverse Document Frequency) and
SBERT (Sentence-BERT) (Reimers and Gurevych,
2019). The selection of these techniques formed
an essential step in preparing the data for the subse-
quent application of anomaly detection algorithms.

The TF-IDF technique was employed to gener-
ate vectors where the weighting of each term was
determined by its frequency within a document but
inversely proportional to its frequency across the
entire corpus (represented by the training subset in
our case).

Simultaneously, we utilized Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019) to gen-
erate embeddings for our text data. SBERT is
a modification of the pre-trained BERT network
that allows for the computation of semantically
meaningful sentence embeddings. To account
for linguistic variations across our multilingual
dataset, we employed a selection of pre-trained
monolingual SBERT models specific to each lan-
guage under consideration: all-mpnet-base-v2
(en), all-MiniLM-L6-v2 (en), all-distilroberta-v1
(en), sentence-camembert-large (fr), sentence-
camembert-base (fr), text2vec-base-chinese
(zh), sbert-base-chinese-nli (zh), and sbert-
chinese-dtm-domain-v1-distill (zh). To further
diversify our text representation and explore po-
tential generalizability across languages, we also
incorporated multilingual SBERT models into our
study. These models, such as distiluse-base-
multilingual-cased-v1, paraphrase-multilingual-
mpnet-base-v2, and paraphrase-multilingual-
MiniLM-L12-v2, were chosen based on their



1237

Corpus Dataset Citation Source Task Lang Size AnormalTag NormalTag
TDT2 Topic Detection and Track Cieri et al. 1999 Press TC en 1000 topic 6/10/51 topic 1
20NG 20 Newsgroups Press TC en 2000 politics.guns sport
AGNews AG News Topic Classification Dataset Zhang et al. 2015 Press TC en 35000 Sci/Tech Business
Reuters Reuters-21578 Text Categorization Collection Dataset Lewis 1997 Press TC en 4000 cpi/interest earn
Amazon-en

Multilingual Amazon Reviews Corpus Keung et al. 2020
Amazon SA en 8000 4/5 star 1/2 star

Amazon-fr Amazon SA fr 10000 4/5 star 1/2 star
Amazon-zh Amazon SA zh 25000 4/5 star 1/2 star
IMDB Large Movie Review Dataset Maas et al. 2011 IMDB SA en 25000 negative positive
Yelp Large Yelp Review Dataset Zhang et al. 2015 Yelp SA en 10000 negative positive
HTPO-Trump

Hate Towards the Political Opponent Grimminger and Klinger 2021
Twitter SA en 1000 Against Favor

HTPO-HOF Twitter HD en 2500 Hateful Non-Hateful
Stormfront Hate Speech Dataset from a White Supremacy Forum de Gibert et al. 2018 Forum HD en 10000 hate nonHate
OLID Offensive Language Identification Dataset Zampieri et al. 2019 Twitter HD en 10000 OFF NOT
COLD Complex Offensive Language Dataset Palmer et al. 2020 Twitter HD en 700 offensive/hateful nonNone
COLDataset Chinese Offensive Language Detection Deng et al. 2022 Zhihu/Weibo HD zh 21000 1 0
SWSR Sina Weibo Sexism Review Jiang et al. 2021 Weibo HD zh 6000 1 0
MLMA-fr MultiLingual Multi-Aspect hate speech Ousidhoum et al. 2019 Twitter HD fr 900 offensive/hateful normal

Table 1: Overview of the Datasets Utilized for Corpus Construction. The table provides details about each corpus,
including the corpus ID, the original dataset name along with its citation, the source of the texts, the original task for
which the dataset was created (TC: Topic Classification, SA: Sentiment Analysis, HD: Hate Speech Detection), the
size of the corpus, and the tags used to denote anomalies and normal data.

demonstrated performance in processing a variety
of languages, aligning well with the linguistic di-
versity present within our corpora.

3.3 Algorithm Comparison
In this study, we conducted an investigation of 22
distinct algorithms (refer to Table 2) on 17 different
corpora. Considering the diverse taxonomy of ap-
proaches proposed in the literature (Chandola et al.,
2009; Pimentel et al., 2014; Aggarwal, 2017), we
opted to classify the algorithms from three unique
angles: the utilization of neural networks, the de-
gree of supervision, and the underlying theory driv-
ing the method. This approach not only allowed us
to compare individual algorithmic performances,
but also facilitated a comparison of categories of
algorithms against each other.

Neural Networks Based on their architecture,
the algorithms can be divided into two distinct
types: deep algorithms that harness neural net-
works, and shallow algorithms that do not employ
them (Han et al., 2022).

Supervision Based on the degree of supervision,
or the extent to which they rely on labels, we can
distinguish three categories of algorithms: super-
vised, semi-supervised, and unsupervised. Given
the rarity of anomalies, procuring sufficient labels
for abnormal (or positive) data often poses a sig-
nificant challenge. Hence, within the domain of
TAD, our primary focus is on the latter two types
of algorithms: semi-supervised and unsupervised
algorithms.

• Semi-supervised algorithms make use of
partially labeled data for training. Cer-

tain anomaly detection techniques, such as
OCSVM and LOF, assume that only normal
(negative) instances are available during the
training phase, leading them to be also known
as “novelty detection” algorithms. In contrast,
other algorithms leverage labeled and unla-
beled data, utilizing the labeled data, which
includes information about both normal and
abnormal instances, to guide the learning pro-
cess. By learning from the labeled data, these
algorithms seek to predict anomalies in the
unlabeled data, thereby detecting instances
that deviate from normal behavior. Recently
proposed algorithms like XGBOD (Zhao and
Hryniewicki, 2018) and DevNet(Pang et al.,
2019) demonstrate the ability to exploit weak
labels, which could be limited or noisy. These
algorithms are designed to perform effectively
even when the available labels for abnormal
instances are neither exhaustive nor accurate.

• Unsupervised algorithms do not rely on la-
beled data during the training process. The
training set consists of both normal and abnor-
mal instances, resulting in a dataset consid-
ered to be contaminated with outliers. These
methods aim to identify anomalies in a dataset
by exclusively analyzing the characteristics
and patterns present in the unlabeled data. Un-
supervised methods are grounded in the con-
cept that anomalies significantly diverge from
the expected behavior of the majority of the
data points.

Underlying Theory Anomaly detection algo-
rithms assess the abnormality or deviation of each
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Algo. ID Name Citation Supervision Theory Architecture

ABOD Angle-based Outlier Detector Kriegel et al. 2008 Unsup. Proximity Shallow
ALAD Adversarially Learned Anomaly Detection Zenati et al. 2018 Unsup. Reconstruction Deep
AnoGAN Anomaly Detection with Generative Adversarial Networks Schlegl et al. 2017 Unsup. Reconstruction Deep
AutoEncoder Auto Encoder Unsup. Reconstruction Deep
CBLOF Clustering Based Local Outlier Factor He et al. 2003 Unsup. Proximity Shallow
COF Connectivity-Based Outlier Factor Tang et al. 2002 Unsup. Proximity Shallow
COPOD Copula Based Outlier Detector Li et al. 2020 Unsup. Probabilistic Shallow
DeepSAD Deep Semi-supervised Anomaly Detection Ruff et al. 2020 Semi Reconstruction Deep
DeepSVDD Deep One-Class Classifier with AutoEncoder Ruff et al. 2018 Unsup. Domain Deep
DevNET Deviation Networks Pang et al. 2019 Semi Reconstruction Deep
ECOD Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions Li et al. 2022 Unsup. Probabilistic Shallow
GMM Gaussian Mixture Model Unsup. Probabilistic Shallow
HBOS Histogram-based Outlier Detection Goldstein and Dengel 2012 Unsup. Probabilistic Shallow
IForest Isolation Forest Liu et al. 2008 Unsup. Ensemble Shallow
KNN k-Nearest Neighbors Detector Ramaswamy et al. 2000 Unsup. Proximity Shallow
LOF Local Outlier Factor Breunig et al. 2000 Semi Proximity Shallow
KDE Outlier Detection with Kernel Density Functions Latecki et al. 2007 Unsup. Probabilistic Shallow
OCSVM One Class Support Vector Machine Schölkopf et al. 2001 Semi Domain Shallow
PCA Principal Component Analysis Shyu et al. 2003 Unsup. Reconstruction Shallow
PReNet Pairwise Relation prediction-based ordinal regression Network Pang et al. 2020 Semi Ensemble Deep
VAE Variational Autoencoder Kingma and Welling 2013 Unsup. Reconstruction Deep
XGBOD Extreme Gradient Boosting Outlier Detection Zhao and Hryniewicki 2018 Semi Ensemble Shallow

Table 2: Overview of Investigated Anomaly Detection Algorithms: Algorithm ID, Full Algorithm Name, Original
Paper Citation, Degree of Supervision, Underlying Theory, and Model Architecture (Deep/Shallow)

data point by calculating an anomaly score. This
score is then contrasted against a predefined thresh-
old set for the entire dataset. Anomaly detection al-
gorithms can be categorized into five groups based
on the underlying theory driving the algorithm and
methodology used to calculate the anomaly score.

• Probabilistic or statistical algorithms func-
tion by estimating the generative probability
density function of the data. They model the
probability distribution of the data using prob-
ability and statistical tools, such as Gaussian
distribution or logistic regression. Data points
that yield a low probability of conforming to
the distribution model are considered as po-
tential anomalies.

• Proximity-based algorithms identify a data
point as an anomaly if it is surrounded by
a sparsely populated or dissimilar neighbor-
hood. The anomaly score is calculated based
on the degree of deviation or isolation of a data
point from its immediate neighbors. Based on
their definition of proximity, these techniques
are further classified into three subcategories:
cluster-based algorithms, density-based algo-
rithms, and distance-based algorithms.

• Domain-based algorithms utilize training
data to define a domain that encapsulates the
normal class. The model created in this pro-
cess describes the boundary or region of the
normal class and determines whether a data
point belongs to this class based on its posi-
tion relative to the boundary. The anomaly

score is typically derived from the distance or
proximity of a data point to the boundary of
the designated normal region (Pimentel et al.,
2014).

• Reconstruction-based algorithms aim to
compress the data into a space of lower di-
mensionality and subsequently reconstruct the
original data from this condensed representa-
tion. The reconstruction error, defined as the
difference between the original and the recon-
structed data, is used to compute the anomaly
score. The principle is straightforward: the
greater the reconstruction error, the higher the
likelihood of the data point being anomalous
(Pimentel et al., 2014).

• Ensemble algorithms combine the outputs
from multiple base algorithms or detectors to
create a unified, more robust output (Aggar-
wal, 2017). These algorithms leverage the di-
versity of individual detectors and strive to en-
hance the overall performance by aggregating
their results. Common ensemble techniques
include voting, averaging, stacking, and boost-
ing, among others.

4 Experiments

4.1 Experimental Settings

Evaluation A multitude of metrics are tradi-
tionally employed to gauge the effectiveness of
anomaly detection algorithms. These include Pre-
cision, Recall, F-score, ROC AUC (Area Under
the Receiver Operating Characteristic Curve), PR
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AUC (Precision-Recall Area Under the Curve),
and MCC (Matthews Correlation Coefficient)
(Manevitz and Yousef, 2001; Dasigi and Hovy,
2014; Ruff et al., 2019; Todd et al., 2020; Pantin
et al., 2022; Barrett et al., 2019). In this study,
we have chosen to focus on ROC AUC, the most
prevalent metric within the domain of anomaly de-
tection. In this context, the ROC (Receiver Oper-
ating Characteristic) curve plots the true positive
rate (sensitivity) against the false positive rate
(1 − specificity) over a range of threshold set-
tings. The ROC AUC score, a numerical value
between 0 and 1, offers an indicative measure of
the classification capability of the model. A score
of 0.5 corresponds to a random classifier, while a
score of 1 signifies a perfect classifier. A model’s
capacity to distinguish between normal and anoma-
lous instances is typically associated with a higher
ROC AUC score.

Data Partitioning and Independent Trials To
ensure the robustness of our experimental findings,
we employed a 10-fold cross-validation methodol-
ogy for data partitioning. In each fold, 90% of the
data was reserved for training and the remaining
10% for testing purposes. Stratified sampling en-
sured a consistent anomaly ratio across both the
training and test sets within each fold. Anomaly de-
tection models were individually trained on the data
from each fold and subsequently evaluated against
the corresponding test set. The average ROC AUC
score, calculated over all 10 folds, served as the
aggregate measure of the model’s ability to accu-
rately differentiate between normal and anomalous
instances.

Hyperparameters It is common practice to run
an algorithm multiple times to select the param-
eters that optimize the ROC AUC. However, this
approach is not suitable for anomaly detection as
it inadvertently introduces a form of supervision
by using knowledge of the anomaly labels to se-
lect parameters (Aggarwal, 2017). To ensure a fair
comparison, it is essential to adhere to an unsuper-
vised approach. Therefore, in this work, we strictly
employ the default hyperparameter settings as pro-
vided in the original papers of all the algorithms.

Implementation The experiments were con-
ducted using three Python libraries: scikit-learn
(Buitinck et al., 2013), PyOD (Zhao et al., 2019),
and DeepOD (Xu, Hongzuo).

Figure 1: Performance (avg. ROC AUC) compari-
son of anomaly detection algorithms across 17 corpora
grouped by original tasks: Topic Classification (TC),
Sentiment Analysis (SA), and Hate Speech Detection
(HD)

4.2 Results and Discussion

Corpus Figure 1 illustrates the performance of
the 22 algorithms tested across 17 diverse corpora,
which are divided into 3 categories: corpora for
topic classification (TC), sentiment analysis (SA),
and hate speech (HD). Notably, the TC corpora
achieve the highest scores, with a median ROC
AUC of 0.768. In contrast, the HD corpora, incor-
porated into TAD testing for the first time, exhibit
a median ROC AUC of 0.474. This suggests a per-
formance level below random chance, indicating
that the TAD algorithms have room for improve-
ment when it comes to effectively identifying hate
speech. It’s important, however, to bear in mind
that the TC corpora mainly comprise press texts,
while the HD corpora are largely made up of noisy
social media texts. Further experiments are neces-
sary to evaluate and mitigate the potential impact
of textual noise on algorithm performance.

Text Representation Figure 2 presents the per-
formance of algorithms categorized based on the
representations used: TF-IDF model, monolingual
SBERT models, and multilingual SBERT mod-
els. The TF-IDF model shows fairly stable re-
sults, albeit with a noticeably lower upper limit
compared to SBERT models. Among the monolin-
gual SBERT models, the Chinese models exhibit
weaker performance, indicated by a median ROC
AUC of 0.464, which is significantly beneath the
level of random chance. This could be due to the
specific concentration of Chinese corpora on hate
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Figure 2: Performance (avg. ROC AUC) comparison
of anomaly detection algorithms using different text
representation strategies: TF-IDF, Monolingual SBERT,
and Multilingual SBERT

speech detection, which may not align well with
the TAD task. When excluding the Chinese models,
the monolingual SBERT models perform slightly
better than the multilingual ones, even though the
difference is not substantial.

Algorithms Figures 3 to 5 depict the perfor-
mance of the 22 selected algorithms evaluated
across 17 different corpora using three types of
representations. The algorithms are grouped from
three perspectives:

• In terms of degree of supervision, the un-
supervised approaches register a mean ROC
AUC score of 0.539. This relatively lower
score indicates that these methods may have
struggled to effectively detect anomalies in the
text data without any labeled information or
prior knowledge. Semi-supervised methods,
particularly OCSVM and LOF, which utilize
only negative samples for training, perform
slightly better with a mean ROC AUC score
of 0.581. Nevertheless, semi-supervised meth-
ods that employ weak labels show a markedly
improved performance, demonstrating a mean
ROC AUC score of 0.721. This improvement
hints at the significant role weak labels can
play in enhancing anomaly detection perfor-
mance.

• In terms of underlying theory for anomaly
scores, proximity-based, probabilistic-based,
and domain-based approaches exhibit rela-
tively lower mean ROC AUC scores (0.538,
0.550, and 0.541, respectively), indicating

their limitations in accurately identifying
anomalies based on proximity or probabilistic
reasoning. In contrast, reconstruction-based
methods show a stronger performance with
a mean ROC AUC score of 0.613. How-
ever, the most promising results are obtained
by the ensemble methods, which achieve
the highest mean ROC AUC score (0.825).
These methods, leveraging the combination
of multiple anomaly detection techniques or
models, demonstrate superior performance
in identifying anomalies in text data. No-
tably, the best-performing methods overall are
the reconstruction-based and ensemble meth-
ods when utilizing weak labels within a semi-
supervised learning context.

• In terms of model architecture, deep mod-
els utilizing neural networks achieve a mean
ROC AUC of 0.621, demonstrating their rela-
tively higher efficiency in detecting anomalies
in text data compared to shallow models. Ex-
cluding XGBOD, the shallow models exhibit
a lower mean ROC AUC of 0.549, suggest-
ing their limited effectiveness. However, XG-
BOD, a shallow model employing extreme
gradient boosting, stands out with an excep-
tional mean ROC AUC of 0.862, surpassing
both deep and other shallow models. These
findings highlight the advantage of deep neu-
ral networks in text data anomaly detection.
Nevertheless, XGBOD defies expectations as
a shallow model by delivering outstanding per-
formance. Consequently, model architecture
selection demands careful consideration, as
both deep models and well-optimized shal-
low models, like XGBOD, can yield effective
anomaly detection outcomes in text data.

5 Conclusion

In summary, this paper provides a comprehensive
evaluation of 22 anomaly detection algorithms ap-
plied to 17 corpora derived from datasets associated
with three distinct tasks. The evaluation considers
three types of text representations: TF-IDF, mono-
lingual SBERT, and multilingual SBERT models.
The findings shed light on several key insights re-
garding the performance and limitations of these
algorithms.

The analysis reveals variations in algorithm per-
formance across different corpora categories. The
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Figure 3: Performance (avg. ROC AUC) comparison
of anomaly detection algorithms based on supervision
level: Semi-supervised and Unsupervised

Figure 4: Performance (avg. ROC AUC) comparison of
anomaly detection algorithms based on underlying the-
ory for anomaly scores: Proximity-based, Probabilistic-
based, Domain-based, Reconstruction-based, and En-
semble methods

Figure 5: Performance (avg. ROC AUC) comparison of
anomaly detection algorithms based on model architec-
ture: Deep Models (with neural networks) and Shallow
Models

corpora designed for topic classification exhibit
the highest scores, indicating their suitability for
anomaly detection tasks. In contrast, the hate
speech corpora pose considerable challenges, with
algorithms underperforming possibly due to the
noisy social media text they contain. Addressing
the impact of textual noise on algorithm perfor-
mance becomes a crucial area for future research.
Furthermore, the evaluation of different text rep-
resentations demonstrates that the TF-IDF model
shows stable performance but with a lower upper
limit compared to SBERT models. Excluding the
Chinese models, monolingual SBERT models out-
performed the multilingual ones, emphasizing the
importance of language-specific representations for
anomaly detection. From the perspectives of de-
gree of supervision, underlying theory for anomaly
scores, and model architecture, the study offers
a detailed comparative analysis of the algorithms.
The findings highlight the superior performance of
reconstruction-based and ensemble methods in a
semi-supervised setting, and the advantage of deep
models over shallow models, except for XGBOD.

Looking ahead, several potential avenues of in-
vestigation could further enrich the field of text
anomaly detection. Firstly, the exploration of su-
pervised algorithms could provide an opportunity
to bolster anomaly detection performance, espe-
cially in contexts where labeled data is available.
Secondly, the incorporation of advanced technolo-
gies, such as language models like ChatGPT, opens
up novel possibilities for innovative anomaly de-
tection methodologies that can adapt to evolving
data landscapes. Another promising direction lies
in the creation of specialized datasets explicitly de-
signed for anomaly detection tasks. Such datasets
could allow for the refining and optimization of
current detection algorithms while enabling the de-
velopment of new, more effective methods. Lastly,
delving deeper into the study of different types of
text anomalies could provide a more nuanced un-
derstanding of their unique characteristics and the
detection strategies that work best for each.
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A Partial Results of the Experiments
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0.64 0.57 0.54 0.6 0.62 0.64 0.6 0.9 0.51 0.72 0.59 0.65 0.6 0.59 0.6 0.67 0.67 0.62 0.6 0.79 0.6 0.94

0.59 0.61 0.54 0.62 0.59 0.59 0.63 0.79 0.48 0.72 0.61 0.63 0.61 0.58 0.63 0.62 0.65 0.65 0.62 0.89 0.62 0.94

0.54 0.52 0.5 0.54 0.54 0.48 0.55 0.79 0.51 0.71 0.55 0.51 0.54 0.55 0.55 0.5 0.51 0.58 0.54 0.69 0.54 0.9

0.43 0.85 0.54 0.3 0.38 0.34 0.31 0.95 0.37 0.81 0.31 0.37 0.31 0.37 0.31 0.37 0.47 0.32 0.3 0.74 0.3 0.83

0.47 0.36 0.53 0.38 0.39 0.44 0.36 0.86 0.53 0.82 0.4 0.39 0.39 0.43 0.39 0.41 0.48 0.43 0.38 0.7 0.38 0.91

0.51 0.62 0.5 0.4 0.45 0.5 0.4 0.63 0.5 0.61 0.4 0.44 0.4 0.41 0.4 0.47 0.46 0.39 0.4 0.62 0.4 0.66

0.52 0.43 0.46 0.52 0.52 0.58 0.54 0.64 0.51 0.55 0.52 0.52 0.53 0.53 0.53 0.54 0.52 0.51 0.52 0.62 0.52 0.67

0.55 0.54 0.52 0.46 0.45 0.51 0.46 0.79 0.5 0.62 0.46 0.54 0.46 0.46 0.45 0.52 0.63 0.46 0.46 0.64 0.46 0.85

0.45 0.56 0.45 0.45 0.48 0.43 0.43 0.63 0.46 0.64 0.46 0.44 0.45 0.46 0.44 0.44 0.54 0.46 0.45 0.64 0.45 0.73

0.49 0.43 0.49 0.46 0.47 0.48 0.47 0.7 0.47 0.61 0.46 0.48 0.46 0.47 0.46 0.5 0.47 0.44 0.46 0.64 0.46 0.76

0.61 0.82 0.44 0.93 0.82 0.35 0.93 1 0.51 0.92 0.92 0.82 0.93 0.9 0.94 0.75 0.64 0.96 0.93 0.88 0.93 1

0.54 0.32 0.47 0.41 0.4 0.4 0.4 0.8 0.49 0.82 0.42 0.37 0.42 0.46 0.38 0.46 0.41 0.42 0.41 0.7 0.41 0.88

0.43 0.38 0.5 0.29 0.31 0.41 0.25 0.74 0.5 0.79 0.3 0.33 0.29 0.36 0.29 0.32 0.52 0.35 0.29 0.66 0.29 0.82

0.44 0.15 0.48 0.81 0.77 0.65 0.84 1 0.5 0.91 0.81 0.61 0.81 0.75 0.84 0.5 0.79 0.86 0.81 0.8 0.81 0.96

0.56 0.63 0.48 0.55 0.55 0.55 0.54 0.84 0.49 0.65 0.54 0.58 0.55 0.53 0.54 0.56 0.58 0.56 0.55 0.72 0.55 0.89

Average AUC ROC across 10 independent trials for 22 algorithms 
 on 17 corpora represented by SBERT-distil-multi
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