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Abstract

Large Language Models (LLMs) are impres-
sive machines with the ability to memorize,
possibly generalized learning examples. We
present here a small, focused contribution to
the analysis of the interplay between memoriza-
tion and performance of BERT in downstream
tasks. We propose PreCog, a measure for eval-
uating memorization from pre-training, and we
analyze its correlation with the BERT’s per-
formance. Our experiments show that highly
memorized examples are better classified, sug-
gesting memorization is an essential key to suc-
cess for BERT!.

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020; Touvron et al., 2023) are intriguing machines
dominating the arena of NLP tasks with their abil-
ity to memorize generalizations of texts in syn-
thetic neurons. After long pre-training on large
amounts of unlabeled data, LLMs have been shown
to learn effectively downstream tasks with limited
labeled data (Howard and Ruder, 2018) and gen-
eralize in out-of-distribution examples (Hendrycks
et al., 2020). Extensive studies have shown that
these models tend to mimic traditional linguistic
syntactic models (McCoy et al., 2019; Ranaldi and
Pucci, 2023) and traditional NLP. Hence, a crucial
issue is to clarify why PLTMs exploit pre-training
better than traditional NLP modules exploit anno-
tated corpora.

Understanding the learning process of LLMs
may help in understanding their results in down-
stream tasks and in improving their linguistic rep-
resentations in scenarios where they fail (Kumar
etal., 2020). Indeed, unlike traditional general NLP
modules in pipelines, LLMs need to be fine-tuned
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for the specific tasks (Devlin et al., 2019) and, even-
tually, domain-adapted on the specific language of
the novel corpus (Jin et al., 2022). Moreover, as
with many other machine learning models, fine-
tuned PTLMs lose their ability to solve a task if
subsequently fine-tuned to another task (Xu et al.,
2020) although they apparently do not change their
language models (Merchant et al., 2020). This phe-
nomenon is known as catastrophic forgetting (Kirk-
patrick et al., 2017) in machine learning. Then, it is
still unclear how these models exploit pre-training
and training examples.

LLMs, such as BERT (Devlin et al., 2019), have
shown to have an impressive ability to memorize
and possibly generalize learning examples. This
ability has been largely investigated as it may be ex-
tremely harmful. In fact, these models may reveal
sensitive information that has been acquired dur-
ing pre-training. For example, memories of GPTs
(Radford and Narasimhan, 2018) have been vio-
lated and produced phone numbers, and usernames
(Carlini et al., 2021; Thakkar et al., 2021). How-
ever, this simple ability to memorize may play a
crucial role in the performances of LLMs in down-
stream tasks (Ranaldi et al., 2022a; Uppaal et al.,
2023).

This paper presents a small, focused contribution
to the role of memorization in the performance of
BERT in downstream tasks. We propose PreCog, a
very simple measure of coverage that evaluates how
much pre-training covers the information needed
to model a given example or, better, if BERT has
already partially seen the example - it pre-cognizes
the example. The aim is to evaluate if PreCog
precognizes which examples BERT adapted to a
downstream task performs better inferences. We
have extensively experimented with PreCog by us-
ing BERT over the GLUE tasks (Wang et al., 2018),
and we observed the ability of PreCog to predict
examples where a task-adapted BERT performs
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better. Besides being a predictive measure, PreCog
showed that example memorization is a crucial part
of the success of LLMs.

2 Related Work

The ability of linguistic neural models to memorize
facts is out of doubt (Ranaldi et al., 2022a). This
ability has been deeply explored as it is a problem
for privacy issues. Indeed, LSTM language models
remember facts so well that individual facts can
be retrieved during inference (Carlini et al., 2019).
These facts may reveal sensitive personal informa-
tion such as names and addresses associated with
people. Moreover, revitalizing the idea of sparse
distributed memories (Kanerva, 1988), Petroni et al.
(2019) hypothesized that Large Language Mod-
els might be used as clever and inexpensive ways
to build up effortlessly knowledge bases. Even
in other areas like image classification, it appears
that large neural networks may memorize entire
datasets as these networks achieve very low error
rates over datasets with randomly generated target
labels (Zhang et al., 2017). This also proves to be
a problem for the de-biasing phenomenon (Ranaldi
et al., 2023). Yet, it is still unclear to what extent
this ability to memorize facts helps neural networks
in downstream tasks.

A key research question is to understand how
large pre-trained neural networks generalize over
memorized examples. Pre-training seems to be
a winning strategy to boost generalization. In
fact, pre-trained models generalize better on out-
of-distribution data and can detect such data better
than non-pre-trained methods (Hendrycks et al.,
2020; Ranaldi et al., 2022b). However, these mod-
els need a significant number of training instances
to exploit this generalization ability in downstream
tasks (Ténzer et al., 2022). Hence, since fine-tuning
on specific datasets seems to be connected to catas-
trophically forgetting examples (Xu et al., 2020),
generalization and memorization can be strictly
correlated.

To explore the correlation between memoriza-
tion and performance on downstream tasks, we pro-
pose a mechanism for analyzing sentence coverage.
In particular, we investigate how many sentences
are seen in the pre-training phase in transformer-
based PLMs using perturbation masking methods.
These methods allow us to observe the impact of
pre-training on the performance of downstream
tasks. This novel measure is needed as current
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measures for understanding coverage, such as “for-
getting event” (Toneva et al., 2019) and counterfac-
tual memorization (Zhang et al., 2021), mix perfor-
mance, and actual memorization.

3 Method and Data

This section introduces PreCog, which is our mea-
sure to evaluate how much pre-training covers
the information needed to model a given exam-
ple (Sec. 3.1), two comparative measures Lenght
and LexCov (Section 3.2), and the experimental
setting (Section 3.3).

3.1 PreCog: a measure to evaluate
pre-training coverage

BERT (Devlin et al., 2019) is pre-trained on bil-
lions of text tokensby using Masked Language
Modeling (MLM) as one of the two main learning
tasks.Indeed, during pre-training, MLM randomly
selects and masks 15% of all tokens in any given se-
quence. This 15% of tokens are either (a) replaced
with the special token [MASK], (b) replaced by
a random token, or (c) kept unchanged with a re-
spective probability of 80%, 10%, and 10%. Then,
BERT learns to predict the masked tokens. This
task is learned till near the overfitting. Then, one
of the main ability of BERT is unmasking masked
tokens.

We aim to captureto which extent a sequence of
tokens is covered by pre-training in Transformers
such as BERT .For this reason, we build on the
core capacity of BERT, that is, unmasking masked
tokens. Hence, if BERT can predict masked tokens
of a given sequence of tokens, it possibly has the
knowledge to better deal with that sequence.Our in-
tuition is that a measure built on unmasking masked
tokens describes the “prior” knowledge of BERT
over sequences.

Given a sentence or text excerpt as a list of
tokens x = [z, ..., 7|, our function PreCog(x)
is defined as follows.Firstly, we mask one by one
each token in x obtaining T different sequences
fi == [.’L‘l, ceey Lj—1, [MASK], L1+ a:T]. Then,
the measure is straightforwardly defined as:

ZzT:O 5(351 & BERTMLM(QZ'))

(1)
where BERT )1 (2;) is the set of the first 100
tokens predicted by BERT for the position ¢ and
0(x; € X)is lif z; € X and 0 otherwise.

PreCog(z) =



. 100-80
80-60
4 mmm 60-40
- 4020
. 200

80

0.850

0825

0.800

07751 0
> i

8 '
So7s0q 1

: :
07251 |

0.700
—— PreCog
-=- LexCov

Lenght

0675

0650

0 10000

re value Lenght

(a) Accuracy BE RTrr on bins of 20
points plotted vs. value of proposed

measures. measures.

LexCow

(b) Percent of coverage of the dataset
for intervals of values of the proposed

20000 30000
# of examples

(c) Accuracy of BERTrr bins of 20
points plotted vs. the coverage of the
test set.

40000 50000

FreCog

Figure 1: Accuracy plots of BE RTrr for each GLUE task’s weighted sum of accuracies.

PreCog is a very simple measure.Yet, it may
reveal important facts about how BERT uses pre-
training text in downstream tasks.A very important
issue is to understand if PreCog correlates with
the performance of BERT in these tasks.A positive
and steady correlation will be an important hint for
understanding the role of pre-training.

3.2 Alternative Coverage Measures

To comparatively evaluate PreCog, we use two
measures: Length and LexCov. Length aims to
correlate the accuracy of BERT to the length of
samples and LexCov to the coverage of the dictio-
nary of BERT. Then, the measures are defined as
follows:

T—minp

° Length(:v) = ez p—minp where T is the
length of x, minp and maxp are the min
and the max length of samples in a dataset D;

e LexCov(z) = w where OOV (x)
is the set of the out-of-vocabulary words of the
example x with respect to BERT’s vocabulary.

3.3 Experimental set-up

To experiment with a variety of tasks, we use the
GLUE benchmark (Wang et al., 2018) containing
tasks for: (1) natural language inference, that is,
Multigenre NLI (MNLI) (Williams et al., 2018),
Question NLI (QNLI) (Wang et al., 2018), Rec-
ognizing Textual Entailment (RTE) (Bentivogli
etal., 2009), and Winograd NLI (WNLI) (Levesque
et al., 2012); (2) semantic similarity, that is, the
Microsoft Research Paraphrase Corpus (MRPC)
(?), the Semantic Textual Similarity Benchmark
(STS-B) (Cer et al., 2017), and Quora Question
Pairs (QQP) (Sharma et al., 2019); sentiment clas-
sification - Stanford Sentiment Treebank (SST-2)
(Socher et al., 2013); and corpus of linguistic ac-
ceptability (CoLA) (Warstadt et al., 2019). SST-2
and CoLA are single-sentence tasks.
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We used two versions of BERT (Devlin et al.,
2019): BERTrr with fine-tuning and BERTp 4
with domain-adaptation. These two are based on
the pre-trained version of BERTforSequenceClas-
sification (see (Wolf et al., 2020)). The fine-tuning
procedure is that of traditional BERT. For each
downstream task, we chose the Adam optimizer
(Kingma and Ba, 2015) with a batch size of 16 and
fine-tuned BERT for 4 epochs, following the origi-
nal paper (Devlin et al., 2019). For hyperparameter
tuning, the best learning rate is different for each
task, and all original authors choose one between
1x107°and 5 x 107°.

We conduct our experiments on NVIDIA RTX
A6000 GPUs with CUDA v11.3. We run the mod-
els from the Transformers library (Wolf et al., 2020)
using PyTorch v1.12.0.

To study the correlation between the perfor-
mance of BERT on the one side and one of the
three measures - PreCog, Length, or LexCov - on
the other side, we divided the sequences z in test
sets in 5 bins according to the value of the measure,
we plotted histograms of accuracies of BERT with
respect to the three measures (Fig. 1), and we com-
puted the Pearson’s correlation of the measure with
respect to the accuracies (Tab. 2).

4 Experimental Results and Discussion

Accuracies reported in Fig. 1a and Fig. 1c and used
in Tab. 2 are the weighted sum of accuracies in each
GLUE task. This guarantees that the 20-point bins
have a sufficient set of samples to compute stable
accuracies.

PreCog correlates with the accuracy of
BFE RTEr better than Lenght and LexCov (see Fig.
la and Tab. 2). Accuracies of PreCog in the dif-
ferent bins degrade more uniformly than the other
two measures (red solid line in Fig. 1a). Moreover,
the Pearson’s correlation between PreCog values
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Table 1: Accuracies on the GLUE tasks computed grouping datasets according to the values of three measures -
PreCog, LexCov, and Lenght - for BERTrr and BERTp 4.

Measure | Correlation p-value

Length -0.5922 0.292
LexCov 0.9014 0.037
PreCog 0.9737 0.005

Table 2: Pearson’s correlation between the measures
and the accuracy bins of BERTrr for the combined
GLUE tasks.

and the accuracies of BERT 7 is 0.9737 with a
p-value of 0.005 and it is higher than the ones of
both LexCov, 0.9014 with a p-value of 0.037, and
Length which is not correlated (see Tab. 2).

PreCog values better separate examples in test-
ing sets. At first glance, LexCov may seem a better
model to separate samples with high with respect
to those with fewer accuracy expectations. Sam-
ples with a value of LexCov less than 40 have low
accuracy (see Fig. 1a). However, samples having
LexCov between 0 and 40 are rare (Fig. 1b). Bet-
ter observations are derived by plotting accuracies
over bins rescaled according to their coverage (Fig.
1c). Indeed, PreCog separates samples better than
LexCov (red solid line vs. dashed blue line in Fig.
Ic): samples from 18,000 to 55,000 fall in two bins
for PreCog and in only one bin for LexCov. Hence,
PreCog has better discriminative power than Lex-
Cov.

Results are substantially confirmed on task ba-
sis: PreCog is a better predictor of the accuracy
on tasks and a better separator of classes of sam-
ples (see Tab. 1). Accuracies of BERTrr are
generally higher for samples with PreCog in the
interval [80, 100] than for samples with the other
two measures in the same interval. LexCov has
higher accuracy for samples in [80, 100] only for
RTE. Moreover, accuracies of samples in the in-
terval [80, 100] are always higher than those in the

interval [0, 80] for both PreCog and LexCov. Yet,
PreCog partitions more evenly samples, and the dif-
ferences in accuracies between intervals [80, 100]
and [0, 80] are generally higher.

Moreover, domain adaptation is not changing
the above findings. Accuracies for BERTp 4 are
generally higher than those without domain adap-
tation for all the tasks except for SST2 and WNLI
(Tab. 2). Moreover, focusing on PreCog, the over-
all increase in accuracies in CoLa, MNLI, and RTE
derives from an increase in the samples of the in-
terval [80, 100]. This fact suggests that BERTp 4
is gaining a better model for these samples.

As a final observation, BERT seems to behave
better on sentences that have been, at least, partially
seen during pre-training. Indeed, PreCog is a mea-
sure capturing how much the sentence is covered
with the pre-training task Masked Language Model
(MLM). Typically, BERT overfits MLM during pre-
training. Then, PreCog is a measure telling whether
sentences have already been partially seen. Instead,
LexCov describes how many words of sentences
are covered by BERT’s vocabulary. Since there is
a great difference in predicting accuracy on tasks
between PreCog and LexCov, we can conclude
that BERT behaves better when general knowledge
of the target sentence is already acquired during
pre-training.

5 Conclusion

Memorization of pre-training examples plays a
very important role in the performance of BERT.
Indeed, our PreCog, which measures how much
memorized pre-training knowledge cover target ex-
amples, is highly correlated with BERT’s perfor-
mance in inference. PreCog can also be used to
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measure confidence for BERT-based decisions in
downstream tasks.

As BERT success is partially due to simple mem-
orization of examples and given the overwhelming
presence of ChatGPT, one area of future research
should be on better understanding the relation be-
tween actual training examples and inferences in
order to give credit to knowledge producers.

Limitations

This paper presents a small, focused contribution
towards the understanding of the relation between
memorization and the performance of pre-trained
Large Language Models (LLMs). However, we
leave some issues unresolved for this more long-
term goal. Indeed, we have explored our idea only
for a specific LLM that is BERT with a specific
pre-training task, that is, masked language model
(MLM). Future analysis should explore whether
our findings hold for other LLMs based on MLM.
Moreover, we have not explored to what extent
task examples are really covered by pre-training
corpora used by LLMs. The correlation between
PreCog and the actual training examples should
be investigated. Finally, PreCog is not suitable for
LLMs that are based on pre-training tasks that are
not MLM. Then, other coverage measures should
be defined in those cases.
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