
Automatic Insertion of Commas and Linefeeds into Lecture Transcripts
based on Multi-Task Learning

Zhicheng Fang
Graduate School of Informatics

Nagoya University
fang.zhicheng.d4@

s.mail.nagoya-u.ac.jp

Masaki Murata
National Institute of

Technology, Toyota College
murata@toyota-ct.ac.jp

Shigeki Matsubara
Information Technology Center
Graduate School of Informatics

Nagoya University
matubara@nagoya-u.jp

Abstract
To support audience understanding in lecture
halls, it is effective to transcribe speech into
text automatically and present it using subtitles.
However, lectures tend to have long sentences,
and subtitles without clear word boundaries can
be difficult to read. Thus, this paper proposes
a method to insert commas and linefeeds into
lecture text simultaneously to generate easy-
to-read subtitles. The proposed method in-
volves using data with inserted commas and
linefeeds in lecture text and fine-tuning a pre-
trained BERT model through multi-task learn-
ing for the comma insertion and linefeed inser-
tion tasks. Experiments conducted on Japanese
spoken language data demonstrated that this
method obtained higher performance compared
to sequentially inserting commas and linefeeds,
thereby confirming the effectiveness of the pro-
posed method.

1 Introduction

Speech recognition technology can be used to tran-
scribe speech from lectures into text automatically
and present it as subtitles to assist the audience in
understanding the lecture content. However, to gen-
erate readable subtitles, it is necessary to accurately
transcribe the speech into text and consider how
the transcribed text is presented to the audience.
In the lecture context, sentences tend to be long,
and when the entire sentence spans multiple lines
on the screen, it can become difficult to discern
word breaks, which can result in subtitles that are
difficult to read (Murata et al., 2010). Thus, it is
desirable to insert appropriate commas and line-
feeds in lecture subtitles to enhance readability and
comprehension.

Previous studies have addressed comma (Murata
et al., 2010; Tilk and Alumäe, 2016) and linefeed
insertion (Ohno et al., 2009) in text separately, and
methods have been proposed to format text by in-
serting commas and linefeeds sequentially(Murata
et al., 2011). However, the appropriate positions for

Figure 1: Subtitle presentation environment for lectures

commas and linefeeds may influence each other;
thus, it is preferable to insert commas and linefeeds
interactively.

Therefore, in this paper, we propose a method
to generate readable subtitles by inserting com-
mas and linefeeds simultaneously into transcribed
Japanese lecture speech. This study assumes the
installation of a display that shows subtitles on
multiple lines as a way to provide subtitle infor-
mation to audiences in lecture halls. In the pro-
posed method, the comma insertion and linefeed
insertion tasks are achieved by multi-task learning.
Here, a pretrained BERT (Kenton and Toutanova,
2019) model is utilized with additional layers to
determine the comma and linefeed insertion po-
sitions using binary classification followed by a
fine-tuning process.

An experiment conducted using Japanese spo-
ken language data demonstrated an F-measure of
78.17% for comma insertion and 75.52% for line-
feed insertion, which represents performance im-
provements compared to the baseline methods and
confirms the effectiveness of the proposed method.

The remainder of this paper is organized as fol-
lows: In Section 2, we provide an overview of the
target task, i.e., comma and linefeed insertion in
subtitle text, and related research. In Section 3, we
explain the method proposed to realize simultane-
ous comma and linefeed insertion. In Section 4, we
report on an experiment conducted using Japanese
spoken language data, and in Section 5, we discuss

Figure 2: Transcribed text of the speech

the experimental results. Finally, the paper is con-
cluded in Section 6, including a brief discussion of
future challenges.

2 Insertion of Commas and Linefeeds
into Lecture Subtitle Text

2.1 Problem Settings

This study assumes the use of a dedicated display
for subtitle text, which is integrated with a screen
displaying presentation slides in the subtitle pre-
sentation environment in a lecture hall. The text
is designed to swap lines and display several lines
continuously while scrolling. Figure 1 shows the
subtitle presentation environment.

Moreover, when displaying the transcribed text
of the speech on the display, if the text is presented
without considering word boundaries to fit the dis-
play width, it may be difficult to read. An example
of this scenario is shown in Figure 2. For subtitle
text, it is essential to insert commas and linefeeds in
readable positions, as shown in Figure 3, to match
the speaker’s speech speed and facilitate easy read-
ing.

This paper proposes a method to insert commas
and linefeeds at appropriate positions to improve
the readability of lecture texts. Note that it is es-
sential to define the assumptions about the input
text, and in a subtitle presentation system, there are
several ways to convert speech into text. Repre-
sentative methods include speech recognition sys-
tems (Yu and Deng, 2016) and computer-aided tran-
scription (Kurita, 2016). For example, with speech
recognition, there are approaches that can be used
to directly recognize the speech or recognize the
speech based on the speaker’s repetition (Yu and
Deng, 2016). Furthermore, there is an option to
correct recognition errors manually (Errattahi et al.,
2018). Similarly, in computer-aided transcription,
the transcription style can vary depending on the

Figure 3: Text with commas and linefeeds inserted at
appropriate positions

transcriber or transcription tool.
Due to these differences in transcription meth-

ods, the input text may (or may not) contain recog-
nition errors. If errors are present, the extent of
these errors may vary. In this study, we assume a
system where speech is transcribed automatically
using an automatic speech recognition or computer-
aided transcription method. Based on the progress
of transcription, the lines are presented to the sys-
tem as comma and linefeed positions are deter-
mined.

It is also necessary to set the maximum number
of characters per line that can be shown on the
display. In this study, the number is set at 20, taking
into account the relation between readability and
font size on the display.

2.2 Related Work
2.2.1 Comma Insertion
In English, comma insertion is typically consid-
ered to be a part of the punctuation restoration
task. In the punctuation restoration task, missing
punctuation marks in text are restored or inserted.
Punctuation marks, e.g., commas, periods, ques-
tion marks, and exclamation marks, are important
in terms of conveying the intended meaning and
structure of written language (Sato, 2000). Several
studies have investigated inserting commas into En-
glish texts, and various comma insertion methods
have been proposed, including methods that com-
bine a bidirectional recurrent neural network and an
attention mechanism (Tilk and Alumäe, 2016), and
methods that utilize lightweight neural networks
based solely on self-attention for feature extraction
(Wang et al., 2018).

Conversely, in Japanese language, commas are
also used to indicate divisions within a sentence.

Although there are some similarities with the com-
mas used in English and other languages, differ-
ences also exist in the Japanese context. Regarding
studies on inserting commas into Japanese texts,
there are statistical methods that utilize features
based on the specific use of commas and condi-
tional random field methods that incorporate lexi-
cal information, pause information, and syntactic
information. These methods are designed to iden-
tify appropriate comma insertion positions based
on various linguistic features (Murata et al., 2010)
and contextual information in Japanese texts (Akita
and Kawahara, 2011).

2.2.2 Linefeed Insertion
In English writing, spaces are utilized to separate
words. When a sentence is split across multiple
lines, it is typically divided at the spaces, or hy-
phens may be used. Alternatively, in Japanese,
spaces are not used to separate words, and various
character types, e.g., kanji, hiragana, and katakana,
are frequently mixed together. Thus, determining
appropriate linefeeds at meaningful boundaries is
even more important.

Several studies have investigated the linefeed
insertion problem for Japanese texts. For exam-
ple, some methods determine linefeed positions
based on the patterns of morpheme sequences in
the closed captions of TV programs (Monma et al.,
2003). Statistical approaches incorporate various
information, e.g., dependency relationships, clause
boundaries, pauses, and line length, analyzed from
linefeed positions (Murata et al., 2009), and pro-
gressive insertion methods attempt to realize real-
time subtitle generation (Ohno et al., 2009). These
methods attempt to identify optimal positions for
inserting linefeeds in Japanese texts to improve
readability and comprehension for the users of sub-
title services.

2.3 Relationship between Comma Insertion
and Linefeed Insertion

Furthermore, a previous study investigated the se-
quential insertion of commas and linefeeds to for-
mat the text (Murata et al., 2011). In this method,
commas are first inserted into text does not contain
commas and linefeeds, and then the linefeeds are
inserted into text where the commas have been in-
serted while considering that the length of each line
does not exceed the maximum number of charac-
ters per line. However, the positions of the comma
and linefeeds insertions can affect each other, and

with this sequential approach, it may be impossible
to adjust the comma insertion based on the position
of the linefeed. The following example illustrates
this issue.

• 駅まで自転車で向かう自分はやはりどこ
か仕事に向かうような感覚でした
(I was riding my bike to the station well I still
felt like I was on my way to work.)

First, commas are inserted into the above sentence.

• 駅まで自転車で向かう自分は、やはり、
どこか仕事に向かうような感覚でした
(I was riding my bike to the station, well, I
still felt like I was on my way to work.)

Then, linefeeds are inserted to ensure that the maxi-
mum number of characters on a line (20 characters
in this case) is not exceeded, and the following
result is obtained.

• 駅まで自転車で向かう自分は、
やはり、
どこか仕事に向かうような感覚でした
(I was riding my bike to the station,
well,
I still felt like I was on my way to work.)

Consequently, a short line "やはり、(well,)" is
generated. The mixture of short and long lines
can increase eye movements and make the subti-
tles more difficult to read. Thus, in this case, it
is preferable to not insert a comma and linefeed
immediately after "やはり(well)" and generate the
line "やはりどこか仕事に向かうような感覚
でした(well I still felt like I was on my way to
work.)" without interruption.

3 Proposed Method for Comma and
Linefeed Insertion

In the proposed method, the sentence is the pro-
cessing unit. The structure of the proposed
method is illustrated in Figure 4. Here, the
input Xi(1 ≤ i ≤ N) comprises the token
xi and its preceding and succeeding 2n tokens
xi−n, · · · , xi−1, xi+1, · · · , xi+n. xi transitions
from the first token x1 to the last token xN of the
sentence sequentially. The input includes the [CLS]
and [SEP] tokens, which indicate the start and end
positions, respectively.

Figure 4: Structure of the model. Wcomma and Wlinefeed are independent parameters of the comma label prediction
layer and linefeed label prediction layer, respectively.

3.1 Comma and Linefeed Insertion through
Multi-Task Learning

In the proposed method, the comma insertion and
linefeed insertion tasks are executed as multi-task
learning. Typically, individual models must be
trained for each of these tasks. However, with
multi-task learning, a single model can be utilized
to perform multiple tasks, and performance im-
provement is expected by capturing common fac-
tors between the tasks (Zhang and Yang, 2018).

Here, two prediction layers are added to the
BERT model to perform the comma insertion and
linefeed insertion tasks. Each token in the input Xi

is converted to a vector by the BERT model and
input to the comma label prediction and linefeed la-
bel prediction layers. In the comma label prediction
layer, the Softmax function is employed to calcu-
late the probabilities of the labels comma, none.
Here, comma indicates that a comma is inserted
immediately after token xi when the probability of
comma is greater than that of none, which means
that no comma is inserted. Similarly, in the line-
feed label prediction layer, the probabilities of the
labels linefeed, none are calculated.

3.2 Line Length Constraint for Linefeed
Insertion

When presenting subtitles on the display, it is nec-
essary to insert linefeeds such that the number of
characters on each line does not exceed the maxi-

Figure 5: Example of line length exceed

mum number of characters allowed by the display.
However, the linefeed positions predicted by the
model may not satisfy this constraint. In the pro-
posed method, for lines that exceed the maximum
width, as shown in the top part of Figure 5, we
redetermine the linefeed positions to satisfy the
maximum number of characters constraint.

Let L = (t1, t2, · · · , tm) represent a line con-
taining m tokens, and Label = (l1, l2, · · · , lm)
represent the labels of tokens in L.

For lines that do not satisfy the maximum num-
ber of characters constraint, we calculate the fol-
lowing probability P (Label).

Table 1: Size of correct data
Sentences Tokens Commas Linefeeds

1,935 67,032 4,833 5,841

P (Label) = P (l1, l2, · · · , lm = linefeed)

= P (l1)× P (l2)× · · · × (P (lm) = 1)
(1)

We assume that whether a linefeed is inserted
immediately after a certain token is independent of
the other tokens. As a result of this assumption, the
probability for the token sequence can be calculated
by simply multiplying the individual probabilities.
Note that a linefeed is always inserted after the last
token tm; thus, lm = linefeed.

By finding the highest probability combination
of Label that satisfies the maximum number of
characters constraint, we can obtain the updated
linefeed insertion results, as shown in the bottom
part of Figure 5.

4 Experiment

4.1 Experiment Overview

To evaluate the effectiveness of the proposed
method, a comma and linefeed insertion experi-
ment was conducted on Japanese spoken language
data.

4.1.1 Experimental Data
The data used in this experiment comprise tran-
scripts from 16 Japanese lecture speeches in the
Simultaneous Interpretation Database (Matsubara
et al., 2002). The data have been annotated man-
ually with commas and linefeeds. Note that line-
feeds were inserted with the constraint of 20 char-
acters per line. The details of the correct data are
shown in Table 1.

4.1.2 Experimental Method
In this experiment, we used Tohoku Univer-
sity’s bert-base-japanese model1 as the pretrained
Japanese BERT model. Moreover, the Adam op-
timizer and cross-entropy loss were used as the
optimizer and loss function, respectively. For the
hyperparameters, the batch size was set to 16, the
number of epochs was set to five, and the learning
rate was set to 1e-5. The variable n was set to eight,

1 https://huggingface.co/cl-tohoku/bert-base-j
apanese

which means that eight tokens before and eight to-
kens after the token xi would be used as input for
the model.

This experiment involved performing cross-
validation using the data for all 16 lectures. Here, in
a 14-fold cross-validation, two lectures were used
as the validation data, thirteen lectures were used
as the training data, and the remaining lecture was
used as the testing data.

4.1.3 Compared Methods

The following two methods were considered to
compare the performance of the proposed method.

• Method from a previous study (Murata et al.,
2011): This method, as described in section
2.3, first identifies the positions for inserting
commas, and then performs the linefeed inser-
tion. In this method, positions for inserting
commas and linefeeds are determined base on
maximum entropy method using morpholog-
ical information, dependency relations, and
clause boundary information.

• Baseline: To assess the effect of multi-task
learning, we established the method of insert-
ing commas and linefeeds sequentially using
BERT. We trained two BERT models sepa-
rately, one for comma insertion and the other
for linefeed insertion. In the baseline method,
positions for comma insertion are identified
first, followed by linefeed insertion. This pro-
cedure enables us to evaluate the impact of
multi-task learning, which involves the simul-
taneous insertion of both commas and line-
feeds.

4.1.4 Evaluation Metrics

The performance of the compared methods was
evaluated in terms of the recall, precision, and F-
measure metrics. Here, the recall and precision
for the comma insertion task were calculated as
follows.

Recall =
of correctly inserted commas
of commas in the correct data

Precision =
of correctly inserted commas

of automatically inserted commas

Note that the same formulas were used to evalu-
ate the linefeed insertion task.

https://huggingface.co/cl-tohoku/bert-base-japanese
https://huggingface.co/cl-tohoku/bert-base-japanese

Table 2: Experimental results of comma and linefeed insertion

comma insertion linefeed insertion
Recall(%) Precision(%) F1 Recall(%) Precision(%) F1

Our method
76.69

(3,103/4,046)
79.71

(3,103/3,893)
78.17 82.98

(4,184/5,042)
69.29

(4,184/6,038)
75.52

Murata method
(Murata et al., 2011)

71.65
(2,899/4,046)

81.07
(2,899/3,567)

76.07
76.91

(3,878/5,042)
69.19

(3,878/5,605)
72.85

Baseline
70.17

(2,839/4,046)
76.44

(2,839/4,004)
73.17

67.91
(3,424/5,042)

68.91
(3,424/4,969)

68.41

4.2 Experimental Results

The experimental results are shown in Table 2. As
can be seen, the proposed method achieved a recall
of 76.69% and precision of 79.71% for the comma
insertion tasks. For the linefeed insertion task, the
proposed method obtained a recall of 82.98% and
precision of 69.29%. The proposed method outper-
formed the baseline and previous methods, thereby
confirming its effectiveness.

4.3 Analysis of Comma Insertion Errors

In this section, we discuss the errors observed in
the experimental comma insertion task. Among
the positions where commas were inserted in the
correct data, the proposed method failed to detect
some of these cases correctly. One such example
is when commas were intended to separate parallel
nouns. The following example is used to facilitate
this discussion.

• なぜか掲載のスペースが小さいお菓子類
の広告、その他、自動車教習所、アルコー
ル、ホテル、そして、ディナーショー、レ
ストラン、旅行、薬_バーゲン
(Advertisements for snacks and other items seem
to have unusually small spaces for publication,
additionally, there are advertisements for driving
schools, alcohol, hotels, dinner shows, restau-
rants, travel and medicine_ bargains.)

In this example, the comma between the parallel
nouns "薬(medicine)" and "バーゲン(bargain)"
was not detected. As a result, there is a possibility
that the audience may misinterpret "薬(medicine)"
and "バーゲン(bargain)" as one word "薬バー
ゲン(medication bargain)", without the intended
separation.

Among the 378 commas intended to separate
parallel nouns in the test data, the proposed method
failed to detect 126 of these cases. Here, the recall

rate was only 66.7% (252/378), which is lower than
the overall recall rate for the comma insertion task.

To effectively detect commas to separate parallel
nouns, it is believed that utilizing part-of-speech
(POS) information would be beneficial, which is
discussed in Section 5.

4.4 Analysis of Linefeed Insertion Errors

Here, we discuss the errors identified in the exper-
imental linefeed insertion task. As a result of the
analysis, it was evident that linefeed insertion errors
led to the generation of extremely short lines. The
presence of a mixture of short and long lines can
cause frequent shifts in the viewer’s gaze, which
can potentially hinder comprehension of the subti-
tles (Iwasaki and Kurimoto, 1988). This is demon-
strated using the following example.

• 島内では
魚の豊富な川や湖、小川などにめぐまれ、
この大地を一層肥沃な大地に
(On the island
blessed with rivers, lakes and brooks rich in fish,
this makes the land even more fertile.)

In this example, as a result of linefeed insertion,
the first line has a length of only four characters,
and the second line has a length of 19 characters,
thereby creating a significant disparity in the line
lengths.

Thus, we measured and compared the occur-
rence frequencies of the line lengths in the correct
data and the experimental results. The correspond-
ing results are shown in Figure 6. The average
line length in the correct data was 14.7, and that in
the experimental results was 14.0. According to a
previous study (Murata et al., 2009), the frequency
of lines within six characters is relatively small,
and linefeeds are more likely to be inserted to en-
sure that lines are at least seven characters long.
In the correct data, there were 106 occurrences

Figure 6: Comparison of characters per line in experi-
mental results and correct data

of lines within six characters, whereas there were
183 occurrences in the experimental results. Thus,
the experimental results included more linefeeds to
make short lines.

5 Using POS Information in Comma and
Linefeed Insertion

In this section, we discuss the use of POS informa-
tion for comma and linefeed insertion. By explic-
itly incorporating POS information in the model,
we attempt to reduce the frequency of comma in-
sertion errors (Section 4.3). In Section 5.1, we
describe the method of utilizing POS information
in the proposed approach, and in Section 5.2, we
discuss the comma and linefeed insertion experi-
ments utilizing the POS information.

5.1 Using POS Information in Proposed
Method

In previous research on automatic comma inser-
tion in Japanese text (Murata et al., 2009), high
accuracy in comma insertion has beed achived by a
statistical approach using information such as mor-
phemes, including POS information. Therefore,
incorporating POS information into the model al-
low the model to more accurately capture sentence
structure and insert commas to separate parallel
nouns.

In the proposed method, we used the MeCab
(Kudo, 2005) morphological analyzer, which uti-
lizes the IPA dictionary as a reference, to add POS
information as tags to tokens. Here, the tokens
are smaller units than words. For example, the
word "走る(run)" with the POS tag "動詞(verb)"
is divided into "走" and "##る". For such subword
tokens, we assign the POS tag "動詞(verb)" to "走"
and the POS tag "##動詞(##verb)" to "##る".

The structure of the model utilizing POS in-

formation is shown in Figure 7. Here, both
the input Xi(1 ≤ i ≤ N) and its cor-
responding POS tags Pi(1 ≤ i ≤ N)
are converted to embedding vectors Oi =
o[cls], oxi−n , . . . , oxi , . . . , oxi+n , o[sep], opi−n , . . . ,
opi , . . . , opi+n by the BERT model and used in the
comma insertion and linefeed insertion tasks, re-
spectively.

5.2 Effect of POS Information
To confirm the effectiveness of using POS informa-
tion in the comma and linefeed insertion tasks, we
conducted an experiment using the same settings
described in Section 4.1.

The experimental results obtained using POS
information in the proposed method are shown in
Table 3. For the comma insertion tasks, we con-
firmed that using the POS information improved
the accuracy. However, for the linefeed insertion
task, no significant improvement was observed.

We use the examples presented in Section 4.3 to
discuss the comma insertion results obtained using
the POS information.

• なぜか掲載のスペースが小さいお菓子類
の広告、その他、自動車教習所、アルコー
ル、ホテル、そして、ディナーショー、レ
ストラン、旅行、薬、バーゲン
(Advertisements for snacks and other items seem
to have unusually small spaces for publication,
additionally, there are advertisements for driving
schools, alcohol, hotels, dinner shows, restau-
rants, travel, medicine, bargains.)

As shown in the example, the comma between
the parallel nouns "薬(medicine)" and "バーゲ
ン(bargain)" was detected correctly.

Among the 378 commas used to separate parallel
nouns in the correct data, 293 were detected cor-
rectly using POS information. Here, the recall rate
was 77.5% (293/378), representing an improve-
ment of 10.8 percentage points compared to the
results obtained by the proposed method without
the POS information.

However, there were still cases where the comma
placement to separate nouns was not detected cor-
rectly. Here, we consider the following example.

• それと衛星のフライトダイナミックス、
航空力学のソフトですね、これを作ろう
というのに、同じプロセス、メソッド、組
織__ツール、それらを使って両方作ってし
まおう

Figure 7: Structure of the model using part-of-speech information.

Table 3: Experimental results of comma and linefeed insertion with part of speech information

comma insertion linefeed insertion
Recall(%) Precision(%) F1 Recall(%) Precision(%) F1

Our method+
POS information

76.99
(3,115/4,046)

80.91
(3,115/3,850)

78.90 83.58
(4,214/5,042)

68.89
(4,214/6,117)

75.52

Our method
76.69

(3,103/4,046)
79.71

(3,103/3,893)
78.17

82.98
(4,184/5,042)

69.29
(4,184/6,038)

75.52

(And also, the flight dynamics software for satel-
lites, aerodynamics software, and we will use
the same process, method, organization_ tool to
create both.)

In this example, the comma between the nouns
"組織(organization)" and "ツール(tool)" was not
detected correctly. The word "ツール(tool)" only
appeared once in the training data, and it is believed
that the lack of sufficient training data affected
the detection. To address this issue, a possible
solution is to perform pretraining on a large amount
of training data for comma insertion, and then fine-
tune the model using data with inserted commas
and linefeeds.

6 Conclusion

This paper has proposed a method to provide easy-
to-read lecture subtitles for visually impaired in-
dividuals and nonnative speakers in lecture halls.
The proposed method inserts commas and linefeeds
into lecture text simultaneously to achieve this goal.
The comma and linefeed insertions are realized us-
ing a multi-task learning approach with a pretrained
BERT model. The proposed method was evaluated

experimentally, and the experimental results ob-
tained on transcribed Japanese spoken language
data demonstrated an F-measure of 78.17% for
comma insertion and 75.52% for linefeed inser-
tion, confirming the effectiveness of the proposed
method.

However, in the proposed method, the decision
to insert commas and linefeeds after a token is
based on the information from n preceding and
succeeding tokens, which may cause a delay be-
tween the speech and the display of subtitles. To
address the need for real-time subtitle generation,
Iwamura et al. (2021) proposed a method that con-
siders the remaining length of the sentence. Gener-
ally, there is a relationship between the remaining
length and the position of linefeeds, i.e., as the re-
maining length decreases, the necessity of linefeeds
decreases. Therefore, in the future, we plan to im-
plement the utilization of the remaining length into
the proposed method to realize real-time subtitle
generation.

Limitations

The method proposed in this paper has limitations,
which are discussed here. The proposed method

is based on information from a fixed number of
preceding and succeeding tokens, which can re-
sult in a delay between speech and displaying the
corresponding subtitle. While this study focuses
on the Japanese language, and the research dataset
consists of Japanese language data, it’s crucial to
consider that comma and linefeed insertion posi-
tions may exhibit language-specific characteristics
in other languages. Therefore, when extending the
study’s results to different languages, it is essential
to conduct data collection and model adjustments
adapted to those languages.

Acknowledgements

This research was partially supported by JSPS
Grant-in-Aid for Scientific Research (C) Grant
Number JP22K12122.

References
Yuya Akita and Tatsuya Kawahara. 2011. Automatic

comma insertion of lecture transcripts based on mul-
tiple annotations. In Proceedings of the 12th Annual
Conference of the International Speech Communi-
cation Association (Interspeech 2011), pages 2889–
2892.

Rahhal Errattahi, Asmaa El Hannani, and Hassan Ouah-
mane. 2018. Automatic speech recognition errors
detection and correction: A review. Procedia Com-
puter Science, 128:32–37.

Yuka Iwamura, Tomohiro Ohno, and Shigeki Matsubara.
2021. Linefeed insertion in speech text considering
remaining sentence length. In Proceedings of the
83rd National Convention of the Information Process-
ing Society of Japan (IPSJ 2021), volume 1, pages
545–546. (in Japanese).

Tsutomu Iwasaki and Shinji Kurimoto. 1988. Changes
in adjustment time and ocular fatigue associated with
eye movement. Ergonomics, 24(Supplement):196–
197. (in Japanese).

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. BERT: Pre-training of deep bidi-
rectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT 2019), volume 1, page 2.

Taku Kudo. 2005. MeCab: Yet another part-of-speech
and morphological analyzer. http://mecab. source-
forge. net/.

Shigeaki Kurita. 2016. Development of CART soft-
ware "IPtalk" and captioning services via personal
computers: Communication support for the hearing-
impaired. Information Processing and Management,
59(6):366–376. (in Japanese).

Shigeki Matsubara, Akira Takagi, Nobuo Kawaguchi,
and Yasuyoshi Inagaki. 2002. Bilingual spoken
monologue corpus for simultaneous machine inter-
pretation research. In Proceedings of the 3rd In-
ternational Conference on Language Resources and
Evaluation (LREC 2002), pages 153–159.

Takao Monma, Eiji Sawamura, Takahiro Fukushima,
Ichiro Maruyama, Terumasa Ehara, and Katsuhiko
Shirai. 2003. Automatic closed-caption production
system on TV programs for hearing-impaired people.
Systems and Computers in Japan, 34(13):71–82.

Masaki Murata, Tomohiro Ohno, and Shigeki Matsub-
ara. 2009. Automatic linefeed insertion for improv-
ing readability of lecture transcript. New Directions
in Intelligent Interactive Multimedia Systems and
Services-2, pages 499–509.

Masaki Murata, Tomohiro Ohno, and Shigeki Matsub-
ara. 2010. Automatic comma insertion for Japanese
text generation. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2010), pages 892–901.

Masaki Murata, Tomohiro Ohno, and Shigeki Matsub-
ara. 2011. Automatic text formatting for social media
based on linefeed and comma insertion. In Proceed-
ings of the 4th International Conference on Intelli-
gent Interactive Multimedia Systems and Services
(IIMSS 2011), pages 285–294. Springer.

Tomohiro Ohno, Masaki Murata, and Shigeki Matsub-
ara. 2009. Linefeed insertion into Japanese spoken
monologue for captioning. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing (ACL-IJCNLP 2009),
pages 531–539.

Masamitsu Sato. 2000. Japanese comma - a reexami-
nation of the rules. The bulletin of arts and sciences,
Meiji University, 331:1–18. (in Japanese).

Ottokar Tilk and Tanel Alumäe. 2016. Bidirectional re-
current neural network with attention mechanism for
punctuation restoration. In Proceedings of the 17th
Annual Conference of the International Speech Com-
munication Association (Interspeech 2016), pages
3047–3051.

Feng Wang, Wei Chen, Zhen Yang, and Bo Xu. 2018.
Self-attention based network for punctuation restora-
tion. In Proceedings of the 24th International Con-
ference on Pattern Recognition (ICPR 2018), pages
2803–2808. IEEE.

Dong Yu and Lin Deng. 2016. Automatic speech recog-
nition, volume 1. Springer.

Yu Zhang and Qiang Yang. 2018. An overview of multi-
task learning. National Science Review, 5(1):30–43.

