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Abstract

In this paper we present a case study for three
under-resourced linguistically distinct South
African languages (Afrikaans, isiZulu, and
Sesotho sa Leboa) to investigate the influence
of data size and linguistic nature of a language
on the performance of different embedding
types. Our experimental setup consists of train-
ing embeddings on increasing amounts of data
and then evaluating the impact of data size
for the downstream task of part of speech tag-
ging. We find that relatively little data can
produce useful representations for this specific
task for all three languages. Our analysis also
shows that the influence of linguistic and ortho-
graphic differences between languages should
not be underestimated: morphologically com-
plex, conjunctively written languages (isiZulu
in our case) need substantially more data to
achieve good results, while disjunctively writ-
ten languages require substantially less data.
This is not only the case with regard to the data
for training the embedding model, but also an-
notated training material for the task at hand.
It is therefore imperative to know the charac-
teristics of the language you are working on to
make linguistically informed choices about the
amount of data and the type of embeddings to
use.

1 Introduction

Over the last decade vectorised word representa-
tions and the use of deep learning have become
de facto standards in Natural Language Process-
ing (NLP) (Alzubaidi et al., 2021; Khurana et al.,
2023). There has also been a push to broaden the
linguistic diversity in NLP research (Joshi et al.,
2020). Both learning vectorised representations,
a.k.a. embeddings, and deep learning are inherently
data-driven procedures where models are trained
from vast amounts of data to either represent lan-
guage numerically or learn some downstream task.
Including a bigger variety of languages than main-
stream languages, such as English, Spanish, Ger-

man, Japanese, etc., to achieve more linguistic di-
versity typically means studying low-resource or
under-resourced languages.

This, however, leads to a dichotomy: High-
performing deep learning models, like BERT, have
been trained on billions of words. When develop-
ing models for languages other than English, lesser
resourced languages (such as the South African lan-
guages) get left behind because there is very little
available data. Also, evaluation of existing tech-
niques is only partially applied to under-resourced
languages and researchers typically assume that the
generalisations achieved with training on a lot of
data will mostly hold true with less data.

More recently there have been efforts to ex-
tend the usefulness of embeddings trained on well-
resourced languages with languages that have sub-
stantially less data in so-called multi-lingual mod-
els, such as XLM-R (Conneau et al., 2020) and
mBERT (Devlin et al., 2019). These models gen-
erate representations that are a combination of lan-
guage specific information as well as information
learned across all of the languages included in the
model. Typically they are trained exclusively on
web data like Common Crawl or Wikipedia, which
have some inherent limitations (as discussed later
in this paper), but also have limited availability for
South African languages. For instance, isiNdebele
has no Wikipedia data and is therefore not even
present in Common Crawl. Consequently, most of
the South African languages are not included in
these multilingual models.

Doing NLP research on South African languages
in this day and age then leads to the question of
what the implications of working with very little
data is on current standard techniques like embed-
dings and neural language models. Or in other
words: how much data is needed for learning use-
ful vector representations? The underlying assump-
tion is that learning from less data will yield less
representative and thus less useful models. It re-
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mains to be seen, however, if this is truly the case.
From a linguistic diversity point of view, it is also
relevant to know how the embedding models vary
from each other for structurally different languages
and how the amount of available data influences
the learned representations for typographically dif-
ferent languages.

In this paper, we present a case study attempting
to answer these questions. Our setup consists of
training embeddings for three linguistically distinct
South African languages (Afrikaans, isiZulu, and
Sesotho sa Leboa) to evaluate the impact of em-
beddings trained on increasing amounts of data for
a part of speech (POS) tagging downstream task.
The goal is to determine the influence of data size
on the performance of different embedding types
and to describe the effects observed for different
languages. The results of our experiments show
that even relatively little data can be useful in some
scenarios and that morphologically complex and
conjunctively written languages require substan-
tially more data, both for training the embeddings
and the downstream task, especially when using
full/sub word representations.

2 Background

2.1 South African linguistic context

South Africa’s eleven official languages include
nine Niger-Congo-B (NCB) languages and two
Germanic languages. The NCB languages (van der
Velde et al., 2022) have a number of linguistic char-
acteristics that make them substantially different
from most Indo-European languages: all of them
are tone languages; they use an elaborate system
of noun classes with up to 21 classes; and their
nominal and verbal morphology is highly aggluti-
native and very productive, which can result in a
large vocabulary for those languages that follow
the conjunctive writing system.

For historic reasons, the South African NCB
languages adopted two different writing systems,
either conjunctive or disjunctive, where a distinc-
tion is generally made between linguistic words
and orthographic words. For conjunctively written
languages one orthographic word (token) corre-
sponds to one or more linguistic words, whereas
for the disjunctively written languages several or-
thographic words can correspond to one linguis-
tic word (Louwrens and Poulos, 2006). The four
Nguni languages, isiNdebele, isiXhosa, isiZulu,
and Siswati, are written conjunctively, while the

three Sotho languages, Sesotho, Sesotho sa Leboa
(also known as Sepedi), and Setswana, Tshivend

ˆ
a,

a Venda language, as well as Xitsonga, a Tswa-
Ronga language, are disjunctively written. This is
a marked difference from the two Germanic lan-
guages present in South Africa, Afrikaans and En-
glish, where mostly a linguistic word and an ortho-
graphic word coincide.

The implication of these different writing sys-
tems is that multiple tokens in disjunctively writ-
ten languages can correspond to a single token in
the conjunctively written languages. This leads to
sparse token frequency for the conjunctively writ-
ten languages, while the opposite is true for the
disjunctive languages. As an illustration, the par-
allel equivalents of a 50,000 word English corpus
will have approximately 43,000 words for the con-
junctively written languages, while the disjunctive
languages will have approximately 60,000 tokens.
This difference and its implications are discussed
in more detail in Section 3.

One of the objectives of this paper is to investi-
gate the influence of linguistic and orthographic dif-
ferences in South African languages on using em-
bedding models in NLP tasks, specifically POS tag-
ging. To that purpose we have chosen one language
from each family for our experiments: Afrikaans
(Germanic), isiZulu (conjunctively written Nguni)
and Sesotho sa Leboa (disjunctively written Sotho).

2.2 Embedding models

Since the introduction of the word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014)
vectorised word representations, most (if not all)
NLP tasks make use of learned vector represen-
tations, referred to as embeddings, to model the
occurrences of words and their context. With
these algorithms, embedding models are trained
efficiently on large amounts of data and the learned
representations, in combination with deep learn-
ing techniques, generally improve the results of
downstream NLP tasks. In this paper we apply
three embedding architectures, namely fastText (an
extension of word2vec) and GloVe, two classical
embeddings, and FLAIR embeddings, a character-
based recurrent neural network.

GloVe embeddings (Pennington et al., 2014)
learn representations of words using global co-
occurrences to train a log-bilinear regression model.
For each word in the vocabulary of the GloVe
model a single n-dimensional vector is learned,
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while all unseen words generate the same vector
representation. fastText embeddings (Bojanowski
et al., 2017), an extension of word2vec (Mikolov
et al., 2013), are based on local co-occurrences of
words. In addition to the full word, the generation
of the vector representations includes character n-
grams, or "subwords", allowing these embeddings
to also generate distinct representations for pre-
viously unseen words by combining the n-grams
from the unseen word. fastText embeddings come
in two variants, continuous bag-of-words (CBoW)
and Skipgram models. Both GloVe and fastText
learn a single vector representation for each word
in the vocabulary. When retrieving this vector, the
word will always receive the same vector, irrespec-
tive of the context in which the word appears.

In contrast, FLAIR embeddings (Akbik et al.,
2018, 2019) learn representations for character
sequences by training a long-short-term-memory
(LSTM) recurrent neural network. This means that
a distinct word occurring in different contexts can
have a different vector representation depending on
the character sequences (context) around the word.
Furthermore, all character sequences receive a rep-
resentation whether a sequence has been seen dur-
ing training or not. This can help with the represen-
tation of rare or misspelled words as well as with
individual morphemes or morphologically complex
words. FLAIR allows for two variants, namely For-
ward and Backward depending on the direction in
which the text is processed – either from the start
(forward) or from the end (backward).

With the availability of these improved deep
learning frameworks and an increased focus on
linguistic diversity in the deep learning commu-
nity, there has been a substantial rise in research
on African languages. The focus of this work has
been broad: From applications of embeddings and
deep learning on individual languages and individ-
ual applications (Dlamini et al., 2021; Heyns and
Barnard, 2020; Loubser and Puttkammer, 2020;
Marivate et al., 2020; Ralethe, 2020), to investi-
gations of multilingual embedding architectures
for African languages (Alabi et al., 2022; Hanslo,
2021; Moeng et al., 2022) and transfer learning
from well-resourced languages (Hedderich et al.,
2020). The outcomes of these investigations have
had mixed results, in some cases substantially im-
proving technologies over previous best results,
while other approaches show how the nature and
quality of the data have a significant impact on the

quality of the trained models. As far as we are
aware, none of these studies have explicitly inves-
tigated the quality and nature of the embeddings
when considering data size and morphosyntactic
attributes of African languages.

3 Data

The major prerequisite for training embeddings
and language models for any language is the avail-
ability of large amounts of text data. Although
there have been several efforts to create such cor-
pora for the South African languages (Eiselen and
Puttkammer, 2014; Goldhahn et al., 2012; Mari-
vate et al., 2020), there is still relatively little data
available for most of them. The data collected for
this study is a combination of various open data
sets (mostly CC-BY and CC-NC licenses), as well
as some data only available to the authors with
copyright restrictions prohibiting the distribution
of the full corpora. The data included in the training
corpora for the isiZulu and Sesotho sa Leboa em-
beddings are primarily from the NCHLT Text Cor-
pora (Eiselen and Puttkammer, 2014; Puttkammer
et al., 2014c,d,e), Autshumato Corpora (McKellar,
2022a,b,c), Leipzig Corpus Collection (Goldhahn
et al., 2012)1, and Common Crawl corpus2. All of
these sources are also used in the Afrikaans training
corpus, along with additional data from publishers
and private sources, i.e. the NWU/Lapa Corpus,
NWU/Protea Boekhuis Corpus, and NWU/ATKV-
Taalgenoot Corpus.

Although the data in both the Leipzig and Com-
mon Crawl corpora are language identified, an ini-
tial investigation showed that a substantial amount
of the data is incorrectly attributed to one of the
languages. This is primarily due to the fact that all
three languages in this study have related languages
that share similar orthographic features which leads
to misclassification of the language data, specifi-
cally:

• Afrikaans ⇔ Dutch;

• isiZulu ⇔ isiNdebele, isiXhosa, and Siswati;

• Sesotho sa Leboa ⇔ Setswana and Sesotho.

Consequently, all of the data from the Leipzig
and Common Crawl corpora were further cleaned
with the NCHLT Language Identifier (Hocking,

1https://corpora.uni-leipzig.de/en
2https://commoncrawl.org
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Language Embeddings POS tagging
Tokens Vocab Token:Vocab ratio Train Dev Test Orig. tags Red. tags

Afrikaans 40,610,635a 311,719 0.0077 50,034 5,451 5,835 97 12
isiZulu 16,271,123 488,822 0.0300 39,768 4,376 4,955 97 17
Sesotho sa Leboa 8,909,133 80,919 0.0091 53,745 5,556 7,127 138 14

aPlease note that this data was sampled from a larger 430 million token corpus.

Table 1: Summary of data available for training embeddings and POS tagging

2014; Puttkammer et al., 2018) at 80% confidence
level. Since most of the data in the respective cor-
pora originate from the web, all duplicates on para-
graph level in the combined data are removed prior
to training.

A summary of the data available for training em-
beddings is presented in Table 1. As was discussed
in Section 2.1, there is a marked difference in the
number of tokens in the vocabulary for each of the
three languages for the same corpus sizes. One way
of representing the combined effects of these mor-
phosyntactic and writing system differences is by
adding the token-vocabulary ratio to the reported
token counts: a text in the conjunctively written,
morphologically complex language of isiZulu typi-
cally displays a higher token-vocabulary ratio than
a text in Sesotho sa Leboa, where a number of mor-
phemes are written separately and therefore count
as multiple tokens. In Afrikaans, where one token
typically corresponds to one orthographic word,
the token-vocabulary ratio is somewhere between
the two extremes of the disjunctive and conjunctive
languages. The vocabulary for Afrikaans is still
more sparse than is typical in English since com-
pounding is very common in Afrikaans and leads to
a larger number of unique tokens, although it is not
nearly as productive as the conjunctively written
isiZulu.

The POS data used in this study is the NCHLT
Annotated Corpora for Afrikaans and Sesotho sa
Leboa (Puttkammer et al., 2014a,b), and the Lin-
guistically enriched corpora for conjunctively writ-
ten South African languages for isiZulu (Gaustad
and Puttkammer, 2022; Puttkammer and Gaustad,
2021). Each annotated corpus consists of approx-
imately 50,000 tokens for the training set, and a
separate test set of approximately 5,000 tokens. Al-
though the data is annotated on very fine-grained
POS tag sets (typically consisting of 90+ tags),
for this investigation we reduced the tag sets to
between 12 and 17 tags by e.g. excluding class in-
formation and using only main POS classes. This
makes the results between languages more compa-

rable, but does not obscure the functional differ-
ences a conversion to UPOS3 would. An overview
of the POS data and tags is presented in Table 1.

4 Experimental Design

In order to determine the impact of different embed-
ding architectures and morphosyntactic attributes
on the usefulness of embeddings in low-resource
environments, we perform a set of experiments to
establish how these attributes in combination with
data size affect the quality of a single downstream
task, namely POS tagging.

The first step in the process is generating em-
beddings in each of the chosen architectures – fast-
Text, GloVe, and FLAIR – with different data set
sizes. For each language a random selection of
paragraphs from the available corpus is made in
iteratively larger sizes, starting with 10,000 para-
graphs and doubling the amount of data randomly
for each iteration. For isiZulu and Sesotho sa Leboa
this process is repeated up to the full available cor-
pus (292,600 and 838,000 paragraphs respectively),
while for Afrikaans we only select data up to one
increment above the largest of the other two lan-
guages (1,280,000 paragraphs).4 Based on each
data iteration, embeddings for all three architec-
tures, including their different flavours, are trained.

To make the comparison of models as conse-
quent as possible, the hyperparameters for each
of the architectures are kept the same (typically
the default settings, see Table 2) and no hyperpa-
rameter tuning is performed. Consequently, there
may be certain hyperparameter selections for the
different data set sizes and languages, that could
lead to slight improvements in the results presented
in this work, but different hyperparameters would
make the comparison and resultant conclusions less
generally applicable. Furthermore, this would also
substantially increase the number of experiments
that need to be trained (probably into the thou-
sands) and cannot be ethically and environmentally

3https://universaldependencies.org/u/pos/
4See Table 3 in appendix for details.
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Embedding Embedding type Hyperparameters
GloVe Static word Dimensions: 300

Epochs: 50
Min. occurences: 2
Window size: 20

fastText Static word Dimensions: 300
and subword Learning rate: 0.05

Epochs: 15
Min. occurences: 2
Minimum n: 3
Maximum n: 6

FLAIR Contextual Dimensions: 2048
character Learning rate: 10.0

Epochs: 15
Sequence length: 250
Layers: 1
Batch size: 64

Table 2: Hyperparameter settings for embedding train-
ing

justified due to additional power consumption. In
total 110 embedding models are trained on an Intel
i79700 CPU and four NVIDIA GeForce RTX 2060
6Gb GPUs, totalling 30 CPU hours and 252 GPU
hours.

The quality of the embeddings trained on the
different corpus sizes for the three languages is
evaluated using a vanilla bidirectional LSTM-CRF
POS tagger implemented as part of the FLAIR
framework5 (Akbik et al., 2019). A separate POS
tagger is trained for each of the embedding models,
on the same GPU hardware used to train the em-
beddings. The main reason for using the FLAIR
framework is the fact that it has built-in support for
all of the different embedding architectures, thus
ensuring that the results of the respective taggers
can reasonably be compared. As with the embed-
ding models, the hyperparameters are kept to the
default settings (hidden size: 256, learning rate:
0.1, drop out: 0.05, epochs: 40). It should also
be noted that because the POS training sets are
relatively small, fine-tuning of the embeddings dur-
ing the POS tagger training is not carried out. All
taggers are evaluated using the Accuracy metric,
and compared to the NCHLT Web Services6 POS
taggers (Puttkammer et al., 2018) as a baseline for
each language.

With such a large set of taggers (24 in total),
the POS taggers were not trained multiple times
with averaged scores. Doing so would once again
substantially increase the required GPU hours (cur-
rently 82) required for the experiment, and cannot

5https://github.com/flairNLP/flair
6https://hlt.nwu.ac.za/

be justified, since the aim of the paper is not to
create the best possible tagger, but rather to estab-
lish how the different embeddings influence the
downstream results.

5 Results and discussion

We will now discuss the performance of the var-
ious embedding models with different data sizes
for Afrikaans, isiZulu and Sesotho sa Leboa. A
graphic representation of the performances on the
POS tagging task can be found in Figures 1 (for
Afrikaans), 2 (for isiZulu) and 3 (for Sesotho sa
Leboa), with the full numerical results available in
Table 3 in the appendix.

The first notable conclusion that can be drawn
from inspecting the results is that even embeddings
trained on very small corpora can benefit the qual-
ity of relatively simple downstream tasks, such
as POS tagging, when compared to baseline sys-
tems. Specifically, the FLAIR contextual charac-
ter embeddings produce downstream results that
are surprisingly good, even for the conjunctively
written isiZulu. It was expected that the character-
based models would perform best with very small
amounts of data, but the models trained on the
smallest data sets actually perform comparably to
the best results for any of the other embeddings.
Conversely, although the FLAIR models perform
best when trained with the largest data sets, there is
not nearly the same level of improvement as there
is for the other two architectures. One implication
of these findings is that much smaller and faster
models may perform well enough for certain pur-
poses, if not necessarily attaining state-of-the-art
results. This allows researchers and developers
with limited hardware capacity to also benefit from
using these types of embeddings.

As expected, GloVe embeddings consistently
perform the worst of all the embedding types, es-
pecially so with the first couple of iterations of
very small corpora, for two main reasons. Firstly,
as these embeddings only generate representations
for words in the vocabulary, all words in the tag-
ging task that are not part of the vocabulary are
represented by the same vector, and therefore do
not have any distinctive representations. Secondly,
since many words will only appear a small number
of times in the training data, learning complex rep-
resentations is difficult when a word is only seen
in a small number of contexts. These problems
are exacerbated for isiZulu where the conjunctive

46

https://github.com/flairNLP/flair
https://hlt.nwu.ac.za/


writing style causes a large number of distinctive
co-occurrences for all words, especially less fre-
quent words, and learning meaningful representa-
tions is almost impossible. For the disjunctively
written Sesotho sa Leboa, however, the vocabulary
is relatively representative even with a small cor-
pus, and GloVe embeddings perform only slightly
worse than the other embedding types.

The fastText models perform substantially bet-
ter than the GloVe models with very small data
sets, while still performing worse than the FLAIR
embeddings. With the largest data sets, however,
the fastText CBoW models perform either very
similarly or better than the FLAIR models. Inter-
estingly, with very small data sets the Skipgram
models outperform the CBoW models for the first
two or three data iterations, after which the CBoW
models consistently perform better across all lan-
guages. It is not immediately obvious why this
would be the case, but the fact that this occurs
across all three languages definitively shows that
with very small data sets Skipgrams are preferable
over CBoW, whereas for any data set with more
than 500,000 or a million tokens (corresponding to
about 40,000 paragraphs in our data), the CBoW
models generate better representations measured
on the POS tagging task. This contradicts the initial
findings of Mikolov et al. (2013), but is in line with
the latest released fastText models7 which have also
switched to CBoW models by default, as opposed
to previously released models (Bojanowski et al.,
2017).

Our results also clearly show that the writing sys-
tem of the language plays a major part in how much
data is required to train embeddings that are useful
to any degree. For conjunctively written languages,
as the token-level morphological complexity of the
language increases, so does the amount of data re-
quired to create meaningful representations. In the
two extreme cases of isiZulu and Sesotho sa Leboa,
even the embeddings from the largest available cor-
pora for isiZulu perform substantially worse than
the embeddings based on the smallest Sesotho sa
Leboa corpus, with accuracies between 4.28% and
15.19% lower depending on the model. Afrikaans,
which is slightly more morphologically complex on
token level than Sesotho sa Leboa, but not nearly
as complex as isiZulu, also performs somewhere
between the two languages when considering the

7https://fasttext.cc/docs/en/crawl-vectors.
html

Figure 1: Accuracy of Afrikaans POS tagging using
different embedding models with increasing data sizes

different data sizes and embeddings.
Apart from the general findings presented in the

previous paragraphs, there are also certain language
specific aspects of the results that warrant discus-
sion. We include some broad linguistic error ana-
lysis for each of the languages to determine where
the main focus of errors are for the best models for
each language.8

For Afrikaans, the fastText CBoW model per-
forms the worst of all models on the smallest data
set, but shows the largest degree of improvement as
the data size increases, to the point where it is the
best performing of all models on the largest data
set. Also, the Afrikaans FLAIR Forward model
performs at almost an identical level to the fastText
CBoW model, while the FLAIR Backward model
is slightly worse. When considering the tag error
differences between the embeddings trained on the
smallest and largest corpora, it becomes clear that
the main source of improvements for both fastText
and GloVe embeddings is the size of the data. As
more words are included in the vocabulary, the rel-
ative error rates for nouns, verbs, adjectives, and
adverbs are reduced by between 35% and 45%. The
relative error rate reductions for the FLAIR models
are not as uniform across all open word classes. As
an example, the FLAIR Forward model reduces the
percentage of errors for adjective and verbs by 43%
and 72% respectively, while increasing the number
of errors for nouns or adverbs. The FLAIR Back-
ward model shows improvements for adjectives
(25%) and verbs (61%) as well, but also substantial
improvements for nouns (64%) and adverbs (48%).

8Detailed information on the linguistic error analysis can
be found in Tables 4, 5 and 6 in the appendix.
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Figure 2: Accuracy of isiZulu POS tagging using differ-
ent embedding models with increasing data sizes

In the case of isiZulu, the FLAIR Backward
model performs best overall, although the FLAIR
Forward performs comparably. This differentiation
with Afrikaans is likely due to the fact that isiZulu
uses prefixation more productively than suffixation,
and processing data from the end of the text to
the beginning leads to a slightly more informative
model. The GloVe model for isiZulu is significantly
worse than any of the other models trained in this
investigation and is definitely a consequence of
data sparsity during training as well as previously
unseen words in the tagging task. This problem is
less prevalent for the fastText models: Since the n-
grams of previously unseen words can still generate
a representation, and although not as informative
to the task, these "subword" representations obvi-
ously have a substantial impact on the quality of
the results. The CBoW and GloVe models show
the largest error rate reductions across the major
POS classes of between 17% and 77%, particularly
for Possessives and Adverbs. The FLAIR models
on the other hand do not show large improvements
for any of the categories, and the improvements
are counteracted by regressions in other classes,
to which end the results remain relatively stable
between the models trained on the smallest and
largest corpora.

Even though the FLAIR embeddings perform
best for isiZulu, there is very little improvement
for these models as the size of the data increases.
There are two possible, and related, reasons why
this may be the case. Firstly, since most of the
affixation in isiZulu is fairly regular, most of the
morphological structure of the language may be
encoded well with small amounts of data. This is

Figure 3: Accuracy of Sesotho sa Leboa POS tagging
using different embedding models with increasing data
sizes

supported by the fact that the most productive word
classes (i.e. nouns, verbs, adverbs, possessives, and
relatives) are tagged more accurately with a FLAIR
model trained on the smallest amount of data, than
for any of the other embedding models. The fast-
Text CBoW model does perform similarly on these
classes with the largest training set, and may pos-
sibly outperform the FLAIR models if more data
is made available. The second possible reason is
that the annotated POS training data is just too
small for further improvements to be possible, and
a substantially larger set is required to attain results
comparable to those of Afrikaans or Sesotho sa
Leboa.

All of the embedding models for Sesotho sa
Leboa, with its disjunctive writing style, clearly
already perform well with very small data sets. The
improvements on the POS tagging task with larger
data sets is also not nearly as large as for the other
two languages. As with the other languages, the
FLAIR models perform the best with very little
data, while the fastText CBoW models generate the
best overall results with more data. Surprisingly,
the fastText Skipgram models do not show much
improvement between the smallest and largest data
sets, and there does not seem to be an easily iden-
tifiable reason for this result. As with both other
languages, the GloVe embeddings generally show
improvements with each iteration of larger data,
and are likely to keep improving if more data were
available to be included. For the GloVe and FLAIR
models, the improvements in tag classes are much
more moderate, between 8% and 46% for the noun,
verb, concord, and adjective classes. Both of the
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FLAIR models also regress on the adverb class.
The fastText models do show more substantial im-
provements for some of the classes, but for the
Skipgram model the error reduction in one class
is counteracted by an increase in errors in another
class. For example, the noun class errors are re-
duced by 40%, but the adjective and concordial
classes increase their errors by more than 40%, re-
sulting in Accuracies that are very similar to the
model trained on the smallest data sets.

Generalizing our findings for the type of embed-
dings to use with little data, the takeaway is that
FLAIR models will produce decent results, espe-
cially with very little data. With slightly more data,
fastText CBoW embeddings will also perform ade-
quately. GloVe, however, needs large amounts of
data to reach enough generalization power to be
applied successfully to a morpho-syntactic down-
stream task.

Our analysis also shows that the influence of
linguistic and orthographic differences between
languages should not be underestimated. A lan-
guage such as isiZulu with a complex morphology
and large vocabulary (and consequently more data
sparseness) will need more data to train representa-
tive language models. But a better language model
alone is not sufficient. More task related annotated
data is also needed to substantially increase the
POS accuracy – again an effect of trying to learn
from sparse data. It is important to acknowledge
the influence of data sparseness in both the learned
representations and the actual task to be learned on
the final tagging results.

6 Conclusion and Future Work

In this paper, we investigated how the amount of
available training data and the linguistic attributes
of a language influence the quality of learned em-
beddings. Our case study consisted of training
three different embedding architectures on varying
amounts of data, and evaluating the embeddings ex-
trinsically on the downstream task of POS tagging
for three linguistically distinct South African lan-
guages (Afrikaans, isiZulu and Sesotho sa Leboa).

Our results indicate that under certain conditions
even relatively little data can produce useful repre-
sentations for a specific task. We explicitly show
that with very little data (approximately 300,000
tokens) FLAIR embeddings generate representa-
tions that perform comparably to any of the other
architectures trained on the largest data sets, irre-

spective of the morphological complexity of the
language. The FLAIR models do not generally
show the same level of improvements as the other
embedding types when larger data sets are avail-
able, and in some cases are out-preformed by the
fastText CBoW embeddings with the largest avail-
able training sets.

The results further reinforce the knowledge that
for morphologically complex, conjunctively writ-
ten languages, substantially more data is needed
to achieve good results, not only unannotated text
for training the language model, but also annotated
training material for the task at hand. Overall we
conclude that it is imperative to know the character-
istics of the language you are working on to make
linguistically informed choices about the amount
of data and the type of embeddings to use.

Although these results are encouraging for the
relatively simple task of POS tagging, the same
may not be true for other, more complex tasks, es-
pecially where semantic attributes are of interest.
We do however expect that the shortcomings appar-
ent in the fastText Skipgram and GloVe models will
remain in under-resourced settings regardless of the
task they are applied to. With this in mind there are
two areas for future investigation. Firstly, these em-
bedding models should be applied to different tasks
that may require different linguistic attributes. Sec-
ondly, a comparable experimental design should be
applied to transformer models, such as RoBERTa,
and to fine-tuning multi-lingual language models
(e.g. mBERT, XLM-R) to determine whether simi-
lar encouraging results are possible with these more
complex architectures.

7 Limitations

There are several limitations of the research re-
ported on in this submission, some of which are
explicitly stated in the paper, and others that are ex-
pressed in this section as they do not fit well within
the discussions of the paper.

The first major limitation of the work relates to
the fact that the reported results for the downstream
task are not averages of multiple runs, and that there
was no hyperparameter tuning performed. Due to
the nature of the investigation, i.e. not attempting
to achieve state-of-the-art results, and the number
of separate runs required to address this limitation,
the authors do not expect the results to change such
that the conclusions would be significantly affected.
For these reasons and the ethical implications of
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performing unnecessary runs the authors decided
not to perform these additional experiments.

Secondly, even though the submission reports on
three linguistically distinct languages, care should
still be taken when interpreting and applying these
findings to other languages, especially where those
languages differ significantly from those described
in the paper, such as for instance Dravidian and
Sino-Tibetan languages.

Lastly, the results of this submission specifically
target the relatively simple POS tagging task, and
further investigations on the findings of this paper
in more complex NLP tasks is necessary to support
these findings.
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A Appendix

A.1 Full Results Table

Paragraph Token Count Vocabulary Token:Vocab fastText fastText GloVe FLAIR FLAIR
count ratio CBoW Skipgram Forward Backward

Afrikaans
10,000 316,704 13,152 0.0415 0.9287 0.9597 0.9385 0.9755 0.9680
20,000 628,359 21,032 0.0335 0.9601 0.9652 0.9462 0.9726 0.9710
40,000 1,253,597 33,657 0.0268 0.9719 0.9688 0.9424 0.9758 0.9757
80,000 2,527,103 52,844 0.0209 0.9769 0.9717 0.9518 0.9777 0.9775

160,000 5,067,551 82,314 0.0162 0.9798 0.9693 0.9513 0.9772 0.9746
320,000 10,172,939 128,172 0.0126 0.9808 0.9710 0.9548 0.9798 0.9760
640,000 20,303,831 199,335 0.0098 0.9806 0.9710 0.9566 0.9820 0.9787

1,280,000 40,610,635 311,719 0.0077 0.9834 0.9738 0.9578 0.9803 0.9794
isiZulu

10,000 193,814 16,207 0.0836 0.8188 0.8694 0.7215 0.9181 0.9219
20,000 394,523 29,120 0.0738 0.8686 0.8892 0.7354 0.9205 0.9217
40,000 783,393 50,153 0.0640 0.9009 0.8977 0.7562 0.9209 0.9249
80,000 1,561,536 50,914 0.0326 0.9100 0.9015 0.7711 0.9197 0.9255

160,000 3,115,721 143,262 0.0460 0.9160 0.9051 0.7903 0.9154 0.9251
320,000 6,232,015 240,454 0.0386 0.9233 0.9011 0.7980 0.9189 0.9261
640,000 12,438,302 401,423 0.0323 0.9257 0.9015 0.8054 0.9227 0.9280
838,000 16,271,123 488,822 0.0300 0.9261 0.8965 0.8075 0.9233 0.9290

Sesotho sa Leboa
10,000 302,923 10,464 0.0345 0.9689 0.9708 0.9594 0.9771 0.9763
20,000 605,780 16,197 0.0267 0.9745 0.9736 0.9624 0.9773 0.9756
40,000 1,214 472 25,243 0.0208 0.9774 0.9739 0.9616 0.9747 0.9761
80,000 2,435,686 38,401 0.0158 0.9806 0.9721 0.9623 0.9760 0.9770

160,000 4,878,117 58,097 0.0119 0.9792 0.9736 0.9655 0.9788 0.9791
292,600 8,909,133 80,919 0.0091 0.9802 0.9719 0.9698 0.9794 0.9788

Table 3: Full results for Afrikaans, Sesotho sa Leboa and isiZulu on all types of embeddings with different input
data sizes using a reduced POS tagset

A.2 POS Linguistic Analysis Tables

# POS errors N ADJ V ADV Other
fastText CBoW in 10,000 paragr. 109 68 60 55 123

in 1,280,000 paragr. 22 11 3 11 49
% Improvement 79.82% 83.82% 95.00% 80.00% 60.16%

fastText Skipgram in 10,000 paragr. 72 30 18 31 83
in 1,280,000 paragr. 23 19 11 15 84
% Improvement 68.06% 36.67% 38.89% 51.61% -1.20%

GloVe in 10,000 paragr. 104 59 37 35 123
in 1,280,000 paragr. 66 36 31 19 92
% Improvement 36.54% 38.98% 16.22% 45.71% 25.20%

FLAIR Forward in 10,000 paragr. 22 23 25 15 58
in 1,280,000 paragr. 25 13 7 20 50
% Improvement -13.64% 43.48% 72.00% -33.33% 13.79%

FLAIR Backward in 10,000 paragr. 53 24 13 31 65
in 1,280,000 paragr. 19 18 5 16 61
% Improvement 64.15% 25.00% 61.54% 48.39% 6.15%

Table 4: Linguistic error analysis for Afrikaans POS
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# POS errors N POSS REL ADV V ADJ Other
fastText CBoW in 10,000 paragr. 179 158 150 145 111 23 132

in 838,000 paragr. 106 36 51 38 72 11 52
% Improvement 40.78% 77.22% 66.00% 73.79% 35.14% 52.17% 60.61%

fastText Skipgram in 10,000 paragr. 140 82 122 80 104 18 101
in 838,000 paragr. 120 60 82 51 98 23 79
% Improvement 14.29% 26.83% 32.79% 36.25% 5.77% -27.78% 21.78%

GloVe in 10,000 paragr. 272 217 284 222 229 29 127
in 838,000 paragr. 184 179 196 132 146 20 97
% Improvement 32.35% 17.51% 30.99% 40.54% 36.24% 31.03% 23.62%

FLAIR Forward in 10,000 paragr. 113 33 56 35 86 15 68
in 838,000 paragr. 102 41 49 36 80 12 60
% Improvement 9.73% -24.24% 12.50% -2.86% 6.98% 20.00% 11.76%

FLAIR Backward in 10,000 paragr. 123 26 47 29 83 11 68
in 838,000 paragr. 93 37 45 35 60 9 73
% Improvement 24.39% -42.31% 4.26% -20.69% 27.71% 18.18% -7.35%

Table 5: Linguistic error analysis for isiZulu POS

# POS errors N V CONC ADV ADJ Other
fastText CBoW in 10,000 paragr. 48 31 17 13 10 90

in 292,600 paragr. 12 25 17 12 4 63
% Improvement 75.00% 19.35% 0.00% 7.69% 60.00% 30.00%

fastText Skipgram in 10,000 paragr. 32 27 21 15 9 93
in 292,600 paragr. 19 29 30 13 13 85
% Improvement 40.63% -7.41% -42.86% 13.33% -44.44% 8.60%

GloVe in 10,000 paragr. 53 34 29 23 14 123
in 292,600 paragr. 43 30 23 21 9 80
% Improvement 18.87% 11.76% 20.69% 8.70% 35.71% 34.96%

FLAIR Forward in 10,000 paragr. 23 20 17 12 6 81
in 292,600 paragr. 19 16 13 13 6 71
% Improvement 17.39% 20.00% 23.53% -8.33% 0.00% 12.35%

FLAIR Backward in 10,000 paragr. 25 30 21 12 15 57
in 292,600 paragr. 21 25 17 14 8 59
% Improvement 16.00% 16.67% 19.05% -16.67% 46.67% -3.51%

Table 6: Linguistic error analysis for Sesotho sa Leboa POS
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