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Abstract

Unsupervised Domain Adaptation (UDA) is a
popular technique that aims to reduce the do-
main shift between two data distributions. It
was successfully applied in computer vision
and natural language processing. In the cur-
rent work, we explore the effects of various
unsupervised domain adaptation techniques be-
tween two text classification tasks: fake and
hyperpartisan news detection. We investigate
the knowledge transfer from fake to hyperpar-
tisan news detection without involving target
labels during training. Thus, we evaluate UDA,
cluster alignment with a teacher, and cross-
domain contrastive learning. Extensive experi-
ments show that these techniques improve per-
formance, while including data augmentation
further enhances the results. In addition, we
combine clustering and topic modeling algo-
rithms with UDA, resulting in improved perfor-
mances compared to the initial UDA setup.

1 Introduction

Fake news detection is a challenging task in which
the goal is to detect whether the news content
does not disseminate false information which may
harm society. Recently, this problem has broad
attention to the research community, especially
with the rising interaction with social media plat-
forms, which have become one of the primary
sources of information for many individuals (Shu
et al., 2020). Detecting fake news is challenging
for many of us, since some news can be written
very convincingly, thus spreading misleading in-
formation without control (Ahmed et al., 2017).
Therefore, new datasets (such as BuzzFeed-Webis
Fake News (BuzzFeed) (Potthast et al., 2018) and
ISOT (Ahmed et al., 2017)) and novel detection
techniques (Koloski et al., 2022; Mosallanezhad
et al., 2022) have emerged in recent years.
Especially since the 2016 United States presiden-
tial election, a related task, namely hyperpartisan

news detection, identifies whether the information
spread by the news is in a political extreme (Rae,
2021). Hyperpartisan articles aim to expose infor-
mation related to only one perspective, ignoring
and, in some cases, even attacking the perspectives
from other opposing sides (Kiesel et al., 2019).
The consequences of this type of news range from
misinformation in the media to an increase in the
number of supporters of extreme ideologies (Huang
and Lee, 2019).

Some works (Potthast et al., 2018; Ross et al.,
2021) linked fake news with hyperpartisan news,
since their goal is to spread as much as possible
and influence people. This phenomenon is related
to clickbait (Potthast et al., 2016), as the authors
use different techniques to make the content more
accessible and viral on the media (Kiesel et al.,
2019).

Recently, many architectures based on Bidirec-
tional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019) have been developed
and fine-tuned on various natural language pro-
cessing (NLP) tasks. The current work aims to
evaluate unsupervised deep learning techniques on
the fake news detection task and adapt them to the
hyperpartisan news detection task. Specifically, we
employ the Robustly optimized BERT pretraining
approach (RoBERTa2) (Liu et al., 2019) and eval-
uate it in three domain adaptation scenarios: un-
supervised domain adaptation (UDA) (Ganin and
Lempitsky, 2015), cluster alignment with a teacher
(CAT) (Deng et al., 2019), and cross-domain con-
trastive learning (CDCL) (Chen et al., 2020). In
addition, we analyze topic modeling and clustering
algorithms to generate domain labels and perform
UDA to learn about topic-aware features which
are specific to fake and hyperpartisan news detec-
tion. More precisely, we evaluate various clustering
algorithms for generating domain labels, namely
K-Means (Lloyd, 1982), K-Medoids (Kaufmann,
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1987), Gaussian Mixture (Fraley and Raftery,
2002), and HDBSCAN (Campello et al., 2013).
Additionally, we explore four topic modeling al-
gorithms: Latent Dirichlet Allocation (LDA) (Blei
et al., 2003), Non-negative Matrix Factorization
(NMF) (Lee and Seung, 1999), Latent Semantic
Analysis (LSA) (Deerwester et al., 1990), and prob-
abilistic LSA (pLSA) (Hofmann, 1999).

Therefore, the main contributions of this work
are as follows:

* We evaluate the RoOBERTa model on a domain
adaptation from fake to hyperpartisan news
detection by comparing three techniques, as
well as several fine-tuning strategies.

* To our knowledge, we are the first to show that
cross-domain contrastive learning proposed
by Wang et al. (2022), initially employed on
computer vision, which performs better than
other unsupervised learning techniques on an
NLP task.

* We propose the cluster and topic-based UDA
approaches, which obtain better results when
compared with the original formulation for
UDA.

* We perform extensive experiments to assess
the effectiveness of each employed method
under various hyperparameter configurations
and data augmentation techniques based on
the term frequency-inverse document fre-
quency (TF-IDF) scores (Salton et al., 1975)
and the Generative Pre-trained Transformer 2
(GPT-2) model (Radford et al., 2019).

2 Related Work

2.1 Fake News Detection

Machine learning techniques for detecting fake
news include various feature-based methods, rang-
ing from text to visual features (Zhang and
Ghorbani, 2020). For example, linguistic fea-
tures (Choudhary and Arora, 2021; Pérez-Rosas
et al., 2018) capture aspects related to conveyed in-
formation, document organization, and vocabulary
used in news. In contrast, style-based features (Pot-
thast et al., 2018; Zhou and Zafarani, 2020) are re-
lated to the writing style, such as redaction objectiv-
ity and deception (Shu et al., 2017). In recent years,
Transformer-based models (Vaswani et al., 2017)
emerged in the fake news detection literature (Jwa

etal., 2019; Zhang et al., 2020; Kaliyar et al., 2021;
Szczepanski et al., 2021). Other techniques for de-
tecting fake news use social aspects, such as the
profiles of the users who spread the news on social
media platforms (Shu et al., 2017; Onose et al.,
2019; Zhou and Zafarani, 2020; Sahoo and Gupta,
2021). Techniques successfully employed for these
scenarios rely on custom embeddings and linear
classifiers (Shu et al., 2019), classic supervised ma-
chine learning techniques (Reis et al., 2019), and
deep learning networks, such as recurrent (Wu and
Liu, 2018) and graph neural networks (Monti et al.,
2019; Hamid et al., 2020; Paraschiv et al., 2021).

2.2 Hyperpartisan News Detection

Task 4 of SemEval-2019 (Kiesel et al., 2019) intro-
duced hyperpartisan detection from news articles
as a binary classification task. The organizers cre-
ated two balanced datasets by crawling data from
various online publishers. Participants were asked
to detect whether the news articles were hyper-
partisan or mainstream. The winning team (Jiang
etal., 2019) of the shared task proposed an architec-
ture based on multiple pre-trained ELMo embed-
dings (Peters et al., 2019) averaged in the embed-
ding space, followed by convolutional layers (Kim,
2014) and batch normalization (Ioffe and Szegedy,
2015). They achieved 84.04% accuracy on the
training set and 82.16% accuracy on the test set,
suggesting the challenging setting. Other works for
the SemEval-2019 Task 4 were based on lexical
and semantic handcrafted features via Universal
Sentence Encoder (Cer et al., 2018) or BERT, and
a linear classifier (Srivastava et al., 2019; Hanawa
et al., 2019). Furthermore, Potthast et al. (2018)
showed that hyperpartisan news detection could be
analyzed using fake news approaches. They argued
that the writing style for hyperpartisan news is sim-
ilar to fake news, despite their political orientation.

2.3 Unsupervised Domain Adaptation

The core objective of unsupervised domain adap-
tation is to enforce a feature representation invari-
ant to the domain of the examples with the same
labels. One of the most effective techniques is
the work of Ganin and Lempitsky (2015), which
treated the problem as a minimax optimization.
Wang et al. (2018) utilized domain adaptation tech-
niques via adversarial training for fake news detec-
tion by employing an event discriminator to learn
event-invariant features in a multi-modal setting.
Deng et al. (2019) relied on the similarity in the

1096



feature space by enforcing a clustered structure
among similar features. In this case, the training
procedure optimizes clustering loss alongside the
domain adaptation loss. For the target dataset, a
teacher model consisting of an ensemble of stu-
dents generates pseudo-labels (i.e., estimates of the
true labels). Also, contrastive learning (Chen et al.,
2020) was used to achieve unsupervised domain
adaptation. It aims to have closer representations of
the examples from the same class, while represen-
tations from different classes should stay far apart.
In addition, Wang et al. (2022) proposed the cross-
domain contrastive loss to minimize the {5-norm
distance between features from the same category,
and employed K-Means to compute pseudo-labels.

3 Method
3.1 Base Model

In our current work, we utilize the pre-trained
RoBERTa language model, which shares the same
architectural design as BERT, the only difference
being the pre-training objectives. The RoBERTa
architecture stacks multiple Transformer encoders,
each based on the multi-head self-attention mech-
anism (Vaswani et al., 2017). On top of the
RoBERTa model, we add a label predictor con-
taining fully connected layers. RoBERTA uses
the Byte-Pair Encoding (BPE) tokenizer (Sennrich
et al., 2015). In what follows, we present the set-
tings in which RoBERTa is employed in our work
(see Figure 1).

3.2 Unsupervised Domain Adaptation

Given two datasets Ds = {(z, yé)}fisl and Dy =
{21}t from different domains, the UDA setting
reduces the shift between them (Ganin and Lem-
pitsky, 2015; Ganin et al., 2016). This approach
comprises a feature encoder G's, a label predictor
Gy, and a domain discriminator G4. The feature
encoder maps the input space into a latent space.
Then, the label predictor computes the labels of the
underlying examples. Simultaneously, the domain
classifier uses the latent space to predict the domain
of the features (i.e., the source or target domain).
To obtain domain-invariant features, the opti-
mization is two-fold. First, we minimize the pre-
diction loss concerning G'’s parameters 6y and
G ’s parameters 6,. Second, we maximize the do-
main classification loss until G4 cannot distinguish
the domains of the features. Formally, the loss func-
tion L (see Eq. 1) depends on the prediction loss

L, between G,,’s outputs and source labels, and the
domain adaptation loss Ly between G4’s outputs
and domains d’ (i.e., hyperpartisan and fake news).
The trade-off between L, and L is controlled by
A. Note that we omitted the model’s parameters for
clarity.

Ns
L= L,(Gy(Gy(zl)),yi)
= (1)
—AD " La(Ga(Gy(a)), d')

=1

The optimization problem associated with this
formulation is described below:

éf,éy = arg;rflion L(Qf,ﬁy,éd) 2)
"Wy

éd = arg I%ELX L(éf, éy, Hd) (3)
d

where the parameters with hat are fixed during the
optimization step. This problem can be solved with
an implementation trick, namely gradient reversal
layer (GRL) (Ganin and Lempitsky, 2015), which
acts as the identity function during feed-forward
and negates the gradients during back-propagation.
The GRL layer is inserted between the feature en-
coder and the domain discriminator.

In our setting, we use the ROBERTa’s encoders
for feature extraction and fully connected layers for
both the label predictor and domain discriminator.

3.3 Cluster Alignment with a Teacher

As an extension to UDA, Deng et al. (2019) ex-
ploited the class-conditional structure of the feature
space by cluster alignment in the teacher-student
paradigm. A teacher model trained on the labeled
source examples estimates pseudo-labels for the
unlabeled target dataset. To reduce the error am-
plification caused by label estimation, the teacher
model is built as an ensemble of previous student
classifiers. In addition, a student classifier mini-
mizes the prediction loss L, on the source exam-
ples in the supervised setting. The optimization
involves minimizing both the prediction loss L,
and the sum of clustering losses L. (i.e., for both
the source and the target domains) and the cluster-
base alignment loss L,:

L=Ly+ a(Le+ Ly,) 4)

where the hyperparameter o controls the trade-off
between the supervised and semi-supervised losses.
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Figure 1: (Left) The RoBERTa model in the UDA setting includes a label predictor and a domain discriminator.
(Center) In the CAT method, the student and teacher use the ROBERTa model. (Right) In the CDCL setting, the
contrastive loss is applied between the ROBERTa features of an anchor and the source (s) / target (t) example.

Considering the labeled samples X, =
{21, 42} =, the unlabeled samples X; = {xi} ",
the feature extractor f(-), and the distance metric
d between features, the total clustering loss is:

LC(X87 Xt) = LC(XS) + Lc(Xt) (5)
where L. is as follows for each X,:
L XTI ‘ .
Le(X2) = —— Y [65d(f (), f(7))
R i=1 j=1 (6)

+ (1 = 8ij) max(0,m — d(f ("), f(27)))]

The intuition is to enforce class-conditional
structure at the feature representation by group-
ing the classes into clusters, i.e., by minimizing the
distance between features ¢ and z7 that have the
same label when the indicator function d;; = 1,
whereas pushing different clusters away from at
least a margin m by maximizing the feature dis-
tance when §;; = 0. The classifier trained on the
source features may not be able to differentiate be-
tween the same class from different domains, and
therefore, an alignment loss L, is imposed between
the domains as follows:

K

1
La(Xs, Xt) = K Z Ak — )\t,ng
k=1

(7

In this case, given the number K of classes to be
predicted, and the samples X, ;. from either source

or target whose labels are equal to &, the cluster
centroids A j are computed using:

’k:\Xik\ Z f(fo

’ xiGX*,k

A ®)

The loss L, tries to match the source and target
statistics by aligning the clusters for each class k
in the feature space. Additionally, the performance
can be further improved by aligning the marginal
distributions, i.e., adding a confidence threshold
that ignores the data points likely to be included in
the wrong class.

3.4 Cross-Domain Contrastive Learning

Self-supervised contrastive learning (Chen et al.,
2020) aims to learn representations such that, given
a pair of examples, closely related examples should
behave similarly, while dissimilar examples should
stay far apart from each other. This can be achieved
by employing various techniques such as data aug-
mentation and custom losses (e.g., NT-Xent (Chen
et al., 2020), InfoNCE (Oord et al., 2018)). Since
there is no clear way to construct positive and neg-
ative pairs in an unsupervised domain adaptation
framework, Wang et al. (2022) argued that sam-
ples from the same category should be similar. In
contrast, samples from different categories should
have other feature representations, regardless of
the domain from which they come. Based on this
hypothesis, they proposed the cross-domain con-
trastive (CDC) loss to reduce the domain shift be-
tween source and target labels. We assume z{ and
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2P are the ly-normalized features for the anchor
sample from the target domain x¢ and the positive
sample from the source domain %, respectively. In
this case, the loss function is described by:

Lt 1 exp(zf - 2/7)

cpe T T
Jels

(€))
where Ps(yf") denotes the set of positive samples
from the source domain having the same label as
the anchor point, and I is the set of all source
samples from the mini-batch. Similar to Eq. 9, we
compute L}, , for which we consider the positive
samples from the target domain instead. The CDC
loss with alignment at the feature level is':

1 & 1 &
) t?
Lepe = A > Lihe + N > Lepe (10)
a=1 a=1

The objective function is given by the sum of the
prediction loss L, and the loss Lo pc scaled by :

L=Ly+~vLcpe (11)

We generate pseudo-labels using the K-Means
algorithm since we require them when creating
positive pairs. We initialize K-Means with the cen-
troids of the source domain and predict on the target
domain. The pseudo-labels are chosen to minimize
the similarity distance between the feature repre-
sentation and the centroid. K-Means is performed
at the beginning of each epoch.

3.5 Cluster and Topic-Based Unsupervised
Domain Adaptation

We propose an addition to the UDA approach, con-
sidering the supervised setting (i.e., we have ac-
cess to the labeled source dataset). First, we rep-
resent the input text using TF-IDF or a pre-trained
RoBERTa model. We employ a clustering/topic
modeling algorithm in this feature space to iden-
tify k clusters or topics, which will be assigned as
domain labels. For clustering, we employ four al-
gorithms, namely K-Means, K-Medoids, Gaussian
Mixture, and HDBSCAN. Also, we use four topic
modeling algorithms, namely LDA, NMEF, LSA,
and pLSA. The motivation is to compact the latent
representation, given estimates of latent domains

'Note that we included the normalization terms compared
to the original formulation.

IS exp(ap - 2/7)

under a topic model (i.e., a dataset split). During
training, it is minimized the loss given by Eq. 1
while using the proposed domain labels. For the
target examples, we do not include labels during
training. We choose the number of clusters using
the elbow method®. After training on each pair
of domain labels, the best-performing model is se-
lected for the inference stage.

4 Experimental Setup
4.1 Datasets

We perform experiments on three datasets related to
fake (i.e., ISOT and BuzzFeed) and hyperpartisan
(i.e., BuzzFeed and Hyperpartisan (Kiesel et al.,
2019)) news detection.

The ISOT fake news dataset contains news arti-
cles collected from reuters.com, and other websites,
which were validated by Politifact’. The dataset
comprises 44,898 articles, of which 21,417 contain
truthful information, and 23,481 are fake news. All
collected articles are related to politics and have at
least 200 characters.

The BuzzFeed dataset contains 1,627 articles in
three categories: mainstream, left-wing, and right-
wing. The mainstream and hyperpartisan data are
evenly distributed, and the length of the articles
ranges between 400 and 800 words. This dataset
is annotated for both fake and hyperpartisan news
detection.

The Hyperpartisan dataset which contains hy-
perpartisan news was released under the SemEval-
2019 Task 4 shared task (Kiesel et al., 2019). The
dataset was crawled from news publishers listed
by BuzzFeed* and Media Bias Fact Check’. From
these sources, 754,000 news articles were extracted
and semi-automated labeled using distant super-
vision (Mintz et al., 2009) at the publisher level,
provided in the HTML format. It was split into
600,000 articles for training, 150,000 articles for
validation, and 4,000 articles for testing. Half
of the dataset consists of non-hyperpartisan arti-
cles, and the other half is split equally among left-
wing and right-wing articles. Since the authors
also released a smaller version of the dataset (645
examples for training and 628 examples for test-
ing), in what follows, we will refer to the larger

https://www.scikit-yb.org/en/latest/
api/cluster/elbow.html

3 An organization that checks the veracity of the news.

*nttps://github.com/BuzzFeedNews/2017-
08-partisan-sites—and-facebook-pages

Shttps://mediabiasfactcheck.com
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dataset as Hyperpartisan-L and the smaller dataset
as Hyperpartisan-S.

4.2 Data Preprocessing

We perform data cleaning on all three corpora, ig-
noring non-ASCII characters and removing HTML-
specific symbols and constructions that do not pro-
vide any information about the actual content, such
as multiple chains of dots in a line. BPE was uti-
lized for tokenization, setting to output a maximum
of 128 tokens per text sample.

Since the ISOT and BuzzFeed datasets are not
provided with separate splits for validation and test-
ing, we use the following split: 70% for training,
10% for validation, and 20% for testing. In addi-
tion, due to limited computational resources and
the large size of the Hyperpartisan dataset, we se-
lect a random 5% of the data from the training set
(i.e., 30,000 examples) and 5% of the data for the
validation set (i.e., 7,500 examples). Also, we use
the entire Hyperpartisan test set since it contains
only 4,000 examples.

4.3 Hyperparameters

We utilize the pre-trained RoBERTa base version
(123M parameters), which consists of a stack of 12
Transformer blocks. For all experiments, the Adam
optimizer (Kingma and Ba, 2015) with a linear
scheduler is used with a warm-up (it is set with
5% of the gradient steps) for the learning rate. The
learning rate varies among experiments, between
le—4 and 1e—5. We employ a dropout set between
0.1 and 0.5. We also set the optimizer’s weight
decay parameter to le — 3, and clip the gradients
between -1 and 1 to increase training stability and
reduce overfitting.

5 Results

There were conducted multiple experiments to eval-
uate the impact of using various fine-tuned models
for ROBERTa. We also investigate the effects of
fine-tuning the RoOBERTa model on the downstream
task. Then, we analyze the impact of using a data
augmentation technique (Xie et al., 2020) based on
the TF-IDF scores. In Appendix A.1, we present
the results of the GPT-2 data augmentation. Finally,
we use clustering and topic modeling algorithms to
extract clusters and topics from the training set and
perform domain adaptation. We present the results
in terms of accuracy (Acc) and F1-score (F1).

Dataset Acc(%) | F1(%)
BuzzFeed 96.9 96.7
ISOT 99.8 99.7
Hyperpartisan-S 83.7 83.0
Hyperpartisan-L 62.1 69.0

Table 1: Results obtained after fine-tuning and evaluat-
ing RoBERTa on each dataset.

Model Acc(%) | F1(%)
RoBERTa 62.1 69.0
RoBERTa frozen 53.7 65.4
RoBERTa fine-tuned first on BuzzFeed 62.3 68.0
RoBERTa fine-tuned first on ISOT 63.0 70.0

Table 2: Results for different fine-tuning strategies on
the Hyperpartisan-L dataset.

5.1 Baselines

We start with the most straightforward approach
for training a neural network. That is, we take
a pre-trained model on similar tasks and transfer
some of the acquired knowledge to the downstream
task via fine-tuning. The baseline model consists
of the RoBERTa model followed by a stack of fully
connected layers. We employ two fully connected
layers, with 256 hidden units and two output neu-
rons. The models are trained for 3 epochs, with a
learning rate of 1e — 4 and batch size between 32
and 64.

First, we evaluate the model on all four datasets
for baseline results. Table 1 presents the final re-
sults obtained during experiments. We observe
that ISOT achieves the highest scores, followed
by BuzzFeed and Hyperpartisan-S. We note that
humans annotated these datasets, whereas the
Hyperpartisan-L dataset was annotated with a semi-
supervised approach.

By comparing three fine-tuning methods (see
Table 2), we observe that freezing the model’s en-
coders yields poor performance. This increases the
number of false positives and decreases the num-
ber of true negatives because of the domain shift
between the datasets and training with fewer param-
eters. On the other hand, fine-tuning improves the
results since the model’s parameters are adapted to
the new domain.

5.2 Results for UDA

We consider the encoders from the RoBERTa
model as feature generators. We also use a stack
of fully connected layers, with 256 hidden neurons
and two outputs for both the label predictor and the
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A Source Target Source Target
Acc(%) | F1(%) | Acc(%) | F1(%)
0.1 | Hyperpartisan-L | BuzzFeed 61.5 67.7 854 86.4
1 Hyperpartisan-L | BuzzFeed 58.1 68.4 60.8 382
5 Hyperpartisan-L | BuzzFeed 50.0 25 54.0 3.8
0.1 | BuzzFeed Hyperpartisan-L 95.3 94.9 64.3 62.7
1 BuzzFeed Hyperpartisan-L 96.5 96.6 50.0 66.5
5 BuzzFeed Hyperpartisan-L 51.5 7.1 50.8 7.7
0.1 | BuzzFeed Hyperpartisan-L 94.4 94.5 56.7 64.1
Table 3: Unsupervised domain adaptation between

Hyperpartisan-L and BuzzFeed datasets.

GRL Source Target

pos. | Ace(%) | F1(%) | Ace(%) | F1(%)
4 95.9 95.2 62.1 61.7
6 95.0 94.4 62.1 67.1
10 91.3 89.1 60.9 64.1
12 95.3 94.9 64.3 62.7

Table 4: Various linking positions of the GRL layer
to the encoders of RoOBERTa, on BuzzFeed (source) to
Hyperpartisan-L (target) adaptation.

domain discriminator. The domain discriminator is
linked to the output of the RoOBERTa encoder via a
gradient reversal layer. We tested three values for
A€ {0.1,1,5}.

Furthermore, we perform larger-to-smaller
and smaller-to-larger dataset adaptations between
Hyperpartisan-L. and BuzzFeed. The model is
trained for 3 epochs (i.e., the steps required to
pass through all examples from the larger dataset).
The batch size is set to 64, from which half are
labeled and the other half are unlabeled examples.
The results are shown in Table 3. We observe
that if )\ is set too large, the model does not learn
the data distribution but predicts only one class.
Conversely, UDA performs better when A = 0.1,
achieving higher accuracy on the Hyperpartisan-L
target dataset. This adaptation may have helped be-
cause of the inherent similarities between domains
and improved performance on out-of-distribution
points.

Moreover, we employ different ways of linking
the GRL layer with the RoOBERTa encoders. Since
the RoBERTa-base model uses 12 encoders, we
utilized the 4th, 6th, and 10th, besides the previous
experiments. While the encoder returns a feature
representation for each element in the sequence,
we take the representation of the [CLS] token.
Table 4 shows the results. The 12th layer performs
best, while similar performances are achieved using
the 4th or 6th layer. The results are supported by
the fact that more layers for the encoder mean more
representational power for the feature encoder that
needs to be adapted among domains.

Source
Acc(%) | F1(%)

Target
Ace(%) | F1(%)

A «@

1 1 92.5 91.2 51.3 66.4
1 0.1 94.7 93.8 57.9 62.6
0.1 ] 0.1 95.9 95.7 59.9 61.5
0.1]0 96.5 96.4 58.7 64.3
0.1 95.6 95.4 59.8 64.1
0 0 93.7 92.7 58.9 62.5

Table 5: Results for the CAT framework on BuzzFeed
(source) to Hyperpartisan-L (target) adaptation.

5.3 Results for CAT

In addition to the previous experimental setup, we
set the parameter o € {0.1, 1} for the clustering
loss in the CAT configuration. We also consider a
lower learning rate (i.e., le — 5) to improve con-
vergence. We consider an epoch is a complete pass
through the smaller dataset to update the pseudo-
labels for the entire target domain using the teacher
model. As such, we trained the models for 10-30
epochs. We set the margin m = 2, the ensemble
size to 3, and the ensemble accumulation to 0.8.
We performed domain adaptation from Buz-
zFeed to Hyperpartisan-L. The results are shown in
Table 5. The model obtains over 90% accuracy on
the source domain and is bounded by 66.4% on the
target domain. This approach generally achieves
a smaller accuracy than previous techniques, the
best score being when A = o = 0.1. Also, we
can observe that the difference between A and «
affects the performances. Analyzing the model pre-
dictions, we notice that using smaller values for
A and « yields a high number of false positives,
while larger values increase the number of false
negatives. Using A = 1 and a = 0.1 resulted in a
biased model towards mainstream examples.

5.4 Results for CDCL

For the CDCL method, the experimental setup is
similar to the one used for the CAT. We varied the
temperature 7 € {0.1,0.5,1} and the coefficient
~v € {0,0.1,1,5}. Table 6 provides the results of
our analysis. We observe that both 7 and -y affect
the performance. The best results were attained
when 7 = 1, and v = 5, achieving 63.9% accuracy
on the target domain, while 7 = 0.5 generates
the best values on the source dataset. It proves
that Lopc performs some regularization on the
source domain. We noticed that the models often
produce a high false positive rate, affecting the
recall more than the precision. In addition, training
for more epochs, the model starts overfitting on
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Source Target
T 17 Aee(%) | F1(%) | Ace(%) | F1(%)
0110 956 | 952 | 599 | 622
01]01] 913 | 90.1 633 | 649
011 9.2 | 960 | 619 | 688
0115 9.2 | 960 | 626 | 679
050 950 | 952 | 604 | 643
05]01] 953 | 957 | 571 67.8
0.5 |1 894 | 896 | 608 | 639
0515 9.5 | 964 | 634 | 665
1 |o 959 | 958 | 633 | 652
1 |o1]| 959 | 958 | 616 | 686
1|1 922 | 926 | 619 | 673
1 |s 956 | 954 | 639 | 69.2

Table 6: Results for the CDCL framework on BuzzFeed
(source) to Hyperpartisan-L (target) adaptation.

both source and target domains while degrading
the performance of the validation set.

5.5 Results for Text Augmentation Based on
TF-IDF

We explore a data augmentation technique based on
TF-IDF as proposed by Oord et al. (2018) for con-
sistency training. Thus, we compute the TF-IDF
score for every token from the corpus and associate
it with the probability of it being changed. The
words with the higher probability are replaced with
non-keywords from the vocabulary to avoid chang-
ing the meaning of the text. The TF-IDF-based
word replacement depends on a hyperparameter
p that controls the level of augmentation enabled
on the dataset. We vary p for our experiments to
augment the BuzzFeed dataset with multiple aug-
mentation levels. Table 7 shows the results for all
training configurations, where two or three values
per augmentation type indicate that we applied each
value of p and concatenated the augmented exam-
ples over the original dataset. Also, zero suggests
that only the unaltered dataset was used. Using
more augmentations (e.g., p € {0.1,0.2,0.3}) on
the CDCL and CAT frameworks yields better over-
all results, while on UDA, using a much stronger
augmentation (i.e., p = 0.5) leads to better results.

One problem with this data augmentation tech-
nique is that it may alter the text in a way that is not
coherent anymore, specifically when many tokens
are changed. The most frequent words may not
always have the same meaning, so their contextu-
alized representation is affected. Since the context
defines the meaning of a word in language mod-
els, this augmentation changes the representation,
especially on unlabelled data. Table 7 illustrates
the issue on the target dataset. However, on the

Source Target

p Acc(%) \ F1(%) | Acc(%) \ F1(%)
UDA

0 94.0 93.4 59.1 64.5

0.5 95.8 95.5 63.2 62.7

0.1/0.2 94.7 94.5 57.3 61.5

0.1/0.2/0.3 98.4 98.3 61.3 46.9
CAT

0 95.9 95.7 59.9 61.5

0.5 93.0 92.7 60.5 65.2

0.1/0.2 98.8 98.8 62.7 64.0

0.1/0.2/0.3 98.2 98.1 60.7 64.7
CDCL

0 94.0 93.4 60.8 69.4

0.5 95.1 94.8 63.2 69.0

0.1/0.2 97.3 97.3 63.6 68.9

0.1/0.2/0.3 98.8 98.8 64.4 69.4

Table 7: Results for the TF-IDF-based data aug-
mentation. The source is BuzzFeed and the target is
Hyperpartisan-L.

source dataset, the performance is not affected but
generally improved.

5.6 Results for Cluster- and Topic-Based UDA

In the topic-based UDA approach, we follow the
same experimental setup as in classical UDA. For
training, the only difference is that we train all
models for 10 epochs. We explore both, the clus-
tering on RoBERTa features (i.e., K-Means with
Euclidean or cosine distance, K-Medoids, Gaussian
Mixture, and HDBSCAN) and the topic modeling
algorithms on TF-IDF features (i.e., LDA, NMF,
LSA, and pLSA) to split the representation. We
evaluate the experiments on the Hyperpartisan-L
test set and present the results in Table 8. Using
clustering algorithms for domain labels provides
the best overall results compared to Table 3. The
best-performing models outperform the UDA ap-
proach by over 3% in accuracy and are obtained
when we adapted from a larger to a smaller split.
It is noteworthy that for the HDBSCAN, the clus-
ter 2 contains very few annotated examples (i.e.,
332) compared with the other two (i.e., 17,092 and
12,576), resulting in adaptation failure. When us-
ing the topic modeling, we see a degradation in
performance, especially in the case of NMF. Com-
pared with the ROBERTa baseline (see Table 2), the
model achieves similar F1-scores.

5.7 Feature Visualization

We use t-SNE (Van der Maaten and Hinton, 2008)
to visualize the feature representation learned by
the best models we obtained for each category. In
Figure 2, we present the plots for the baseline, the
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Method 0—1 1-0 20 0—2 1-2 21
Ace(%) | F1(%) | Acc(%) | F1(%) | Ace(%) | F1(%) | Ace(%) | F1(%) | Acc(%) | F1(%) | Ace(%) | F1(%)
K-Means-euclidean 67.2 68.2 66.1 68.6 64.1 65.6 67.9 69.3 61.9 68.0 65.4 69.2
K-Means-cosine 64.2 69.0 63.5 70.0 66.0 63.6 66.3 67.8 64.1 68.5 62.4 67.3
K-Medoids 66.0 64.2 62.7 57.8 66.3 68.0 64.2 57.5 61.7 52.1 63.5 60.9
Gaussian Mixture 67.1 70.6 59.5 67.7 57.9 64.0 64.9 69.6 59.7 68.0 65.3 64.2
HDBSCAN 65.1 68.9 62.5 63.4 50 0.0 60.0 55.6 62.2 66.0 50.0 0.0
LDA 61.8 522 59.0 435 66.1 61.9 62.6 66.2 49.4 61.9 59.8 46.2
NMF 633 533 59.9 55.7 56.0 58.1 54.9 36.3 59.8 57.0 60.5 45.4
LSA 62.1 703 50.0 66.4 515 8.6 51.6 65.6 53.1 64.6 61.4 70.0
pLSA 61.6 68.7 50.0 1.4 57.1 66.1 60.1 66.2 60.2 54.8 624 67.6

Table 8: Results for the cluster- and topic-based UDA, where 0, 1, and 2 identify cluster/topic assignments given by
the algorithm. The best score for each line is underlined, while bold indicates the best overall metrics.
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Figure 2: t-SNE visualizations of the feature represen-
tations for the BuzzFeed (source) and Hyperpartisan-L
(target) datasets. Blue — source (src) mainstream, orange
— target (trg) mainstreams, green — source hyperpartisan,
and red — target hyperpartisan. Best viewed in color.

UDA, the CAT, and the CDCL. Using different
approaches to domain adaptation may reduce the
domain gap in the feature space between the two
domains. Still, many examples cluster together far
apart from their counterparts. UDA obtains better
representations than the other methods. When con-
sidering the topic-based adaptation (see Figure 3),
we notice a better separation when employing topic
models. Also, we achieve poor separation among
classes for K-Means and K-Medoids.

6 Conclusions

In this work, we addressed the problem of transfer-
ring knowledge from fake to hyperpartisan news de-
tection. We employed three types of architectures
based on unsupervised training. We conducted
multiple experiments, showing the effects of the
hyperparameters in the given configuration. All
employed methods manage to perform some do-

s om0 s 3w B0 w0 a0 70 20 60 80

(a) K-Means (b) K-Medoids

A P
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{ %
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iy
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(c) LDA () NMF
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+ sic hyperpartisan
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Figure 3: t-SNE visualizations of the feature represen-
tations when employing topic/clustering methods on the
validation sets. Blue — source (src) mainstream, orange
— target (trg) mainstreams, green — source hyperpartisan,
and red — target hyperpartisan. Best viewed in color.

main adaptation. In particular, we showed that
CDCL obtains the best results after applying data
augmentation based on TF-IDF word replacement.
In contrast, CAT managed the poorest results. By
analyzing the t-SNE visualization, this model did
not learn a good feature representation, with a min-
imal domain gap between the source and target
datasets. The low accuracy we hypothesize is due
to a lack of data from the source domain, as we
have seen that data augmentation helped. For fu-
ture work, we aim to investigate our approaches on
other fake news datasets.
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A Appendix

A.1 Results for Text Augmentation Based on
GPT-2

Observing the improvements obtained using TF-
IDF augmentation, we consider text generation
an alternative. Therefore, we employ the GPT-
2 model (Radford et al., 2019) to conditionally
generate new examples given the news types (i.e.,
left-wing, right-wing, and mainstream). We fol-
low an approach similar to the LAMBADA method
proposed by Anaby-Tavor et al. (2020). Therefore,
we fine-tune the GPT-2 base model on the hyper-
partisan Buzzfeed dataset to generate new samples.
Inspired by other works (Brown et al., 2020; Liu
et al., 2023; Niculescu et al., 2022), we build the
pre-training dataset using, for each sample, the fol-
lowing prompt:

News type <LABEL>

Text <TEXT>

<|endoftext |>

where <LABEL> is left, right, or main-
stream, <TEXT> 1is the news content, and
<|]endoftext|> is the end token of the text.
Since we use a relatively small context during
experiments (i.e., 128 tokens), we do not require
the auto-regressive model to learn to generate
long samples, but rather more variation within the
generated samples. To achieve this, we split each
text into sentences and group every three sentences
into one example under the same label.

As suggested by Kumar et al. (2020), dur-
ing data generation, we iterate over each sample
from the training set and prompt the model with
News type: <LABEL> Text: followed by
the first 7" tokens from each sample. Because the
model may generate text that is not correlated with
the label (i.e., either the model ignores the prompt
label (Webson and Pavlick, 2022), or there is not
enough data for the model to learn a clear distinc-
tion), we use the RoOBERTa baseline model fine-
tuned on the Buzzfeed dataset to filter the samples,
ignoring those that do not match the model’s pre-
diction.

Text generation quality depends on the decoding
strategy; thus, we explore multiple approaches.

Greedy decoding. The most trivial and fastest
way of synthesizing text is to consider the token
with the highest probability. Albeit simple, it has

the disadvantage of generating repetitive and miss-
ing higher probability words behind lower proba-
bility ones.

Beam search. Beam search (Freitag and Al-
Onaizan, 2017) seeks to solve the low probability
issue from the greedy decoding by choosing the
highest probability sequence within a number of
beams. This method generally yields to higher
probability sequence than greedy decoding. During
experiments, we set the number of beams to 5.

Top-k. Using the top-k decoding (Fan et al.,
2018), we consider only the highest k£ next tokens
from the probability distribution over possible next
tokens. This simple yet effective method produces
more human-like text than previous approaches. In
our experiments, we consider k = 30 tokens.

Top-p nucleus sampling. Introduced by Holtz-
man et al. (2020), the top-p nucleus sampling is an
extension over top-k. We choose the tokens from
the smallest subset whose cumulative probability
is at least p instead of choosing from the top &
probabilities. For experiments, we set p = 99%.

To generate more samples, we repeat the pro-
cedure while setting 7' € {3,5,10}. The results
are shown in Table 9. CDCL obtains the highest
scores on the source and target datasets using top-p
and greedy decoding, respectively. On the source
dataset, the accuracy reaches 97.8% and the F1-
score tops at 97.7%, while on the target dataset,
the best accuracy is 64.4% and F1-score is 70.4%.
Compared with the TF-IDF text augmentation, the
GPT-2 augmentation produces a higher best F1-
score by 1% on the target test set, and achieves
lower scores on the source test set by 1%. In ad-
dition, we notice that the performance improves
when adding more data, especially on the source
dataset, where we see an average improvement of
0.6% and 0.8% for accuracy and F1-score, respec-
tively. On average, greedy decoding improves the
target Fl-score (i.e., 68.0£1.5%) while the low-
est average is obtained by top-p (i.e., 65.7£3.5%).
We notice a small improvement in favor of top-p
compared with top-k on the source domain, but the
target domain does not benefit from it in our case.
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Decoding UDA CAT CDCL
Strategy T Source Target Source Target Source Target
Acc(%) | F1(%) | Acc(%) | F1(%) | Acc(%) | F1(%) | Acc(%) | F1(%) | Ace(%) | F1(%) | Ace(%) | F1(%)
3 96.0 95.6 62.5 68.3 96.6 95.9 63.7 65.9 97.2 97.2 64.4 70.4
Greedy decoding | 3/5 96.0 95.6 60.1 69.2 96.6 95.9 63.9 66.6 96.3 96.3 61.7 68.6
3/5/10 | 96.3 96.1 55.4 67.3 95.0 94.1 63.2 66.5 97.2 97.2 62.6 68.8
3 95.7 95.3 63.4 68.2 94.4 93.1 63.5 64.1 94.7 94.5 64.2 68.1
Beam search 3/5 95.7 95.3 57.1 68.4 94.4 93.1 64.2 63.4 96.6 96.6 61.5 68.0
3/5/10 | 97.8 97.7 62.1 68.9 96.3 95.6 64.4 66.1 96.9 96.9 60.7 66.2
3 94.7 94.2 62.9 65.4 96.3 96.2 62.6 66.7 96.0 95.9 61.6 68.3
Top-k 3/5 95.0 94.7 61.7 68.6 96.9 96.8 63.8 65.9 96.9 96.8 60.7 66.7
3/5/10 | 96.3 96.0 60.0 68.5 97.2 97.2 63.6 68.4 96.6 96.5 61.7 69.0
3 95.7 95.3 61.5 67.1 96.9 96.8 63.3 61.4 97.2 97.1 63.6 69.1
Top-p 3/5 95.0 94.7 62.1 67.1 96.3 96.1 62.6 62.9 97.8 97.7 62.3 68.1
3/5/10 | 95.7 95.3 61.4 68.3 96.3 96.2 61.5 59.3 97.5 97.5 62.5 67.9

Table 9: Results for the text augmentation using GPT-2. The source is BuzzFeed and the target is Hyperpartisan-L.
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