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Abstract

Modern dialog systems rely on Deep Learn-
ing to train transformer-based model archi-
tectures. These notoriously rely on large
amounts of training data. However, the collec-
tion of conversational data is often a tedious
and costly process. This is especially true
for Task-Oriented Dialogs, where the system
ought to help the user achieve specific tasks,
such as making reservations. We investigate a
controlled strategy for dialog synthesis. Our
method generates utterances based on dialog
annotations in a sequence-to-sequence man-
ner. Besides exploring the viability of the ap-
proach itself, we also explore the effect of con-
strained beam search on the generation capabil-
ities. Moreover, we analyze the effectiveness of
the proposed method as a data augmentation by
studying the impact the synthetic dialogs have
on training dialog systems. We perform the ex-
periments in multiple settings, simulating var-
ious amounts of ground-truth data. Our work
shows that a controlled generation approach is
a viable method to synthesize Task-Oriented
Dialogs, that can in turn be used to train dialog
systems. We were able to improve this process
by utilizing constrained beam search.

1 Introduction

The current success of Large Language Models
(LLMs) is the result of multiple factors. One of
them is the availability of high-quality data in large
amounts. Specifically, the prospering adoption of
these LLMs as chatbots, as pioneered by Chat-
GPT (OpenAl, 2022), was made possible due to
the usage of human feedback during training in the
RLHF framework (Christiano et al., 2017).

The category of Task-Oriented Dialog (TOD)
systems describes a specific kind of chatbot that
aims to help users achieve tasks, such as booking
hotels or making reservations, using external ser-
vices. It can therefore be seen as a language-based
interface to these services.
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Figure 1: The general setup of the study. We use n gold
standard dialogs to train a generator, which synthesizes
dialogs that are in turn used to train a dialog system
(steps 1.2 to 4.). To evaluate the improvement (step 5),
we compare the performance of the dialog system to the
baseline, where we only use the n dialogs for training
(step 1.1).

In the recent past, different model architectures
have been proposed to solve this problem. To eval-
uate them, the original MultiwOZ (Budzianowski
et al., 2018) dataset and its successors are widely
used as benchmarks. It contains more than ten
thousand dialogs spanning multiple domains (e.g.,
attraction, hotel and restaurant), paving the way for
the adoption of large end-to-end models.

While this benchmark allows for useful compar-
isons of different architectures and approaches, we
deem this scenario of having multiple thousand di-
alogs to be infeasible for most real-life TOD use
cases, where usually not nearly as many dialogs are
available. This is due to the fact that the types of
dialog needed to train a TOD system are different
from those used to train, e.g., a social chatbot, since
the TOD conversations need to include the usage
of the external systems. Therefore, it is typically
not only necessary to have two users (while using
the Wizard-of-Oz technique; Kelley, 1984), but to
have at least one of them interact with the exter-
nal service to provide the necessary information to
achieve the task.
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We therefore investigate the synthesis of suitable
utterances from given annotations to train TOD sys-
tems. We call this method "Controlled Generation
for Training" (CG4T). For this, we simulate lower
resource scenarios based on the MultiwWQOZ dataset,
allowing us to both evaluate the models on this
common benchmark and also to test the method in
different, more realistic settings.

With the objective of ensuring that the gener-
ated utterances contain the entities defined in the
annotation, we additionally investigate the effect
of constrained beam search during the generation
phase. To sum up, in our work, we aim to answer
four research questions (RQ):

¢ RQ 1: Can a pretrained sequence-to-sequence
model be fine-tuned to generate synthetic di-
alogs based on annotations?

* RQ 2: Can constraining the beam search im-
prove the decoding in comparison to a normal
beam search?

* RQ 3: Can the synthetic data be used to train
and improve the performance of a TOD sys-
tem?

¢ RQ 4: What is the relation between the
amount of real data and the usefulness of syn-
thetic data generated this way?

2 Background and Related Work

Controlled Generation. The main goal of the ap-
proach presented in this paper is to generate text
that fulfills certain requirements, i.e., fitting the
annotations it is based on. The general problem
of steering generation has been addressed in the
young research field of Controllable Text Genera-
tion (CTG). The root motivation behind this is to
have a Natural Language Generation (NLG) sys-
tem be controllable by human-defined parameters,
which becomes especially important due to their
black-box character (Zhang et al., 2022). Some of
the applications of CTG include NLG that adheres
to a specific topic, emotion, formulating text from
structured data (e.g., tables), and data augmenta-
tion (Zhang et al., 2022). For example, Keskar et al.
(2019) train a model with control codes that allow
to influence the generation by prepending them to
the prompt.

In similar spirit is the research in so called model
alignment. The alignment of a model describes its
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fine-tuning with the goal of increasing the proba-
bility of desired outputs, i.e., those aligning with
the intended use and human preferences, and de-
creasing the chance of undesired outputs. This has
recently been achieved both with the RLHF frame-
work (Ouyang et al., 2022) and standard supervised
training (Zhou et al., 2023).

TOD Systems and the MultiWOZ Dataset.
Since the publication of the original MultiwOZ
(Budzianowski et al., 2018) dataset, there have been
multiple updated versions, mostly to fix label noise
(Eric et al., 2020; Zhang et al., 2022; Ye et al.,
2022). The setting introduced by the dataset allows
for two types of evaluation: Dialog State Tracking
(DST) and Response Evaluation. Since recent pub-
lications manage to get near-perfect results for the
Response Evaluation as measured by the inform
and success metric (Cheng et al., 2022), we decide
to focus on the DST task.

There has been varied research (e.g., Bang et al.,
2023; Zhao et al., 2022; He et al., 2022) on specific
model architectures, using distinct approaches to
solve the DST task. Kim et al. (2020) propose
SOM-DST, which uses an explicit state memory
and predicts the operation to perform for each slot
at every turn, e.g., carryover or update. On the
other hand, STAR (Ye et al., 2021) tries to leverage
the correlations between the slots with a slot self-
attention mechanism.

Constrained Beam Search. When generating
outputs with an NLG model, the goal of exhaus-
tively finding the sequence with the highest prob-
ability is infeasible in most cases. Since for a se-
quence of length m over a vocabulary with length
v, the computational cost would be O(v™). Ac-
cordingly, beam search is commonly adopted as an
approximation and used to create output sequences
with a trained LLM. Performing a beam search
with a beam size of b consists of keeping b can-
didates, for which a greedy search is continued,
and finally the candidate sequence with the highest
probability is picked as the prediction. The con-
strained beam search (CBS; Kim, 2022) is a variant
of this method, which tries to enforce the existence
of specific words, so-called constraints, in the out-
put. Since for the DST task it is important to have
utterances containing the entities exactly as given
in the annotation, we hope that adopting the CBS
scheme in our method will increase the amount of
annotations appearing in the generated utterances.

Synthetic Data Generation. The proposed ap-



name: Broughton house gallery I | address: 98 king street I | postcode: cbl1ln

The

+>| The broughton house gallery I

I am

The 98 king street

—>| I broughton house gallery

| broughton house gallery |—>

Figure 2: Simplified example step of the constrained beam search principle with three beams. Constraints marked
with gray background, all constraints indicated on upper part.

proach is related to that of bootstrapping, which
predates the Deep Learning era and is based on the
triad of annotation a small amount of seed data,
training a model and finally applying the model to
unlabeled data, thereby generating silver-standard
data (Tang and Surdeanu, 2023). Bootstrapping
has recently been researched in Machine Learning
applications, e.g., Tang and Surdeanu (2023); Eyal
et al. (2021). The research into the generation of
synthetic data in the form of dialogs has recently
gained some interest, amplified by the advances
in pretrained LLMs. Kim et al. (2022) distill a
dataset containing 1.5 million social dialogs from
a LLM. They use the LLM to first derive a short
narrative and then again prompt the LLM to infer
a dialog based on it. A similar approach has been
studied by Miyazaki (2023), who address dialog
generation based on story plots. To this end, they
also investigate the prompting of LLMs. The syn-
thesis of social dialogs via prompting LL.Ms was
furthermore studied by Chen et al. (2023). They
also extend this from dyadic conversations to multi-
party dialogs, that contain more than two speakers.

3 Proposed Method and Materials

We use the MultiWOZ 2.4 (Ye et al., 2022) dataset
as the basis for all of our experiments. This dataset
is the result of multiple corrective iterations of
the original MultiWOZ data (Budzianowski et al.,
2018). It contains roughly ten thousand dialogs, of
which two thousand in total are reserved as valida-
tion and test data. We make use of the official split
between training, validation and test data. The di-
alogs were created with the Wizard-of-Oz (WOZ)
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technique (Kelley, 1984), where the interaction
with a dialog system was imitated. While these can
therefore be regarded as gold-standard data, the
collection process is laborious and costly. To simu-
late a more realistic setting, we therefore randomly
sample n dialogs from the training data and pro-
ceed with them as if they were the only collected
conversations.

The goal of our method is to synthesize a large
amount of dialogs based on a small amount of col-
lected data. Instead of generating the whole di-
alog in one pass, we predict each utterance one
after another based on the turn annotations with a
sequence-to-sequence generator model. This can
be described as using the annotations as a blueprint
for the dialog.

The main steps of the method are given as 1.2, 2,
3, and 4 in Fig. 1. They first include the preprocess-
ing of the data, so they fit a specified input/output
format (z, y) for the sequence-to-sequence model
(1.2). This format is depicted in Fig. 3. With
this, we train a sequence-to-sequence model (2.) as
the generator § = gops(x). We write a generator
model that uses the constrained beam search as its
decoding strategy as gops(z). Using the trained
gos(z) we perform the data augmentation by syn-
thesizing dialogs using CBS (3.), and finally train
the TOD system on this augmented data (4.). These
steps are described in more detail below.

3.1 Input and Output of the Generator

Our generator model ¢ g(z) maps an input
string x; to an output utterance y;. An exam-
ple of the input to and output of the generator is



<b_ctx> <b_bs> train-leaveat: dontcare <e_bs>
<b_Ibl> train-leaveat: dontcare <e_lbl>
<b_pos> 6 <e_pos> <e_ctx> Bot: there are 7
trains that can get you there , the earliest is
levaing at 05:19 , the latest at 08:19 . do you
have a time you would like to leave the station ?
User:

in (x)

no , i do not care what time it leaves as long as it
arrives in cambridge by 9:30 .

out (y)

A~

>

i do not have a time to leave .

Figure 3: An example of the input x and output y
that make up the training data as well as the output
§9cps(x) of the trained generator with n = 2500. The
typo at "levaing" is part of the dataset.

given in Fig. 3. Each z is made up of some meta-
information, which we will call context, and the
previous utterance. Thus, for an utterance y;, the
input is constructed as the concatenation of the con-
text, the previous speaker and their utterance, and
the speaker of y;.

The context is constructed from

* the belief state (e.g., "train-leaveat: dontcare"
in Fig. 3),

* the turns labels (e.g., the second "train-leaveat:
dontcare" in Fig. 3 or "restaurant-name: the
missing sock" as an example from a different
utterance) and

* the turns index within the dialog (i.e., 6 in Fig.
3).

If the current utterance y; is a system utterance,
we also add the system act (e.g., "arrive: 7", if the
system asks the user when he wants to arrive) to
the context.

We introduce special tokens that indicate the
start and end of a certain part of meta-information
within the context. These markers are of the form
<b_META> ... <e_META>, with META € {ctx,
bs, 1bl, pos, sysact} for context, belief state, label,
position and system act, respectively.

To simulate the low resource settings, we ran-
domly sample n dialogs from all train data X in the
official MultiWwOZ split to create a new training set
X", We define X™ = X \ X" to be the blueprints
which we will use for the data augmentation.

3.2 Constrained Beam Search

With the aim of improving the inclusion of the an-
notations into the generated dialogs, we evaluate
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the effect of constrained beam search, which is im-
plemented in the transformers library (Wolf et al.,
2020). The main idea of CBS is to consider at ev-
ery decoding step not only the highest-probability
tokens, but also those defined as constraints. In
our case, the constraints are the entities or strings
contained in the annotations.

To avoid trivial but nonsensical outputs that sim-
ply concatenate the constraints, beams that do not
(yet) fulfill the constraints are also kept in con-
sideration during the decoding process. The im-
plementation groups all candidates into so-called
banks, depending on how close they are to fulfilling
the constraint. Through a round-robin selection, b
candidates, sourced from all banks, are preserved.
Therefore, both outputs that are already closer to
fulfilling the constraints, and those that are more
sensible while being further from the constraints,
are being considered. An example step of this con-
strained beam search generation is shown in Fig. 2.
In this example, an undesired sequence that could
be generated without the banks would be simply
concatenating the annotation to output "broughton
house gallery 98 king street cb11In".

3.3 Data Augmentation Process

During the data augmentation process, we gener-
ate synthetic dialogs by creating each utterance
within the dialog one after another. This is visu-
alized in Fig. 4. The input string x, consisting of
context and previous utterance, is created from the
annotations of the current utterance and the previ-
ous utterance. During the training of the generator
g(z) or gops(z) (cf. step 2 in Fig. 1), we use the
ground-truth previous utterance, since these come
from available dialogs. The example output in 3
shows that the model correctly interprets the input
x and generates an utterance ¢ that contains the
information that the user does not have to leave by
a specific time. However, the information that the
user has to arrive by a certain time was not given
in the input (since it is missing in the annotation)
and thus is also not represented in g.

During the augmentation of the data, i.e., synthe-
sizing new dialogs with the generator (cf. step 3
in Fig. 1), we use the previously model-generated
utterance to keep the scenario realistic. Therefore,
the evaluation of the models trained on the aug-
mented data, does not rely on any ground-truth
utterances.

In a real-world situation, the annotation for these
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Figure 4: Visualization of the data augmentation process. The generator g(x) creates the utterance predictions ¢
from the input x, which is constructed based on the annotations a.

unknown dialogs X™, that we take from the un-
used MultiWOZ dialogs in the train split, will in
general not be readily available. But the method
needs annotations to be provided to the model as a
blueprint. A solution to this is to have the dialog
annotations created algorithmically. This is much
simpler to do with traditional methods, which can
be pattern-based, than to generate the dialog itself.

3.4 Training the TOD system

Once we have augmented the data by synthesizing
all utterances for the dialogs in X, we can train the
TOD systems on this data. To this end, we keep the
structure and annotations of the MultiWOZ train
dataset but for all dialogs in X™, we replace the
ground-truth utterance with the synthetic one, i.e.,
we sety; := gops(zi)Va; €x, Vo e X™

4 Experiments

Our experiments can be divided into two stages.
The first stage consists of studying the generator
and relates to RQ 1 (feasibility) and RQ 2 (con-
strained beam search). The second focuses on the
dialog system and aims to answer RQ 3 (effective-
ness). To evaluate the proposed method, we look at
four different, simulated low(er) resource settings
to answer RQ 4 (magnitude of data). In each of
those, we assume that a certain amount n of an-
notated dialogs have been collected, which will
be used for the CG4T approach. Concretely, we
use n € {150,750,1000,2500} in an attempt to
understand the effect different magnitudes of data
have.

4.1 Experiments on the Generator

To train our generator models, we randomly split
X™ into a train, validation and test set, using a
70-10-20 split for each n, respectively. We further
filter the training data so that it contains only utter-
ances that have annotations. This has shown to be
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beneficial in preliminary experiments. Therefore,
in each setting, the generator itself is trained and
evaluated with a different amount of data. This
is a necessary condition to realistically simulate
the different settings. We chose the BART Base
(Lewis et al., 2020) model as the architecture for
our generator and used the pretrained checkpoint
provided by the transformers library (Wolf et al.,
2020).

We trained each generator model on its respec-
tive training data for 50 epochs using the Cross
Entropy Loss, only saving the model with the low-
est loss on the validation set. This was consistently
achieved around the tenth epoch, after which the
model started overfitting. An example of a com-
pletely synthesized conversation is given in Fig. 5.

User: i am looking for a train that leaves from
cambridge on wednesday.

Bot: there are 5 trains peterborough on wednesday.
User: i need to leave peterborough after 12:45.
Bot: tr1879 leaves at 13:06 on wednesday.

User: i am also looking for a train.

Bot: i have a train that will get you to peterborough
by 13:56. it will cost 16.50 pounds per ticket.

User: can you book that for 1 person?

Bot: yes, please.

User: i am also looking for a museum in the centre
of town.

Bot: broughton house gallery is located at 98 king
street, postcode cb111n.

User: thanks.

Bot: you're welcome, 1 hope you enjoy your time in
cambridge!

Figure 5: An example of a dialog synthesized by the
generator. The ground-truth dialog is shown in Fig. 6
in the appendix A. Speaker roles are added in bold to
improve readability.

To evaluate the generators, we investigate their
language generation capabilities as well as their
task completion, which we define as adhering to
the annotation. We use BERTScore (Zhang et al.,



2019), which is especially suited to measure seman-
tic similarity, to evaluate the text generation. This
metric uses contextual BERT embeddings to calcu-
late the similarity between the generated sentence
and the ground-truth reference.

To measure the task-completion, we define the
mean annotation metric as

k
>
j=1

with a; being one annotation of all [ annotations a,
y; is one of all £ utterances and

2(ai,yj) = {

In other words, we calculate the mean percentage
of annotations that are part of the generated utter-
ance. We define an annotation a; as consisting of
both the slot name and the slot value, since depend-
ing on the concrete utterance, containing the slot
name can be desirable. However, the annotations
are rather diverse, and the slot values do not only
contain information entities, e.g., restaurant names
or reservation times. So while in most cases we ex-
pect the text to contain exactly the slot value, there
are also annotations where a slot has, for example,
a boolean value. E.g., the slot "parking” for the do-
main hotel might have the value "yes". In this case,
we do not necessarily want the utterance to contain
the slot value but rather the slot name. Therefore,
we check both the slot name and its value for oc-
currence. Still, it is possible that neither the slot
name nor its value are supposed to be part of the
utterance as-is. Take as an example the annotation
"train-leaveat: dontcare". Therefore, to improve
the meaningfulness of the metric, we also report
it in proportion to the Annot of the test dataset
utterances (cf. Tab. 4). We write this as Annotg.

)

Annot =

~| =

z(ai, y5)),
i=1

| =

1 a; isin Yj,
2

0 a;isnotin y;.

4.2 Experiments on the Data Augmentation

The second stage of the experiments investigates
if the synthetic dialogs generated in the previous
experiments can improve the performance of TOD
systems by means of data augmentation. Since the
experiments on the constrained beam search have
shown positive results, we adopted this method
during the data augmentation.

That is, with gops(x) we synthesize dialogs for
all x € X™ . To this end, we train two distinct
recent model architectures, where the publications
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include an open-source code base. SOM-DST!
(Kim et al., 2020) is an approach using explicit state
memory and predicting the operation to perform
for each slot at every turn. The second architecture
is called STAR? (Ye et al., 2021), which introduces
a slot self-attention mechanism to learn the correla-
tions between the slots. This method predicts the
slot-value-combination with the highest likelihood
and can thus be classified as ontology-based, while
SOM-DST can be classified as open-vocabulary,
using only the dialog context (Ye et al., 2022). We
trained both approaches with the hyperparameter
setup provided by their authors.

We utilize the Joint Goal Accuracy (JGA) (Nouri
and Hosseini-Asl, 2018) as a metric for this second
stage of experiments. JGA is commonly used to
evaluate models in the DST task. This metric mea-
sures, for each utterance, if the value for each slot
is exactly and correctly predicted. Hence, the JGA
is a rather strict evaluation metric. The results are
reported in Tab. 5.

4.3 Descriptive Statistics of the Generated
Data

We calculate the mean length and its standard de-
viation of the generated utterances and compare
them to the ground-truth statistics in Tab. 1. These
results show a trend of higher standard deviation
with larger n. This makes sense, as it shows that a
generator that was provided with more training data
is capable of synthesizing utterances with higher
diversity. The data at hand also shows that the
system utterances are longer on average in every
setting, including ground-truth. The average length
of synthesized texts stays roughly the same in all
n-scenarios for user and system utterances, respec-
tively.

However, in all of these settings, they are shorter
than in the ground-truth data. This can be explained
by the absence of, e.g., fill words or additional in-
formation that does not concern the slots since the
utterances are more tailored towards the annotation
and are less likely to contain additional words. An
example of this can be seen in the ground-truth
dialog in Fig. 6 in the appendix A. The user says
"1 would like to go to peterborough and leave af-
ter 12:45, i have to attend a meeting beforehand",
while in the generated utterance (cf. Fig. 5), the
user says "i need to leave peterborough after 12:45".

"https://github.com/clovaai/som-dst
Zhttps://github.com/smartyfh/DST-STAR
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n Length User  Length System
150 48.37£17.56 55.35+22.90
750  44.03 +£20.55 56.89 + 28.88
1000 40.11 +22.73 56.83 £ 28.45
2500 44.57 £23.90 61.79 +34.07
gt 61.99 +29.04 89.22 + 38.68

Table 1: u+o of the length of user and system utterances
for different n, where n = gt shows the statistics of the
ground-truth training data X. The length is measured
as the number of characters including punctuation and
white spaces.

Besides the mix-up of departure and destination,
the information about the user having to attend a
meeting is also left out. This is to be expected, as
the annotation does not track this information.

This can be seen as both a positive and a nega-
tive effect. On the one hand, the generator fails to
imitate the length of the utterances. On the other
hand, the synthesized texts are more concise.

We do not report the statistics on the number of
turns since, due to the generation process, where we
generate an utterance for each utterance-annotation
existing in the data, the number of turns in all n-
scenarios is the same as for the ground-truth data.

Furthermore, we evaluate the lexical diversity of
the generated utterances using the root type-token
ratio (RTTR; Guiraud, 1958) and the measure of
textual lexical diversity (MTLD; McCarthy and
Jarvis, 2010) with a threshold of 0.72. Both were
computed with the LexicalRichness library®. The
results, depicted in Tab. 2, are analogous to the
findings regarding the utterance length. A higher n
of available data consistently lead to higher lexical
richness for both user and system utterances, as
measured by both metrics. However, even in the
setting of n = 2500, the utterances do not reach the
lexical diversity of the ground-truth utterances. The
fact that system utterances invariably show higher
diversity can be explained by the usual course the
dialogs have, in that the system provides slot val-
ues, which can be expected to have more lexical
variance than the rest of the utterance since they
contain, e.g., restaurant names or booking refer-
ences.

5 Qualitative Error Analysis

To better understand the weaknesses of the gener-
ator, we performed a qualitative error analysis by

3https://github.com/LSYS/LexicalRichness
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RTTR MTLD
n User System User System
150 229 3.02 26.18 36.07
750 242 4.09 32.08 43.76
1000 271 457 3736 46.35
2500 333  6.17 46.10 55.67
gt 432 10.73 63.56 65.71

Table 2: Lexical richness measured as RTTR and MTLD
of user and system utterances for different n, where
n = gt shows the statistics of the ground-truth training
data X.

comparing generated dialogs to their ground-truth.
In the following, we will reference the errors with
regard to the generated dialog in Fig. 5 and its
ground-truth in Fig. 6 in the appendix A.

First, errors in the annotation will naturally be
replicated in the generated utterance. As an ex-
ample, while in the ground-truth the user requests
the reference number for the ticket and the system
delivers it, the generated dialog does not mention
the reference number at all. However, since the
annotation does not contain the reference number
either, we cannot expect it to be generated. Second,
we can see that sometimes the speaker role seems
to not be completely taken into account, leading
to formulations that are unexpected for the dia-
log system, such as the "yes, please" response the
system gave to the user’s request to book a train
ticket. Lastly, while the concrete text of the slot
values will in general be correct due to the con-
strained beam search, the embedding of them into
context still contains errors, both semantically and
syntactically. An example we can see in the gen-
erated dialog is first that the chatbot produces a
faulty utterance "there are 5 trains peterborough on
wednesday". Thus, at the same time, prematurely
giving the number of trains for the destination but
also not specifying it is the destination. The prema-
ture destination mention is due to it already being
part of the belief state annotation for this turn.

To sum up, while the model in general achieves
decent results, there are still multiple caveats, and
the error analysis emphasizes the importance of the
annotations.

6 Results and Discussion

Our experiments show that the model is able to gen-
erate utterances based on the provided annotations.
These utterances resemble the language defined by


https://github.com/LSYS/LexicalRichness

F1 Precision Recall
n gos(x) g(x) geps(x) g(x) geps(x) g(=)
150 87.84 89.27 89.12 91.05 86.65 87.60
750 89.41 89.75 91.36 9190 87.76 87.76
1000 89.25 89.60 91.09 91.77 87.54 87.60
2500 89.56 89.90 91.44 91.99 87.81 87.98

Table 3: F1, Precision and Recall of the BERTScore for the different scenarios with and without constrained beam
search as indicated by gops(z) and g(x), respectively. Better marked in bold for each metric and n, respectively.

the training data, as is shown by the BERTScore (cf.
Tab. 3). The improvements with increased n are
negligible for this metric. This can be attributed to
the fact that, due to fine-tuning a pretrained LLM,
the model already had good general language gen-
eration capabilities to begin with. However, with
regard to the average utterance length (cf. Tab. 1)
and lexical richness (cf. Tab. 2), the generated text
does not perfectly align with the training data. Nev-
ertheless, we consider the model to have a good,
but not perfect, language generation capability for
this specific task. Besides language generation, RQ
1 also tends to the task-completion, which in this
case is adhering to the annotations.

We report the results for the Annotg metric in
Tab. 4. These show that the model is also capable of
generating utterances that adhere to the annotations.
The performances for the different n-scenarios are
comparable. It is an important insight that the
Annotg metric is more expressive. This makes
up for a weakness of the metric, which stems from
the different kind of annotations that exist.

The dialog in Fig. 5 shows that when few anno-
tations are provided for an utterance, the genera-
tion can lead to an unfitting utterance. For exam-
ple, when the user asks to book the train ticket for
one person, the system answers with "yes, please".
From the usual dialog flow the MultiWOZ conver-
sations have, it is clear that this utterance usually
belongs to a user and not the system. The generator
mistakenly used this as a confirmation, even though
it is unfitting for this speaker in this scenario.

Since both the language generation and the task-
completion capabilities are sufficient, we answer
RQ 1 positively: We successfully used a pretrained
sequence-to-sequence model to generate synthetic
dialogs based on annotations.

The effect of the constrained beam search is also
shown in tables Tab. 3 and Tab. 4. As is to be
expected from the method, constraining the genera-
tion led to slightly worse results in the BERTScore
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metrics. This is consistent over all n. However,
regarding the Annot metric, the constrained beam
search improved the outcome substantially. With
it, the Annotp relative to the test data was near-
perfect over all n. A special case is n = 150, where
Annotrp > 1. This means that on average, the
utterances predicted by the generator model con-
tained more annotations than the actual test data.
This effect can be explained by the small sample
size, as well as the fact that the ground-truth Annot
of the test data over all n is roughly 0.73. The large
increase in Annot score with a small decline in
BERTScore metrics suggests that CBS is useful
for annotation-based generation, which leads us to
answer RQ 2 positively.

As a result, we utilized constrained beam search
for the second stage of experiments. Tab. 5 shows
the results for the selected TOD system architec-
tures for the n-scenarios. We report both the results
of using only these n dialogs, and additionally us-
ing the synthetic dialogs, i.e., with CG4T.

The first finding is that for all n and both ar-
chitectures, CG4T did improve the JGA, therefore
showing that the synthetic dialogs generated from
annotations can indeed increase the performance
of both open-vocabulary and ontology-based TOD
systems. Consequently, we answer RQ 3 positively
as well. Still, the results show that with larger n,
the benefit gained through the usage of CG4T de-
creases. This is to be expected given the nature of
the method, which led us to pose RQ 4. Finally,
Tab. 5 demonstrates the significant differences in
JGA between the two approaches.

Regarding RQ 4 we evaluate the combined re-
sults from experiments in stages one and two. Stage
one showed that only a few gold standard dialogs
are needed to get good language generation ca-
pability. Moreover, thanks to CBS, we can also
attain satisfying results for task-completion. The
second stage showed that the more dialogs avail-
able, the lesser the improvement. From this we



conclude that a) the less data one has, the more
sense it makes to use this method and b) for this
concrete scenario, the method is nonessential past
a magnitude of 2500 dialogs.

Annot Annotg
n gess(z) g(x) geps(z) g(z)
150 0.76 0.69 1.04 0.94
750 0.72 0.63 0.99 0.87
1000 0.71 0.62 0.98 0.85
2500 0.72 0.61 0.99 0.84

Table 4: Annot and Annotg in relation to the test data
for the different scenarios with and without constrained
beam search as indicated by gcps(z) and g(x), respec-
tively. Better marked in bold for each metric and n,
respectively.

STAR SOM-DST
n asis CG4T asis CG4T
150 350 4240 1.49 23.83
750 38.86 57.92 21.65 31.79
1000 45.71 6345 2573 32.82
2500 63.55 6497 35.18 36.02
8420 74.46 - 41.69 -

Table 5: JGA for different scenarios of available train-
ing data for the two reference models. The columns
marked "CG4T" report the results after applying the
proposed method to extend the number of training di-
alogs to achieve n = 8420 with synthetic data. The
columns marked "as is" report results without data aug-
mentation. The last row shows the result when using the
full training data. Thus, CG4T is not applicable. Better
marked in bold for each setting and n, respectively.

7 Conclusion

In this work, we studied whether it is practicable
to synthesize dialogs based on annotations to aug-
ment the collected ground-truth data for training
a TOD system. To this end, we focused on four
research questions regarding the feasibility (RQ 1),
the effect of CBS during decoding (RQ 2), the per-
formance improvement when using the synthetic
dialogues to train a dialog system (RQ 3), and the
relation between available data and the effect of the
method (RQ 4).

We saw that even with small amounts of dialog,
we can train a generator that creates utterances from
annotations using a sequence-to-sequence strategy.

While the constrained beam search had slightly
adverse effects on the language generation capabil-

ities, it provided significant improvements to the
task-completion, i.e., adhering to the annotation.

Augmenting the training data with the synthetic
dialogues relevantly increased the performance of
the dialog system as measured by the JGA metric.

The smaller the number of available conversa-
tions, the greater the effect of the CG4T approach.
Past a scale of roughly 2500 collected ground-truth
dialogs, we would discourage augmenting the train-
ing data in this way since the improvements are
too small for the increased effort. Our research
showed at multiple stages the importance of having
annotations of the highest quality when using the
proposed approach.

Limitations

While offering multiple advantages discussed
above, our method also has some limitations and
drawbacks.

First, since CG4T relies on training a genera-
tor model, it inevitably requires additional effort
and computing time. One could also argue that
this requires more specific knowledge (e.g., pro-
gramming) than simply prompting a LLM such as
ChatGPT to generate dialogs via an API.

Second, as demonstrated by our experiments, the
proposed approach is only sensible up to a certain
scale of existing data, and it does take at least some
data to train the generator.

Third, the approach is heavily dependent on the
annotation. As shown on multiple occasions in
this work, if the annotation is lacking information,
the synthetic utterance will naturally not contain
it either. Therefore, to synthesize the dialogs that
will be used for training, one has to have access to
high-quality annotations.

Additionally, the approach needs to have the
blueprints to the dialog in the form of annotations.
If they do not exist in a real-world scenario, they
have to be generated in advance. We argue that
this is also feasible with traditional algorithms and
heuristics.

Lastly, our experiments are limited to the
MultiWOZ dataset. While it is reasonable to as-
sume that the general behavior will be similar for
conversations from other distributions, we did not
perform experiments on this.
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A Example ground-truth Dialog

User: i need to take a train out of
cambridge , i will be leaving town on
wednesday .

Bot: there are 5 trains out of cambridge
on wednesday . do you have a departure
time in mind ?

User: i would like to go to peterborough
and leave after 12:45 , i have to attend a
meeting beforehand .

Bot: tr1879 leaves at 13:06 on
wednesday . will that work for you ?
User: what is the price of the fair and
could you tell me what is the arrival time
into peterborough ?

Bot: the price is 16.50 pounds and the
train will arrive in peterborough by
13:56 wednesday . would you like me to
book a ticket for you ?

User: yes, 1 ticket please , can i also get
the reference number ?.

Bot: i booked you 1 seat on tr1879
departing cambridge for peterborough on
wednesday at 13:06 , reference:
xulqlhvw . can i help further today ?
User: i am also looking for a museum in
centre . could you give me the address
postcode and phone number of 1 ?

Bot: the broughton house gallery is
located at 98 king street , postcode

cbllln . their phone number is
01223314960 . is there anything else you
need ?

User: that s all i need right now .
thanks , you have been very helpful !

Figure 6: The ground-truth to the synthesized dialog
in Fig. 5. Speaker roles are added in bold to improve
readability.
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