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Abstract

Extracting legal entities from legal documents,
particularly legal parties in contract documents,
poses a significant challenge for legal assis-
tive software. Many existing party extraction
systems tend to generate numerous false pos-
itives due to the complex structure of the le-
gal text. In this study, we present a novel and
accurate method for extracting parties from le-
gal contract documents by leveraging contex-
tual span representations. To facilitate our ap-
proach, we have curated a large-scale dataset
comprising 1000 contract documents with party
annotations. Our method incorporates sev-
eral enhancements to the SQuAD 2.0 question-
answering system, specifically tailored to han-
dle the intricate nature of the legal text. These
enhancements include modifications to the ac-
tivation function, an increased number of en-
coder layers, and the addition of normalization
and dropout layers stacked on top of the output
encoder layer. Baseline experiments reveal that
our model, fine-tuned on our dataset, outper-
forms the current state-of-the-art model. Fur-
thermore, we explore various combinations of
the aforementioned techniques to further en-
hance the accuracy of our method. By employ-
ing a hybrid approach that combines 24 encoder
layers with normalization and dropout layers,
we achieve the best results, exhibiting an exact
match score of 0.942 (+6.2% improvement).

1 Introduction

Extracting legal entities from legal documents is
an essential challenge for legal assistive software
(Leivaditi et al., 2020). Its goal is to extract struc-
tured information — “what are the legal attributes
(agreement date, party, license, etc) that are in-
volved” — from unstructured text. A contract doc-
ument is a legally binding agreement between two
or more parties. It outlines the terms and condi-
tions of the relationship and sets forth the rights and
obligations of each party (Chalkidis et al., 2017).

Here, the party is a person or entity who takes part
in a legal transaction, for example, a person with
an immediate interest in an agreement or deed, or
a plaintiff or a defendant in a lawsuit. A “third
party” is a person who is a stranger to a transaction,
contract, or proceeding.

Extracting parties’ information from legal con-
tracts can provide numerous benefits to legal assis-
tant software such as Concord', ContractWorks?,
and HelloSign>. First and foremost, this can aid
legal professionals in identifying parties involved
in similar cases, trends, and patterns in legal dis-
putes, and assist in more efficient legal research.
Secondly, the extraction of parties allows reviewing
multiple documents efficiently with the quick doc-
ument search feature, and it leads to focusing on
relevant information and documents through assis-
tant software. Moreover, the manual extraction of
parties is prone to human errors, which can lead to
inaccuracies and inconsistencies (Hendrycks et al.,
2021). By automating the process of party extrac-
tion, legal professionals can save time and improve
the accuracy of their work.

Extracting parties can be a challenging task de-
spite its usefulness (Leivaditi et al., 2020). One of
the most challenging parts of the contract is it may
contain numerous names of persons and organiza-
tions throughout its pages. These names can refer
to various entities other than the parties, such as
third-party beneficiaries, agents, assignees, guar-
antors, witnesses, and experts (Bommarito et al.,
2018). As aresult, it can be difficult to distinguish
the parties from all the other types of individuals
and entities mentioned in the contract. Secondly,
legal contracts can be lengthy and complex, with
various technical terms and clauses that require
in-depth legal knowledge to understand fully. Ad-
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ditionally, contracts can be written in a convoluted
manner, leading to ambiguity in determining the
parties’ intent, which can create difficulties in ex-
tracting the relevant information accurately. More-
over, reviewing a large volume of contracts within a
limited time frame can be a labor-intensive task for
lawyers, often leading to errors and inconsistencies.
Finally, the manual review may also be prone to
errors due to human oversight or misinterpretation,
which can result in inaccuracies in the extracted
information (Hendrycks et al., 2021). Therefore,
automated legal assistant software can be beneficial
in addressing this challenge.

There has been extensive research on extracting
various information from legal documents (legisla-
tion, court cases, contracts) (Almeida et al., 2020;
Hendrycks et al., 2021), but there were only three
studies found on extracting parties from legal con-
tracts. The first system used a rule-based system to
extract parties (Chalkidis et al., 2017), but it can-
not scale out since law firms generate a plethora of
contract documents, making it impossible to add
processing rules for each new contract type. The
second attempt focused on only one type of con-
tract (leases) and was not applicable to other types
of contracts (Leivaditi et al., 2020). The third and
final system solved this problem using a question-
answering method (Hendrycks et al., 2021). How-
ever, the extraction system results in a large number
of false positives and less reliable outcomes.

In addition, there exist only two datasets that
facilitate the extraction of parties’ information from
legal contract documents (Chalkidis et al., 2017;
Hendrycks et al., 2021), out of which only one is
publicly accessible. The initial dataset is annotated
with extraction zones that are appropriate for rule-
based extraction (Chalkidis et al., 2017). On the
other hand, the second dataset (CUAD) is annotated
for a question-answering system but is unsuitable
for precise party detection (Hendrycks et al., 2021).

In this research, we try to develop a relatively
accurate dataset with a precise match of the par-
ties and doubled the size of the CUAD dataset
(Contribution 1). We attempt to develop a scal-
able and accurate party extraction system with min-
imal overheads. To address this, we use RoBERTa
(a pre-trained transformer-based language model
(Vaswani et al., 2017)) (Liu et al., 2019) as the
baseline model and empirically optimized this ar-
chitecture to best learning capability and improve
contextualized representations of the contracts in

the parties extraction task. This optimized archi-
tecture includes transformer encoder layers, layer
normalization, and dropout layers (Contribution
2).

The remaining sections of the paper are orga-
nized as follows: Firstly, in Section 2, we con-
duct a comprehensive literature review focusing
on party extraction systems and party annotated
datasets. Subsequently, in Section 3, we outline our
proposed dataflow and the techniques applied to
RoBERTa. We then present the experiments in Sec-
tion 4, which encompasses the dataset description,
environmental setup, and evaluation methodology.
Moving forward, in Section 5, we present the exper-
imental findings and compare the accuracy of our
approach with different models derived from var-
ious techniques. Following that, in Section 6, we
discuss the limitations of our approach and provide
insights for future works. Finally, we conclude the
paper with remarks in Section 7.

2 Related Work

Party extraction is currently being explored through
various efforts. The primary methods used for text
extraction are rule-based, machine learning, and
transformers. However, to the best of our knowl-
edge, only three researchers have attempted to ex-
tract parties from legal contracts, and only two have
developed datasets for parties. This literature first
examines previous research on dataset creation and
highlights its advantages and limitations. Then, it
delves into the details of the three party extraction
systems.

2.1 Party Annotated Datasets

All of the available party extraction datasets for
legal contract documents are annotated for both the
parties involved in the contract and additional ele-
ments from the contract structure. (Wang, 2022).
Chalkidis et al. (2017) introduced a labeled
dataset with gold contract element annotations. The
contract elements they aimed to extract are Con-
tract Title, Contracting Parties, Start Date, Effective
Date, Termination Date, Contract Period, Contract
Value, Government Law, Jurisdiction, Legislation
Refs, and Clause Headings. They looked for the
parties on the cover page and preamble (hereafter
extraction zone) during the annotation to reduce the
time needed to process the contracts. In practice, it
would increase the false positives (tokens wrongly
identified as contracting parties) during testing.
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In the following year, there was another dataset
released for contract review with more contract ele-
ments (Hendrycks et al., 2021). They chose a list of
41 label categories that lawyers pay particular atten-
tion to when reviewing a contract. The labels are
broadly divided into the following three categories:
General information, Restrictive covenants, and
Revenue risks. They used the cover page, pream-
ble, contract’s first page, and signature part for the
annotation of parties. Additionally, they also anno-
tated the roles of the extracted parties. Since, their
annotations include irrelevant terms, abbreviations,
and sentences as parties, the quality of the dataset
is quite low for the parties extraction.

2.2 Party Extraction System

In the view of party extraction systems, there were
only two contracting parties extraction systems
available.

Firstly, Chalkidis et al. (2017) experimentally
compared several contract element extraction meth-
ods that used manually written rules and linear
classifier (Logistic Regression, Support Vector Ma-
chine (SVM)) with hand-crafted features, word
embeddings, and part-of-speech tag embeddings.
Among their experiments, the linear classifier
(SVM) performed best when both the hand-crafted
features and the word and POS tag embeddings
were used. In another experiment, manually writ-
ten post-processing rules significantly improved
the performance of the linear classifiers, leading to
the same overall results for both LR and SVM, out-
performing the rule-based system and the generic
Named Entity Recognition. The F1 score of the
two best systems was 0.89 in the extraction of par-
ties. As we described in the section 2.1, identifying
parties from extraction zones increase the false pos-
itive during testing. Therefore, the authors first
identify the extraction zone using regular expres-
sions and classify the tokens as contracting parties.
This approach is unsuitable due to the generation
of new types of contract documents by law firms,
making it impossible to add expression rules for
each new contract type.

In the following year, Hendrycks et al. (2021)
conducted an experiment on a legal question-
answering dataset using various generic models
such as BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), ALBERT (Lan et al., 2020), and De-
BERTa (He et al., 2021b). Their findings revealed
that DeBERTa outperformed the other models, with

Contract Layer
Documents.

Output Layer

Figure 1: Overall System.

almost 95% AUPR measure. However, most of
the professional systems do not intend to use De-
BERTa, a large language model which requires a
high-computing resource to train and make predic-
tions (Hendrycks et al., 2021). As we mentioned
the section 2.1, even though their dataset quality is
low for the parties extraction, the system achieved
nearly 95% due to their customized evaluation al-
gorithm. This algorithm used 0.5 as a threshold
to find the overlap between extracted and actual
strings to be counted as a valid match. Therefore,
most of the sub-strings of the actual parties will be
counted as valid matches. This leads to an increase
in the evaluation metrics.

3 Methodology

The aim of this research is to create a question-
answering model (Wang, 2022) to identify par-
ties involved in legal contracts as shown in Fig-
ure 1. To accomplish this, we have opted to use
RoBERTa (Liu et al., 2019) as our foundational
model. There were several reasons behind our se-
lection of RoBERTa (Liu et al., 2019) for this re-
search. Firstly, it is a comparatively smaller model
compared to other large language models (Devlin
etal., 2019; He et al., 2021a). Secondly, RoOBERTa
(Liu et al., 2019) is equipped with a Fast Tok-
enizer, enabling us to process large volumes of
text data quickly and efficiently. Lastly, this model
has been shown to have performance improvements
compared to BERT (Devlin et al., 2019) due to its
dynamic masking technique.

3.1 Dataflow

In this section, we will look at how raw text in-
puts are processed by the model during fine-tuning.
First, newly annotated documents are fed into
the model. These documents are often large and
lengthy, so a sliding window approach is used to
divide them into smaller chunks of 512 tokens each
as illustrated in Figure 2. Each token can be one or
more characters long. (examples of tokens: as”,
”law”, and “agree”).

Next, the inputs were tokenized using a fast to-
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Figure 2: Chunks Creation. The document is divided
into 512-token chunks, and each chunk is combined
with a question to create a question-context pair. The
pair also contains a flag that indicates whether the an-
swer to the question is present in the chunk.

kenizer, which replaced each token with a unique
integer identifier, or token ID. The vocabulary used
for this step consisted of approximately 50,000
tokens, which were derived from WordPiece tok-
enization. WordPiece tokenization breaks down
words into subwords or pieces, and the vocabulary
includes these subwords, as well as some unique
tokens used for specific purposes, such as [CLS]
(classification), [SEP] (separator), and [MASK].

In addition to the token IDs, positional embed-
dings were also created to indicate the relative po-
sitioning of the tokens between each other. This
information is important for understanding the con-
text of the text. Segment embeddings were also
created to differentiate the question from the con-
text. This information is important for tasks such
as question answering, where the model needs to
know which tokens belong to the question and
which tokens belong to the context.

In the next step, the three embeddings were
combined to create the input embeddings for the
first encoder block. The encoder then uses multi-
head attention to learn contextual information from
the inputs. This is an important aspect, unlike
RNN (Sherstinsky, 2020) or LSTM (Hochreiter and
Schmidhuber, 1997), BERT-based (Devlin et al.,
2019) models like RoBERTa (Liu et al., 2019), as it
allows them to learn and memorize from neighbor-
ing sentences with accurate contextual information.

Each encoder block in a BERT-based model
learns from the inputs and transfers the learned
information to the next encoder block. Once the
final encoder block is completed, the model’s out-
put is transformed into answer token logits using
multiple layers. These layers are used during pre-
diction to generate accurate answers to questions
(van Aken et al., 2019).
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Figure 3: Best Performing Architecture. This architec-
ture consists of 4 layers: (1) RoBERTa encoder layer
(24), (2) Normalization layer, (3) Dropout layer, and (4)
Fully connected layer.

3.2 Salient Factors

We have implemented several techniques to in-
crease the learning capability of the model to learn
complex structures within the legal space. These
techniques involve altering the activation function
and increasing the encoder layers. Additionally,
we have stacked normalization and dropout layers
as additional components on top of the output en-
coder layer. Our best-performing architecture is
illustrated in Figure 3.

* Encoder Layers: A model’s learning abil-
ity and performance are greatly influenced
by the number of encoder layers it possesses
(van Aken et al.,, 2019). To improve the
model’s performance, we conducted exper-
iments where we adjusted the number of en-
coder layers to achieve the desired level of
complexity.
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Traditionally, when refining language models
for extraction tasks, it is common practice to
maintain the original quantity of transformer
encoder layers in the architecture. However,
our findings indicate that incorporating ad-
ditional encoder layers enhances the trans-
former’s capacity to capture intricate patterns
and relationships within the input data. This
expanded capacity enables the model to learn
more detailed representations, improving per-
formance.

Also, increasing the number of layers enables
the model to capture information at various
levels of granularity. Lower layers tend to
focus on capturing local and syntactic legal
information, such as word order and sentence
structure, while subsequent layers have the
ability to learn more abstract and semantic
concepts. This hierarchical representation
allows the model to understand both fine-
grained details and the broader context of le-
gal contracts, contributing to its overall effec-
tiveness in capturing meaningful information
from the input documents.

Activation Function: The choice of activa-
tion function can impact the learning capacity,
convergence speed, and generalization abil-
ity of the RoBERTa (Liu et al., 2019) model.
We have experimented with different activa-
tion functions (Agarap, 2018; Hendrycks and
Gimpel, 2020) during the encoder layer com-
putation to identify the most suitable one for
our model. By replacing the GELU (Dan and
Kevin, 2016) activation function with the New
GELU function, we have observed improve-
ments in the model’s performance.

Layer Normalization: Layer normalization
is a method that normalizes the inputs within
each layer (Ba et al., 2016), making the train-
ing process faster. It reduces reliance on the
activation scale and focuses on relative differ-
ences between activations, making the model
more resilient to changes in input scale and
improving generalization. We incorporated
layer normalization into the output layer of
the model, resulting in better overall perfor-
mance.

Dropout: Overfitting is a common issue in
deep learning models, and dropout (Srivas-
tava et al., 2014) is a regularization technique

that can help address this problem. We have
introduced a dropout of 0.2 in our model to
mitigate overfitting issues that may arise due
to increased model encoder layers from the
above modifications. Our experiments have
shown that dropout has effectively reduced
overfitting.

4 Experiments

This section outlines our proposed solution for iden-
tifying parties mentioned in contract documents,
which we approached as a question-answering task.
Our methodology for training and evaluating the
model is described, along with the results from
experiments using various configurations.

4.1 Dataset

There is only one dataset available for party ex-
traction which is Contract Understanding Atti-
cus Dataset (CUAD) (Hendrycks et al., 2021). It
contains 510 agreements of 25 different types, col-
lected from the Electronic Data Gathering, Analy-
sis, and Retrieval (EDGAR) system. Even though
the dataset has been useful in extracting parties
and clauses from legal documents, it has several
shortcomings that limit its usability for our study.

One of the main shortcomings of CUAD is that
the annotations include irrelevant terms such as
We, You, and Us. These terms are not parties to
the contract and are, therefore, not relevant to the
task of extracting the exact match of the parties.
Another issue with the annotations is that they in-
clude the parties’ abbreviations, such as PCQ and
ABW. While these abbreviations may be used in the
contract, they are not always immediately recogniz-
able and can be confusing for automated systems
attempting to extract the parties. Annotations also
include sentences as party names, such as This
agreement shall apply to said ABW and all of its
subsidiaries and related companies. These anno-
tations are problematic because they do not accu-
rately capture the parties to the contract and can
lead to incorrect extractions. Furthermore, some
parties are captured from the headings, signature
part, and other places rather than from the actu-
ally mentioned sentences (the contract’s first page
other than the cover page). This can lead to incon-
sistencies as parties may have different names in
different parts of the contract.

From the above study, we introduce a newly an-
notated dataset that comprises 1000 legal contract
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documents collected from CUAD (510 documents)
and the EDGAR database (490 documents). This
dataset is specifically annotated for accurate party
detection along with the solution for the above
shortcomings. This collection of contract docu-
ments falls into 25 different types (purchase agree-
ments, employment contracts, lease agreements,
etc) and have varying lengths that span from just
a few pages to over one hundred pages. Figure 5
illustrated the distribution of contract documents’
lengths. We then divide the dataset into a training
set (2500 annotations across 900 documents) and
a test set (253 annotations across 100 documents).
We split the dataset randomly with a test set size of
0.1 to ensure both datasets were representative of
the overall data distribution.

4.2 Experimental Set Up

We conducted our experiment step by step to iden-
tify the correct approach to achieve accurate party
extraction with a high exact match. Finally, our
experiments are mainly divided into four phases as
follows:

1. Evaluate the CUAD’s best model (DeBERTa)

2. Evaluate re-annotated and newly annotated
dataset

3. Evaluate with different activation functions
and layers stacks such as normalization and
dropout

4. Evaluate with different numbers of encoder
layers

In the first phase, we simply evaluate the trained
DeBERTa model (CUAD’s best model released by
the authors) on our test dataset. This provides us
with the initial baseline for our future experiments.
In the second phase, we conducted experiments
on re-annotated and newly annotated datasets sepa-
rately to ensure their contribution towards the im-
provement of the accurate party extraction. After
ensuring their positive contributions, then we com-
bined both datasets and execute a new experiment
to define a new baseline to do further studies.

We applied several techniques in the third phase
to rescale the features (output from the encoder
layers), normalize them, and randomly drop some
units in the features to prevent overfitting in the
training. From this phase, we identified an im-
provement over our new baseline (experiment D).

Algorithm 1 Evaluation Algorithm.
JS: Jaccard Similarity

1: procedure EXACTMATCH(instances, preds)
2 ems < array()

3 for inst in instances: do
4 best < 0

5: for pred in preds: do
6 score < JS(inst.answer, pred)
7 best <— max (score, best)

8 end for

9 ems <— append(best)

10: end for

11: em <— average(ems)

12: return em

13: end procedure

In the last phase, we considered the experiment
with a high exact match from the previous phase
for further studies. As we mentioned in the sec-
tion 3, the ability to learn the complex structure
of the legal text matters. Therefore, we explored
into increasing the learning of such input space to
the model. Finally, we found varying the number
of encoder layers significantly improves the learn-
ing capability of the model. Then, we conducted
additional experiments by altering the number of
encoder layers from 12 (in the original ROBERTa)
to 8, 16, 24, and 32.

To run all experiments, we used Amazon EC2’s
g5.xlarge instance and optimize the model’s perfor-
mance by tuning hyperparameters including batch
size (32), learning rate (le-04), and number of
epochs (10).

4.3 Evaluation Criteria

Our aim is to identify the exact match between
parties and to achieve this, we have chosen two
key metrics. The first one is Jaccard similarity
(Niwattanakul et al., 2013), which measures the
similarity between sets and will help us determine
how closely the predicted parties align with the
actual parties in the test set. The second metric is
the exact match, which will simply tell us if the
predicted and actual parties are an exact match.
By utilizing these two metrics, we can effectively
evaluate the performance of our model on the test
set and ensure that we are finding the precise match
of the parties we are interested in. Algorithm 1
depicts our evaluation method.
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Name | Experiment Exact Match
A Test on CUAD best model (DeBERTa) 0.887
B Re-annotated CUAD (510 documents) 0.929
C Newly annotated documents (490 documents) 0.921
D Baseline (B + C) 0.934
E Baseline + New GELU 0.933
F Baseline + LayerNorm + Dropout + 1=12 0.913
G Baseline + LayerNorm + Dropout + 1=8 0.905
H Baseline + LayerNorm + Dropout + 1=16 0.938
I Baseline + LayerNorm + Dropout + 1=24 0.942
J Baseline + LayerNorm + Dropout + 1=32 0.905

Table 1: Experimental Results. There are 5 stages of experiments: (1) Evaluation of CUAD’s best model (A), (2)
Evaluation of re-annotated, newly annotated, and whole dataset (B, C, and D), (3) Different architectural techniques
(E, and F), (4) Change in the number of encoder layers (G, H, I, and J).

JU,V) = M
U U V|

where J is Jaccard similarity, U is annotated party
answer and V is the predicted party from the fine-
tuned model.

The results were compared to the ground truth
using the Jaccard similarity coefficient, which mea-
sures the overlap between the predicted parties and
the annotated parties. The coefficient is calculated
as the ratio of the intersection of the two sets to the
union of the two sets, ranging from 0 to 1, where
0 indicates no overlap and 1 indicates a perfect
match. Qualitative experiments determined that a
threshold of 0.5 is reasonable for determining the
validity of the match.

5 Results and Analysis

Table 1 presents the results of experiments con-
ducted to evaluate the performance of RoOBERTa
model including several variations of a baseline
model, each with different modifications or addi-
tions, on the newly annotated dataset. In terms of
datasets, the re-annotated CUAD’s dataset signif-
icantly improved the performance of the system
compared to the state-of-the-art DeBERTa model
presented by CUAD (from the exact match (EM)
of 0.887 to 0.929). This implies that most of the
errors identified from the existing dataset have
been resolved by our re-annotation process (experi-
ment B). On the other hand, our newly annotated
dataset achieved a higher score (0.921) than the cur-
rent state-of-the-art model (0.887) and slightly less
than that of experiment B (0.929), indicating that
this data contributed positively to the experiment’s
performance. This motivates us to combine both

datasets from experiments B and C to define a new
experiment D as our new baseline.

The baseline experiment (D) achieved an EM of
0.934, which indicates the quality of the combined
dataset compared to the existing dataset (CUAD).
Even though our baseline model achieved a com-
paratively higher score, we found some mistakenly
identified parties with non-formal forms and partial
forms during our error analysis. By Further studies,
we concluded that this is due to the inability of
the models to learn the complex structure of the
legal text. Therefore, we explored additional ex-
periments to increase the learning capability of our
model to learn legal text’s complex structure.

Finally, we found that passing the output fea-
tures from the 12th encoder layer of the original
RoBERTa through additional layers will increase
the further learning of the model on the training
dataset. This will help to learn the complex struc-
ture of the input space and the association between
the different sub-tokens of a party. For example,

* Complex Structure: The model (from exper-
iment F) often failed while predicting the par-
ties with some identified complex structures
as depicted in Table 2.

* Association: There are four sub-tokens in
the following party SQUARE TWO GOLF
INC. such as SQUARE, TWO, GOLF and
INC.. All of these sub-tokens together need to
be identified as a party according to our goal
(accurate party extraction).

From the above analysis and studies, we con-
ducted several experiments by varying the number
of encoder layers (1) from 8 to 32. But, as you
can see in Figure 4, the average exact match is in-
creased from 0.905 (experiment G) to 0.942 along
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with the number of layers until 1=24 (experiment I).
During the experiments, we also kept the normal-
ization layer and dropout (0.2) layers on top of the
final encoder layer to prevent overfitting. Even af-
ter, our model reached a lower exact match (0.905)
than that of 1=24 while using 1=32. This shows our
model is getting overfitted even using normaliza-
tion and dropout layers. Finally, we concluded our
experiments and fix our best model from experi-
ment I (I=24). Through our analysis presented in
Table 2, we have determined that our model has
made substantial progress in comprehending the
complex formatting of legal text and the relation-
ships between its sub-tokens, leading to superior
predictive capabilities.

6 Discussions

The results of our experiments demonstrate that
increasing the number of additional encoder layers
indeed leads to improved outcomes. Previous re-
search models often struggled to identify and learn
these complex structures when the number of en-
coder layers was less. By increasing the number
of encoder layers in our approach, we were able
to address this limitation and achieve significant
improvements in exact matches.

The augmentation of encoder layers allowed our
model to better capture and represent the nuanced
relationships and patterns present within legal con-
tracts. This, in turn, facilitated the identification
and extraction of relevant information pertaining
to the legal parties involved. The increased depth
of the model architecture enabled it to learn and
comprehend intricate complexities, which were pre-
viously challenging to capture effectively.

Furthermore, We introduced some modifications
to the activation function and implemented addi-
tional normalization techniques on top of the final

—e8— Encoders

Exact Match

Count

Figure 4: System Performance against the number of
encoder layers

encoder layer. These adjustments were designed
to complement the increased depth of the model
and further enhance its ability to learn complex
structures within legal contracts. The combined im-
pact of increasing the encoder layers, replacing the
activation function, and incorporating additional
normalization techniques proved to be highly effec-
tive in our research as indicated in Table 1.

One of the main limitations of our model is
the potential loss of context during the chunking
process of input documents. Legal documents of-
ten contain intricate language and nuanced details
that are crucial for accurately identifying parties.
Chunking the input documents may lead to the loss
of this contextual information, which can adversely
affect the model’s legal understanding. To mitigate
this limitation, future research could explore the
use of Longformer (Beltagy et al., 2020) architec-
tures. Longformer models are specifically designed
to handle long-range dependencies in a text.

7 Conclusion

We propose a novel method to accurately predict
the parties from a legal contract document. We
mainly divided the approach into two phases ac-
cording to the literature review as follows: (1)
Dataset Creation: We introduced a large-scale high-
quality dataset that includes 1000 contract docu-
ments annotated for parties by legal experts; (2)
Modeling: Our dataset underwent evaluation using
various techniques to assess the performance of
RoBERTa. Ultimately, our most successful model
exhibited a noteworthy improvement of 6.2% in
Exact Match performance compared to CUAD’s
best model (DeBERTa).

Our research revealed that the availability of data
is a critical bottleneck, as nonessential annotations
and a lower amount of data will significantly drop
the performance, highlighting the importance of
our dataset’s extensive annotations. Moreover, we
demonstrated that the performance of the models
is greatly affected by their architecture, indicat-
ing that advancements in algorithms by the NLP
community could aid in tackling this issue. In con-
clusion, our dataset not only acts as a benchmark
for evaluating NLP models in the Legal domain
but also accelerates research toward resolving a
significant real-world problem in the legal firm.
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Data Availability

Our newly annotated dataset is available under an
open-source license at RTUthaya.lk*. This dataset
is intended for research purposes only.
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Actual Party Prediction
. . Model 1 Columbia Laboratories
Columbia Laboratories, (Bermuda) Ltd. Model 2 | Columbia Laboratories, (Bermuda)
Our Model | Columbia Laboratories, (Bermuda) Ltd.
Model1 | DR. GAETANO
DR. GAETANO MORELLO N.D. INC. Model2 | GAETANO MORELLO
Our Model | DR. GAETANO MORELLO N.D. INC.
L . Model 1 Scientific Products Pharmaceutical
Scientific Products Pharmaceutical Co. LTD Model 2 Scientific Products Pharmaceutical Co.
Our Model | Scientific Products Pharmaceutical Co. LTD
. Model 1 Shenzhen LOHAS Supply Chain Management
Shenzhen LOHAS Supply Chain Management Co., Ltd. Model 2 | Shenzhen LOHAS Supply Chain Management Co.
Our Model | Shenzhen LOHAS Supply Chain Management Co., Ltd.

Table 2: Example predictions of different models: In this table, we have two models, referred to as Model 1 and
Model 2, originating from experiment D and experiment F, respectively. Additionally, we have our best model
obtained from experiment I, which is denoted as Our Model.

Appendix

A Example predictions of different
models

We infer different models from various configura-
tions of the experiment and compare their outputs
for getting better accuracy. The intermediate out-
puts are shown in Table 2.

B Number of Pages vs Documents Count
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Figure 5: Number of Pages vs Documents Count. These
contracts show a significant variation in length, span-
ning from just a few pages to well over one hundred
pages. Additionally, a considerable proportion of the
documents fall within the 0-20 page range.

C Number of Annotations vs Characters
Bin in which Parties found

According to the Figure 6,

* 22% of the documents don’t have the parties
in their first two pages.

Party Location distribution
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Figure 6: Number of annotations vs characters bin in
which parties found

* 46% of the documents have the parties on their
first page

* 31% of the documents have the parties on their
second page.
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