Symbolic Planning and Code Generation for Grounded Dialogue

Justin T. Chiu
Cornell Tech
jtc257@cornell.edu

Saujas Vaduguru
Carnegie Mellon University
svadugur@andrew.cmu. edu

Abstract

Large language models (LLMs) excel at pro-
cessing and generating both text and code.
However, LLMs have had limited applicabil-
ity in grounded task-oriented dialogue as they
are difficult to steer toward task objectives and
fail to handle novel grounding. We present a
modular and interpretable grounded dialogue
system that addresses these shortcomings by
composing LLMs with a symbolic planner and
grounded code execution. Our system consists
of a reader and planner: the reader leverages
an LLM to convert partner utterances into exe-
cutable code, calling functions that perform
grounding. The translated code’s output is
stored to track dialogue state, while a sym-
bolic planner determines the next appropriate
response. We evaluate our system’s perfor-
mance on the demanding ONECOMMON di-
alogue task, involving collaborative reference
resolution on abstract images of scattered dots.
Our system substantially outperforms the pre-
vious state-of-the-art, including improving task
success in human evaluations from 56% to 69%
in the most challenging setting.

1 Introduction

Success in grounded task-oriented dialogue re-
quires intentional communication guided by strate-
gic planning (Cohen and Perrault, 1979; Traum,
1994; Walker et al., 2004; Rieser and Lemon, 2009;
Bakhtin et al., 2022, inter alia). Dialogue agents
must read partner utterances, update their beliefs,
then make a plan that furthers their goal. These
plans must take into account both dialogue history
and grounding, such as in an image. In end-to-
end systems based solely on large language models
(LLMs), this process is implicit and therefore diffi-
cult to control, requiring extra supervision (Chris-
tiano et al., 2023) or expensive search (Lu et al.,
2022) to improve. While recent work has taken
steps to rectify implicit reasoning via planning in
language space, where intermediate steps are gen-
erated by an LLM (Wei et al., 2022), there is no

Wenting Zhao
Cornell University
wz346@cornell.edu

Alexander M. Rush
Cornell Tech
arush@cornell.edu

43

Derek Chen
Columbia University
dc3761@columbia.edu

Daniel Fried
Carnegie Mellon University
dfried@cs.cmu.edu

SPC: Do you see a pair of dots, where the top left
dot is medium-sized and grey and the bottom
right dot is medium-sized and dark

Human: No

SPC: Do you see a pair of dots, where the top dot
is small-sized and light and the bottom dot is
medium-sized and grey

Human: Yes I see them. Is there a small grey dot
above the small light dot?

SPC: No. Is there a large size and dark color dot to
the left and below those?

Human: Yes and there is a small grey dot below them
as well for me.

SPC: Yes. Let’s select the small size and light color
one.

SPC: <select>

Human: <select>

Figure 1: An example grounded dialogue from

ONECOMMON. Our dialogue agent, SPC, and a human
partner have different but overlapping circular views of
a shared board. The agent and partner must collaborate
through dialogue in order to find and select a shared dot.
ONECOMMON demands careful, grounded reasoning.

guarantee that these approaches result in plans that
further task progress. Additionally, planning in lan-
guage space is expensive, requiring inference in an
LLM (Yarats and Lewis, 2017; Guez et al., 2012).

Rather than implicit or heuristic reasoning, we
are interested in explicit reasoning and planning
over symbolic actions. Symbolic actions are con-
trollable by construction, allowing system design-
ers to easily build in task-specific knowledge (He
et al., 2018; Bakhtin et al., 2022). This controlla-

Proceedings of the 2nd Workshop in Pattern-based Approaches to NLP in the Age of Deep Learning , pages 43-53
December 6, 2023. ©2023 Association for Computational Linguistics

bility is crucial for obtaining task-specific success
using general tools, even with LLMs.

We provide an example from ONECOMMON, a
particularly challenging grounded dialogue game
(Udagawa and Aizawa, 2019). The goal of
ONECOMMON is to, through dialogue, identify
one dot in common with your partner, who has an
overlapping but different view of an underlying set
of dots, illustrated in Figure 1. The challenge in
ONECOMMON is grounding the contextual spatial
relationships described in language to dots.

Recent work has utilized code-generation for
grounded language understanding (Didac et al.,
2023). In particular, they translate natural language
questions to code as an intermediate representation,
then execute that code to obtain an answer. Code
has a couple appealing properties as an intermedi-
ate representation: First, modern language models
are trained on a mixture of code and natural lan-
guage, affording them the capability of, with some
accuracy, translating between the two (Chen et al.,
2021). Second, code acts as a compositional knowl-
edge representation. This allows code-generation
systems to perform grounded compositional rea-
soning, provided a library of Python functions that
perform grounding (Liang et al., 2022).

We present a system, Symbolic Planning and
Code-generation (SPC), that reads by translating
partner utterances into code and plans based on
symbolic reasoning over what to say next. Code as
a compositional knowledge representation closely
mirrors the compositional nature of utterances,
which are composed of grounded parts. SPC plans
by optimizing expected information gain, which
has been shown to be effective at building a key
aspect of collaborative dialogue: common ground
(Yu et al., 2019; White et al., 2021; Chiu et al.,
2022). Symbolic planning allows SPC to explic-
itly and efficiently optimize for task success while
taking advantage of task-specific properties.

We evaluate our SPC system on the most chal-
lenging subset of the ONECOMMON task, com-
paring our system to the previous state-of-the-art
supervised system for the task (Fried et al., 2021).
In both evaluations with human partners and auto-
mated self-play evaluations, we find that our ap-
proach substantially outperforms the previous state-
of-the-art in task accuracy, improving from 56% to
69% accuracy, and obtains comparable task accu-
racy to human-human pairs on average.

44

2 Related Work

Prior work on collaborative reference games fo-
cuses on building common ground (He et al., 2017;
Haber et al., 2019; Khani et al., 2018). Prior work
by Fried et al. (2021) implements an approxima-
tion of pragmatic reasoning on ONECOMMON, but
plans in language space and utilizes supervised
models for mapping language to symbols. Khani
et al. (2018) plan in symbolic space, but without
natural language. We plan in symbolic space and
map from language to symbols via code generation.
Dialogue systems have a long history of reason-
ing with symbolic actions. When available, sym-
bolic actions have been found to improve the per-
formance of dialogue systems, especially in the set-
ting of grounded dialogue (Winograd, 1971; Young,
2006; He et al., 2018; Andreas et al., 2020; Bakhtin
et al., 2022). The closest work to ours is CICERO,
which utilizes symbolic planning in a system for
DIPLOMACY, a dialogue and strategy game that
requires negotiation and coordination between play-
ers (Bakhtin et al., 2022). CICERO requires a su-
pervised dataset to train their system. We use code
LLMs which require minimal supervision beyond
constructing a small perceptual grounding API.
Planning in dialogue systems has recently es-
chewed symbolic actions in favor of planning di-
rectly in text, where systems either perform roll-
outs, tree-search, or other forms of intermediate
reasoning in language. This allows system design-
ers to avoid manually defining symbolic actions
(Yarats and Lewis, 2017; Jang et al., 2020; Gandhi
et al., 2023). However, the accuracy of language-
space planners is still low in many settings (Fried
et al., 2021; Valmeekam et al., 2023). We focus on
symbolic planning, where planning is defined in a
space that ensures accuracy and controllability.
With the recent progress in large language mod-
eling, code generation for modular grounded sys-
tems has quickly gained interest. Grounded code
generation systems do not require task-specific
training data, making them cheap to apply. A
body of work utilizes a large language model for
instruction following by generating Python code
that makes calls to lower-level perception libraries
(Liang et al., 2022; Didac et al., 2023; Gupta and
Kembhavi, 2022; Gao et al., 2023). This extends
prior work on executable semantic parsing (Liang,
2016; Johnson et al., 2017; Cheng et al., 2018)
with large language models. Concurrent work has
also utilized code-generation to interpret language,

integrated with symbolic reasoning (Wong et al.,
2023). We apply these advances to the setting of
grounded task-oriented dialogue, where code gen-
eration grounds language to symbolic actions for
use in explicit planning.

3 Opverview: Reference Games

Collaborative reference games pair an agent and a
partner in order to build common ground through
natural language dialogue (Haber et al., 2019;
Khani et al., 2018; He et al., 2017; Udagawa
and Aizawa, 2019). Mirroring realistic scenarios,
many reference games are also partially observ-
able, where the agent and partner have different
perspectives, and so they must resolve ambiguity.

ONECOMMON (Udagawa and Aizawa, 2019), as
shown in Figure 1, is a reference game that exem-
plifies two challenges: grounding and planning. In
ONECOMMON, the agent and partner see different
but overlapping views of a set of dots, and the goal
is to find and select one dot common to both play-
ers’ views. Grounding in ONECOMMON is particu-
larly difficult due to the dot-based visual context,
which requires abstract spatial reasoning. Planning
is complicated by the partial observability caused
by differing perspectives, which require agents to
use complex referring expressions in order to avoid
ambiguity.! We focus on ONECOMMON due to its
simplicity and difficulty.

Our approach to grounded reference games sep-
arates symbolic reasoning from language, allowing
explicit steering. Our system, Symbolic Planning
and Code-generation (SPC), breaks down a turn
into three procedures: reading, planning, and writ-
ing. Reading and writing convert from language to
symbols and vice versa, while planning reasons in
purely symbolic space.

The agent maintains a belief distribution over
possible worlds, z, representing task-specific un-
knowns. The goal of dialogue is to gain informa-
tion about z until the agent is confident enough to
end the game. At each turn, the agent reads the
partner’s utterance u, converting it into a symbolic
action, p(x|u). This symbolic action potentially
builds upon the action z’ of a previous utterance,

'The contexts in ONECOMMON were constructed to make
referring expressions challenging and context-dependent. For
example, if the agent sees only light dots, a relatively ‘dark’
dot for the agent may not be considered dark at all by the part-
ner. ONECOMMON is an ideal testbed for pragmatic methods
that reason about contextual meaning. While our approach
does not address pragmatics, we hope future work will.

45

u’. The agent then plans in symbolic space. The
system uses reasoning to update its belief state,
p(zlu) = >, p(z]x)p(x|u), then produces a re-
sponse y* of what to say next, which it describes
in language to the partner. There is additionally a
templated write module for generating a response
from y* described in Appendix C.

In ONECOMMON, given a set of dots D, the state
z € {0, 1}|D| represents which dots the agent be-
lieves are contained (1) and not contained (0) in the
partner’s view, illustrated in Figure 3. We call a set
of dots a configuration. The action representation
of partner, z and x/, and agent utterances, y*, alike
is also a configuration in {0, 1}/P!, as well as any
answers or confirmations to previous questions.

4 Reading: From Language to Symbols

Reading in SPC requires interpreting utterances to
a grounded symbolic action, which in turn facili-
tates the planning stage. Consider the following
exchange:

Agent: Do you see a triangle of dark dots?

Partner: Yes, is there a small grey one below it?

Reading has several challenges. First, reading
requires grounding utterances in context, e.g. the
shapes and relations. Second, utterances are com-
positional. For example, the partner utterance
builds on top of the previous utterance through
coreference. Finally, a reading system must act
quickly, as real-time dialogue systems require rea-
sonable response times.

4.1 Code Generation

In SPC, reading is implemented as code generation.
Given a dialogue, we generate Python code” which
is then used as a meaning function to produce a
distribution over all valid interpretations of the ut-
terance’s symbolic action (Figure 2). The code
calls perceptual library functions with grounded
semantics, drawn from a task-specific API. This
perceptual library allows the system to both ground
elements of the utterance and compositionally build
upon previous utterances. Consider the following
abbreviated example, based on ONECOMMON:

2We target Python as our code representation since it is
well-understood by large language models. However, in prin-
ciple, our system could target other languages such as Prolog
or SQL.

from perceptual_library import is_small,
dot1, dot2, dot3, . = get_dots()

Agent: Do you see a triangle of dark dots?
agent_configs = set([
Config(dot1, dot2, dot3),
Config(dot3, dot4, dotl)
D

Partner:

Yes, is there a small grey one below it?

def turn(prev_configs):
configs = set()
for prev_config in prev_configs:

for dot in single_dots(exclude=prev_config):

if (
is_small(dot)
and is_grey(dot)
and is_below(dot, prev_config)

):
configs.add(Config(dot, prev_config))
return configs
partner_configs_x

turn(agent_configs)

The code in the meaning function is imperative, but
represents a set of declarative constraints represent-
ing p(z|u).? The meaning function for the partner
turn, turn(prev_configs), takes as input the dis-
tribution over symbolic actions of a previous turn,
p(z'), and yields a set of possible interpretations of
the current turn, p(z|u) = >, p(z|u, 2")p(z’).*
Because utterances can have multiple valid interpre-
tations due to ambiguity, prev_configs represents
a distribution.’

Within turn, we consider all valid configura-
tions while marginalizing over 2/, i.e. interpreta-
tions in prev_configs. For each interpretation,
each dot is considered. If the new dot satisfies the
semantics of the utterance, checked step-by-step
via grounded perceptual library functions such as
is_small(d), then it is a valid interpretation of
the current utterance and is used to create a new
Config.

The perceptual library functions are drawn from
a manually-defined library. For ONECOMMON,
we define these functions using domain-specific
knowledge:

def is_small(d): return d.size < -0.3

The perceptual library for ONECOMMON can be

3In ONECOMMON, the distribution over symbolic actions
p(x|u) is represented as represented as a categorical distribu-
tion over configurations with probabilities based on the size
of the circumcircle.

“The symbolic action of a previous turn =’ may also depend
on other previous utterances u’. For simplicity, we omit that
in the notation.

3SPC is able to intentionally produce ambiguous descrip-
tions if that improves task success, as illustrated in this exam-
ple.

46

Partner utterance: "Is there a big light dot next to a big dark one?"

Symbolic actions p(x’)

Agent: "Yes. Is there a smaller black one below them?"

Partner utterance u: "No, but there is a small grey dot below them."

©8&) -

def turn(prev_dots
is_small...
is_grey...

is_below(dot, prev_dots)

return configs

Symbolic actions p(x|u)

Figure 2: Overview of Reading. The generated meaning
function for utterance wu takes the previous symbolic
action distribution p(x’) from a prior turn and yields the
interpretations p(x|u), using code as a compositional
representation (Section 4).

found here.

4.2 Prompting

Reading is implemented with large language model
(LLM) code generation. While LLMs can generate
accurate code, full code specifications (Section 4.1)
are lengthy and therefore too slow to generate for
real-time use. We break down code generation into
four steps, where some steps do not require any
calls to an LLM. Decreasing the number of output
tokens guarantees a speedup, assuming consistent
latency. See the code for details on the code LLM
and prompts we use.’

Dialogue Act: Classify partner utterances as one of
three dialogue acts: Start a NEW line of questioning,
ask a FOLLOW-UP question, END the dialogue.
Reference: Predict which previous turn 2’ the utter-
ance is following up on, if any:

Agent: Do you see a triangle?

Partner: Yes, is there a small grey dot below it?

dialogue act: follow-up
refer: turn 1

®We release the code here.

https://github.com/justinchiu/onecommon-gpt/tree/main/oc/fns
https://github.com/justinchiu/onecommon-gpt
https://github.com/justinchiu/onecommon-gpt

The system grounds the dots mentioned in the pre-
vious turn: agent_configs, which is stored by the
system. This allows referring to other turns besides
the previous.

Constraint Generation: Predict the new dots men-
tioned in the partner utterance alongside code frag-
ments that express the semantics, without the boil-
erplate code, in the example above:

Partner: Yes, is there a small grey one below it?

1 new dot

is_small(dot)
is_grey(dot)
is_below(dot, prev_dots)

Compose: Finally, we utilize a template to com-
pose all of this information back into the full code
representation for execution.

5 Planning: From Symbols to Responses

To perform well in collaborative reference games,
it is essential to build common ground quickly and
accurately by carefully reasoning about what infor-
mation has been gathered so far, as well as what to
say next. SPC addresses these desiderata by plan-
ning in symbolic space, over the symbolic actions
produced by reading.

We have two challenges: First, to incorporate the
new information from the partner’s utterance while
accounting for task-specific grounding as well as
dialogue history. Second, given this new informa-
tion, the system must decide either to end the game
or how to improve the probability of success.

Planning requires us to model the actions of the
partner given the shared state. To do this we need
task specific models of our partner, p(z | z), and
our partner’s reponse to us, p(x|z,y). In ONECOM-
MON, we model both of these by a heuristic func-
tion considering set overlap and dot proximity, de-
scribed in Appendix D.

5.1 Belief update

Starting from a prior over the previous belief p(z),
we incorporate probabilistic evidence from the ut-
terance p(x|u). This requires marginalizing over
all valid symbolic actions z from the reading step.
In practice, p(z|u) is sparse, and symbols = with
non-zero support are very similar. We therefore
approximate this marginalization with a point esti-

47

mate:

p(zlu) = p(zlz)p(z|u)
)
-3 MO o

2l
NZ,,; O :

o p(z” | 2)p(2),

ey

where z* = argmax, p(z|u).

We give an example of this process in Figure 3.
In this case, a ‘big light dot next to a big dark one’
could have two valid interpretations, the big light
dot and the black dot to the left, or the other black
dot to the right. We approximate this distribution
with the most likely interpretation *. In ONECOM-
MON, we use the most compact’ as x*, yielding
the black dot on the left. The belief state is then
updated to p(z|u), shown in Figure 3 (center).

5.2 Planning

Given the updated belief, SPC then plans its next
action. The challenge here is to ensure task success,
e.g. finding one dot in common. This requires
both exploring by building common ground, then
exploiting that knowledge to win the game.

We formalize exploration as the expected infor-
mation gain, a quantity that codifies how much the
agent can expect to learn about possible worlds z
after taking an action (Lindley, 1956). That action
then elicits a response from the partner, providing
information about the uncertain world state. For
example, if the agent has asked about a set of dots
and already received a ‘no’, then asking further
questions about those dots would not reduce uncer-
tainty.

Formally, we optimize

y* = argmax H[z|u] — By, [H[z [u,y, z,]],

Y

2
where H|[z|u] is the entropy of the current belief®
and H[z | u,y, =, the entropy of the posterior
distribution. This second term is the key part of
the objective. Assuming that we take action y,
the expectation considers all hypothetical future

"We define the compactness of a configuration as the radius
of the circumcircle. An ideal approximation would take into
account more context, such as the relative sizes.

8The belief entropy H|[z|u] in the definition of information
gain is constant with respect to the plan z, and can be dropped
from the objective.

Previous belief state p(z)

Belief update

\J

®,

000

Partner symbolic actions p(x|u)

Partner utterance u: "Is there a big light dot next to a big dark one?"

Belief state p(z|u)

Agent symbolic action y*

Plan

0.4

Write

Agent: "Yes. Is there a smaller black one below them?"

Figure 3: Overview of Planning. Partner utterances are interpreted by a meaning function generated by a code LLM
(read), producing a distribution over valid symbolic interpretations, p(x|u). This is used to symbolically update the
belief state, p(z|u), increasing the probability of worlds (shared dots) that are consistent with x. This belief state is
used to symbolically plan the agent’s next utterance, y*, by optimizing the expected information gain, which is

described to the partner (write).

partner responses r,. We are penalized if after
seeing these responses, we are still uncertain about
the common ground z. This objective therefore
encourages actions that reduce uncertainty. °

SPC chooses to exploit and end the game with
the following heuristic: If the system is confident
in success, i.e. the probability of task success is
greater than hyperparameter 6 (set to 0.8), SPC
ends the game.

6 Experimental Setup

We conduct two evaluations of SPC on the
ONECOMMON task. We compare to the state-of-
the-art baseline system of Fried et al. (2021), which
we refer to as Imitate. Imitate is a pipelined system,
where each part is fully supervised. Imitate uses a
neural representation of dialogue history in com-
bination with a neural-CRF reference resolution
module to understand grounded language. In order
to generate, Imitate relies on a pragmatic planning
procedure, which plans in a mixture of symbolic
and language space, prioritizing descriptions of
dots that are easily understood.

We first perform human evaluation, evaluating
the task success of systems when paired with hu-
man partners. This setting is challenging, requiring
the system to handle both the linguistically diverse

“The distribution p(z,|y) = 3. p(xy|y, 2)p(2) also uses
the partner response model p(zy |y, 2).

48

utterances and a range of strategies of human part-
ners. We recruit 19 workers from Amazon’s Me-
chanical Turk to play with one of three partners:
SPC, the most successful past system for the task
(Fried et al., 2021), or another human. We pay $15
per hour, with $1.00 per game at an average of 4
minutes per game. We additionally give a bonus of
$0.15 for every game. We use 100 visual contexts
from the most difficult!? partition of ONECOM-
MON. We pay workers $1.00 per game, with a
$0.15 bonus if they win. We collect 287 completed
dialogues in total, where both players selected a
dot.

We secondarily evaluate systems in self-play,
where systems are paired with a copy of themselves.
This isolates strategic efficiency by ensuring the
agent’s partner has the same skill as the agent. The
200 games share the same contexts across systems.

We include an additional system in self-play,
GPT4 2-shot'!, which gets two full human dia-
logues as examples. Each human dialogue example
starts with a description of the context the agent
sees. The full prompts can be viewed here.

Parameterization For code generation, during
the reading phase we use GPT-4!? (OpenAl, 2023).

1The number of shared dots is four.

""We do not include GPT4 2-shot in human evaluation, as
its self-play evaluation is very poor.

ZSpecifically gpt-4-0613.

https://github.com/justinchiu/onecommon-gpt

Agent Success Turns Games
SPC 68.8% 71.77 96
Imitate 55.6% 6.61 117
Human 67.6% 5.03 74
Human” 658% 4.97 2,189

Table 1: The average success rate, average number

of turns, and total number of games between agents
and human partners on the hardest setting of ONECOM-
MON, with 4 shared dots. T indicates statistics from the
ONECOMMON dataset (Udagawa and Aizawa, 2019).

The symbolic actions in ONECOMMON consist of
sets of dots and confirmations, while the belief
over symbolic states, p(z), captures which dot con-
figurations are shared and is designed to account
for dot proximity. Further details on the prior are
given in Appendix D. The symbolic partner models,
p(x | z) and p(z | y, 2), are drawn from Chiu et al.
(2022), and incorporate a similar bias based on dot
proximity.

7 Results

Human evaluation In human evaluation, SPC
obtains substantially higher task accuracy than the
baseline model of Fried et al. (2021), and is com-
parable to human performance on average. This
demonstrates that the combination of symbolic
information-gain planning and code-generation in
SPC is more effective than the baseline’s language-
space planning objective and supervised reference
resolution.

We see a more nuanced story when conducting a
skill-based analysis of the human evaluation results,
presented in Figure 4. A worker’s skill is given by
their average success rate with other human part-
ners. The x-axis of the graph, the minimum success
rate, increasingly filters workers from left to right:
the left side of the graph shows all workers, while
the far right shows only those workers who won
nearly all of their human-human games. Skilled hu-
man partners have a higher success rate with other
humans, as opposed to when partnered with SPC.
Additionally, the success rate of SPC improves
with human skill, while the success rate of human
partners with the baseline system, Imitate, remains
relatively constant across skill levels, implying that
SPC is more responsive than the baseline to strate-
gies used by humans.

SPC also takes more turns on average than both

49

100% Human
90% —— Imitate
°1 — spPcC

g
&8 80% J
n
n
S 70%
)
@

60% -

) ——— I
50% -

20% 40% 60% 80% 100%

Minimum Human-Human Success

0%

Figure 4: Success rate of the different agent types with
human partners, with progressive filtering of human
partners by their success rate along the x-axis. Shaded
regions give standard errors.

Agent Avg |u| Median |u]
SPC 6.95 4
Imitate 9.62 8
Human 15.06 14

Table 2: The average and median number of words per
utterance by human partners for different agent types in
human evaluation.

the baseline and human-human games. We hy-
pothesize that this difference is caused by shorter
human partner responses to the system, and there-
fore less information shared by the human partner.
In Table 2, we confirm that the average and median
number of words per human utterance are signifi-
cantly lower for humans partnered with SPC than
any other agent type.

Self-play Similarly to human evaluation, SPC
outperforms the baseline Imitate system in self-
play as shown in Table 3. Compared to the baseline,
SPC takes more turns on average, but has a higher
success rate. We attribute both the longer games
and higher success to symbolic planning, which
ensures conservative playing. Interestingly, SPC
self-play takes fewer turns on average than SPC-
human pairings. We hypothesize that this is due
to both copies of SPC communicating a consistent
amount of information every turn. This also high-
lights the importance of human evaluation, which
evaluates with a large population of partners.

We also find that GPT4 2-shot performs poorly
in self-play. We attribute this to overly-agreeable
responses, where the agents choose a dot without

Agent Success Avg # turns
SPC 84.0% 4.83
Imitate 63.5% 3.31
GPT4 2-shot 19.0% 9.26
Human' 65.8% 4.97

Table 3: The success rate of different agents in 200 self-
play games on the hardest setting of ONECOMMON,
with 4 shared dots. A higher success rate is better. The
human performance is from the ONECOMMON dataset
(Udagawa and Aizawa, 2019).

Prompt style Acc Time (s) Len
SPC 86.7% 5 36
Full 84.0% 18 176

Table 4: The average accuracy, speed, and output length
(number of tokens) for the sequential and full code gen-
eration methods in our benchmark reading task.

thorough verification or reasoning. This occurs
despite the much longer dialogues, in comparison
to all other agent types.

8 Analysis

Qualitative analysis We present a qualitative ex-
ample of a dialogue between SPC and a human
partner in Figure 5. This long dialogue illustrates
the benefits of explicit belief updates and planning:
The conversation starts off with many rejections,
which the agent uses to deduce the shared configu-
rations. Eventually, a common set of dots is found
and the game ends in a success. Without explicit
planning, it would have been unlikely for SPC to
have succeeded at the end of the conversation.

Reading speed analysis We perform a speed ab-
lation of the code-generation prompt in SPC. SPC
uses a sequence of steps for reading, involving dia-
logue act classification, code fragment generation,
and composing the full code representation based
on the output of these steps. We compare this to a
prompt that generates the full meaning function.

We evaluate both of these prompts in a reading
task, where the goal is to read utterances generated
by SPC and recover the underlying plans, measured
by accuracy. In Table 4, we see that both styles
of prompts have similar similar accuracy, but the
sequential, decomposed approach is much faster
due to shorter outputs.

50

SPC: Do you see a pair of dots, where the bottom dot
is medium-sized and dark and the top dot is
small-sized and light

Human: No. Do you see a pair of medium sized dots,
close together, one is dark grey the other
light grey. The light grey one is slightly above
and the left of the dark one.

SPC: No. Do you see a pair of dots, where the left dot
is medium-sized and dark and the right dot is
medium-sized and light

Human: No, do you see a lone medium sized grey dot?

SPC: No. Do you see a pair of dots, where the left dot
is medium-sized and light and the right dot is
small-sized and grey

Human: No. do you see a pair where the right one is
medium and grey and the left one is smaller and
lighter. The smaller one is slightly below the
medium sized one.

SPC: Yes. Is there a medium size and light color dot
to the right and below those?

Human: Yes

SPC: Let’s select the medium size and grey color one.

Human: <select>

SPC: <select>

Figure 5: An example dialogue between SPC and a
human partner.

9 Conclusion

We present Symbolic Planning and Code-
generation (SPC), a method that approaches
grounded task-oriented dialogue by separating sym-
bolic reasoning from language. Our approach uses
an LLM to generate executable code functions
which represent the meaning of utterances, map-
ping from language to symbolic actions. We then
symbolically track task progress using Bayesian
reasoning, and explicitly plan the best actions to
take next using an information gain objective. De-
spite using minimal supervision, beyond a task-
specific API and few-shot examples, our approach
substantially outperforms the state-of-the-art sys-
tem for the ONECOMMON task in both human eval-

uations and automatic self-play evaluations.

Our work contrasts with recent work on plan-
ning in language space, which reasons implicitly
(Wei et al., 2022; Yarats and Lewis, 2017; Guez
et al., 2012). While less flexible than language rea-
soning, symbolic reasoning is both interpretable
and modular. Future work should seek to improve
the flexibility of symbolic reasoning (Wong et al.,
2023).

Our work also represents a first step toward us-
ing general-purpose code as a representation for
downstream dialogue and interaction tasks. Future
work might explore code-based representations that
afford more flexible interaction with people, e.g.,
representing a broader range of user actions, both
linguistic and grounded, to construct broadly useful
interactive systems. An ideal system would be able
to synthesize these representations with minimal
manual intervention.

Acknowledgements

We thank Vivian Chen, Sanjiban Choudhury, Ge
Gao, Omer Gul, Sedrick Keh, Woojeong Kim, Ce-
line Lee, Jack Morris, Chenran Ning, Jacob Sharf,
Alane Suhr, Nicholas Tomlin, Anne Wu, and Jiawei
Zhou for discussions, game-playing, and feedback
at various points in the process.

We also thank the Mechanical Turkers of Turker
Nation for their efforts in game-playing.

JC is supported by NSF #2242302. AMR is sup-
ported by a Sloan Fellowship and NSF CAREER
#2037519. SV and DF were supported by gifts
from Google and from Autodesk Research.

Limitations

Our system performs code execution given human
input, opening our system to several risks, such
as code injection and unauthorized access. Future
work must strive to integrate code execution capa-
bilities in a secure manner.

Our approach also requires the manual engineer-
ing of a domain-specific API, as well as a symbolic
representation. Future work should seek to alle-
viate the amount of manual engineering in order
to improve flexibility. We hope that methods in
program synthesis can provide a solution.

References

Jacob Andreas, John Bufe, David Burkett, Charles Chen,
Josh Clausman, Jean Crawford, Kate Crim, Jordan

51

DeLoach, Leah Dorner, Jason Eisner, Hao Fang, Alan
Guo, David Hall, Kristin Hayes, Kellie Hill, Diana
Ho, Wendy Iwaszuk, Smriti Jha, Dan Klein, Jayant
Krishnamurthy, Theo Lanman, Percy Liang, Christo-
pher H. Lin, Ilya Lintsbakh, Andy McGovern, Alek-
sandr Nisnevich, Adam Pauls, Dmitrij Petters, Brent
Read, Dan Roth, Subhro Roy, Jesse Rusak, Beth
Short, Div Slomin, Ben Snyder, Stephon Striplin,
Yu Su, Zachary Tellman, Sam Thomson, Andrei
Vorobev, Izabela Witoszko, Jason Andrew Wolfe,
Abby Wray, Yuchen Zhang, and Alexander Zotov.
2020. Task-oriented dialogue as dataflow synthesis.
CoRR, abs/2009.11423.

Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele
Farina, Colin Flaherty, Daniel Fried, Andrew Goff,
Jonathan Gray, Hengyuan Hu, Athul Paul Jacob, Mo-
jtaba Komeili, Karthik Konath, Minae Kwon, Adam
Lerer, Mike Lewis, Alexander H. Miller, Sasha Mitts,
Adithya Renduchintala, Stephen Roller, Dirk Rowe,
Weiyan Shi, Joe Spisak, Alexander Wei, David Wu,
Hugh Zhang, and Markus Zijlstra. 2022. Human-
level play in the game of diplomacy by combining
language models with strategic reasoning. Science,
378(6624):1067-1074.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Jianpeng Cheng, Siva Reddy, Vijay Saraswat, and
Mirella Lapata. 2018. Learning an executable neural
semantic parser.

Justin T Chiu, Wenting Zhao, Daniel Fried, and Alexan-
der M Rush. 2022. Modeling perspective-dependent
ambiguity in collaborative dialogue. In The Third
Wordplay: When Language Meets Games Workshop.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2023. Deep
reinforcement learning from human preferences.

Philip R. Cohen and C. Raymond Perrault. 1979. Ele-
ments of a plan-based theory of speech acts. Cogni-
tive Science.

http://arxiv.org/abs/2009.11423
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/1711.05066
http://arxiv.org/abs/1711.05066
https://openreview.net/forum?id=PkHSHZLig5H
https://openreview.net/forum?id=PkHSHZLig5H
http://arxiv.org/abs/1706.03741
http://arxiv.org/abs/1706.03741

Suris Didac, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. arXiv preprint arXiv:2303.08128.

Daniel Fried, Justin T. Chiu, and Dan Klein. 2021.
Reference-centric models for grounded collaborative
dialogue. In Proceedings of EMNLP.

Kanishk Gandhi, Dorsa Sadigh, and Noah D. Goodman.
2023. Strategic reasoning with language models.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models.

Arthur Guez, David Silver, and Peter Dayan. 2012. Ef-
ficient bayes-adaptive reinforcement learning using
sample-based search. CoRR, abs/1205.31009.

Tanmay Gupta and Aniruddha Kembhavi. 2022. Vi-
sual programming: Compositional visual reasoning
without training.

Janosch Haber, Tim Baumgértner, Ece Takmaz, Lieke
Gelderloos, Elia Bruni, and Raquel Ferndndez.
2019. The photobook dataset: Building common
ground through visually-grounded dialogue. CoRR,
abs/1906.01530.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning symmetric collaborative dia-
logue agents with dynamic knowledge graph embed-
dings. CoRR, abs/1704.07130.

He He, Derek Chen, Anusha Balakrishnan, and Percy
Liang. 2018. Decoupling strategy and generation in
negotiation dialogues. CoRR, abs/1808.09637.

Youngsoo Jang, Jongmin Lee, and Kee-Eung Kim. 2020.
Bayes-adaptive monte-carlo planning and learning
for goal-oriented dialogues. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances
in Artificial Intelligence, EAAI 2020, New York, NY,
USA, February 7-12, 2020, pages 7994-8001. AAAI
Press.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Judy Hoffman, Li Fei-Fei, C. Lawrence Zit-
nick, and Ross Girshick. 2017. Inferring and execut-
ing programs for visual reasoning.

Fereshte Khani, Noah Goodman, and Percy Liang. 2018.
Planning, inference and pragmatics in sequential lan-
guage games. Transactions of the Association for
Computational Linguistics, 6:543-555.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol
Hausman, Brian Ichter, Pete Florence, and Andy
Zeng. 2022. Code as policies: Language model
programs for embodied control. In arXiv preprint
arXiv:2209.07753.

52

Percy Liang. 2016. Learning executable semantic
parsers for natural language understanding.

D. V. Lindley. 1956. On a Measure of the Information
Provided by an Experiment. The Annals of Mathe-
matical Statistics, 27(4):986 — 1005.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang,
Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lian-
hui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith,
and Yejin Choi. 2022. Neurologic a*esque decoding:
Constrained text generation with lookahead heuris-
tics.

OpenAl. 2023. Gpt-4 technical report.

Verena Rieser and Oliver Lemon. 2009. Natural lan-
guage generation as planning under uncertainty for
spoken dialogue systems. In Proceedings of the
12th Conference of the European Chapter of the ACL
(EACL 2009), pages 683—-691, Athens, Greece. Asso-
ciation for Computational Linguistics.

David R Traum. 1994. A computational theory of
grounding in natural language conversation. Techni-
cal report, Rochester University Department of Com-
puter Science.

Takuma Udagawa and Akiko Aizawa. 2019. A natural
language corpus of common grounding under contin-
uous and partially-observable context. Proceedings
of the AAAI Conference on Artificial Intelligence,
33(01):7120-7127.

Karthik Valmeekam, Sarath Sreedharan, Matthew Mar-
quez, Alberto Olmo, and Subbarao Kambhampati.
2023. On the planning abilities of large language
models (a critical investigation with a proposed
benchmark).

M A Walker, S J Whittaker, A Stent, P Maloor,] Moore,
M Johnston, and G Vasireddy. 2004. Generation and
evaluation of user tailored responses in multimodal
dialogue. Cognitive Science, 28(5):811-840.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. CoRR, abs/2201.11903.

Julia White, Gabriel Poesia, Robert Hawkins, Dorsa
Sadigh, and Noah Goodman. 2021. Open-domain
clarification question generation without question ex-
amples. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 563-570, Online and Punta Cana, Dominican
Republic. Association for Computational Linguistics.

Terry Winograd. 1971. Procedures as a representation
for data in a computer program for understanding
natural language.

Lionel Wong, Gabriel Grand, Alexander K. Lew,
Noah D. Goodman, Vikash K. Mansinghka, Jacob
Andreas, and Joshua B. Tenenbaum. 2023. From
word models to world models: Translating from natu-
ral language to the probabilistic language of thought.

http://arxiv.org/abs/2109.05042
http://arxiv.org/abs/2109.05042
http://arxiv.org/abs/2305.19165
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/1205.3109
http://arxiv.org/abs/1205.3109
http://arxiv.org/abs/1205.3109
http://arxiv.org/abs/2211.11559
http://arxiv.org/abs/2211.11559
http://arxiv.org/abs/2211.11559
http://arxiv.org/abs/1906.01530
http://arxiv.org/abs/1906.01530
http://arxiv.org/abs/1704.07130
http://arxiv.org/abs/1704.07130
http://arxiv.org/abs/1704.07130
http://arxiv.org/abs/1808.09637
http://arxiv.org/abs/1808.09637
https://aaai.org/ojs/index.php/AAAI/article/view/6308
https://aaai.org/ojs/index.php/AAAI/article/view/6308
http://arxiv.org/abs/1705.03633
http://arxiv.org/abs/1705.03633
https://doi.org/10.1162/tacl_a_00037
https://doi.org/10.1162/tacl_a_00037
http://arxiv.org/abs/1603.06677
http://arxiv.org/abs/1603.06677
https://doi.org/10.1214/aoms/1177728069
https://doi.org/10.1214/aoms/1177728069
https://arxiv.org/abs/2112.08726
https://arxiv.org/abs/2112.08726
https://arxiv.org/abs/2112.08726
http://arxiv.org/abs/2303.08774
https://doi.org/10.1609/aaai.v33i01.33017120
https://doi.org/10.1609/aaai.v33i01.33017120
https://doi.org/10.1609/aaai.v33i01.33017120
http://arxiv.org/abs/2302.06706
http://arxiv.org/abs/2302.06706
http://arxiv.org/abs/2302.06706
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://doi.org/10.18653/v1/2021.emnlp-main.44
https://doi.org/10.18653/v1/2021.emnlp-main.44
https://doi.org/10.18653/v1/2021.emnlp-main.44
http://arxiv.org/abs/2306.12672
http://arxiv.org/abs/2306.12672
http://arxiv.org/abs/2306.12672

Denis Yarats and Mike Lewis. 2017. Hierarchical
text generation and planning for strategic dialogue.
CoRR, abs/1712.05846.

Steve Young. 2006. Using pomdps for dialog manage-
ment. In 2006 IEEE Spoken Language Technology
Workshop, pages 8—13.

Lili Yu, Howard Chen, Sida I. Wang, Yoav Artzi, and
Tao Lei. 2019. Interactive classification by asking
informative questions. CoRR, abs/1911.03598.

A Prompt details

All prompts rely on few-shot prompting. Refor-
mat has 5 few-shot examples, Classify has two
dialogues with 15-turns total, Confirm has 9 exam-
ples, and Understand has two dialogues with 15
turns total. All examples were based loosely on 10
examples from the human-human games collected
in OneCommon by Udagawa and Aizawa (2019).
The same prompts were used in every context. The
full prompts can be found here.

B Prompt ablation

We present an additional experiment on how the
choice of few-shot examples affects the code con-
straint generation prompt, which is a key compo-
nent of the reading step. The code constraints ex-
press the relationships between the mentioned dots,
e.g. whether they form a triangle or their relative
positions, shapes, and colors.

We take the first human utterance from 20 games
in human evaluation and examine whether the
parsed answer changes when the prompt examples
are changed. The 15 examples in the constraint
generation prompt were labeled by hand. Since
we cannot sample another 15 examples, we instead
sub-sample 5 random examples out of 15 for a
5-shot prompt. We report the average agreement
between 5-shot prompts and the original 15-shot
prompt across 5 trials: 99%, with a standard devia-
tion of 2%. This implies the constraint generation
prompt is not sensitive to prompt example choice
at the 5-shot level and prompts could be further
optimized.

We perform the same experiment with 5 trials
of 1-shot prompts and see an average agreement
rate of 34% with a standard deviation of 42%. This
implies that given a single example, the prompt
example matters.

We also find that a zero-shot prompt is unable to
generate output in the correct format.

53

C Writing

We utilize three templates for writing, one for each
dialogue act.

START: Do you see a pair of dots, where the
{position} dot is {size}-sized and {color}
and the {position} dot is {size}-sized and
{color}?

FOLLOW-UP: Is there a {size} size and
{color} color dot {position} those?
SELECT: Let’s select the {size} size and
{color} color one. <selection>

D Parameterization

We give the parameterization of the belief prior,
p(z) for ONECOMMON.

Our goal in designing the prior is to ensure that
the closer dots are, the more likely they are to be of
the same state: either all shared or not. This reflects
the contiguity of ONECOMMON perspectives.

The prior is given by

p(2) ocexp(f(2)),

where f(z) is given the sum of the edges of a mini-
mum spanning tree for the dots in z. The weights
of this spanning tree are determined by the rank
of how close the dots are to each other. The edge
between the nearest neighbor of a dot and the dot
itself gets assigned a weight of 0, the 2nd nearest
neighbor a weight of 1, and so on.

3

E Relation to prior work in semantic
parsing and dialogue state tracking

Prior work in semantic parsing for dialogue state
tracking, such as in SMCalFlow (Andreas et al.,
2020), does not ground in a visual context and
also requires strategic, collaborative planning due
to OneCommon’s symmetric roles. Agents must
both give and request information strategically.
This type of strategic reasoning is not explored
in prior works in semantic parsing and dialogue
state tracking. Our technical contribution is unify-
ing grounded language understanding and strategic
symbolic reasoning with code generation. In par-
ticular, the reading phase of SPC was designed for
spatial reasoning in OneCommon.

http://arxiv.org/abs/1712.05846
http://arxiv.org/abs/1712.05846
https://doi.org/10.1109/SLT.2006.326785
https://doi.org/10.1109/SLT.2006.326785
http://arxiv.org/abs/1911.03598
http://arxiv.org/abs/1911.03598
https://github.com/justinchiu/onecommon-gpt

