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Abstract

Medical term normalization involves the map-
ping of text to specific medical terms within
a medical ontology. However, due to the
vast number of possible medical terms and
the scarcity of annotated datasets, this task be-
comes particularly challenging, especially for
languages other than English, where the prob-
lem is further amplified. In this paper, we pro-
pose an approach to tackle this challenge by
experimenting with the ontology pre-training
(OP) method. We explore its potential for gen-
eralization across multiple languages. The core
of this method lies in utilizing a large medi-
cal ontology, such as MedDRA, to generate
synthetic samples in various languages to use
during the model’s pre-training. This augmen-
tation technique aims to enhance the model’s
ability to generalize to classes that were not en-
countered during the fine-tuning process. To as-
sess the effectiveness of our approach, we com-
pare the performance of a robust zero-shot mul-
tilingual model with traditional fine-tuning, on-
tology pre-training, and their combined strate-
gies. We experiment on three datasets for med-
ical entity normalization belonging to differ-
ent languages (English, French, and Russian),
and analyze the effect of the presence/absence
of the target language in the pre-training step.
The results demonstrate the successful exten-
sion of ontology pre-training to multiple lan-
guages. We observe that multi-language pre-
training significantly improves the baseline per-
formance of models, enabling them to achieve
strong performance without any loss when fine-
tuned on new languages.

1 Introduction

Term normalization, a crucial task in information
processing systems, involves the mapping of di-
verse natural language expressions to specific con-
cepts within a dictionary or ontology. This process
is particularly important in the medical domain,
where it plays a significant role in associating re-

ported symptoms or adverse events linked to drugs
with corresponding entries in medical ontologies,
such as MedDRA (Brown et al., 1999) or UMLS
(Bodenreider, 2004). However, this task presents
considerable challenges due to the wide variability
of natural language inputs, ranging from informal
social media and conversational transcripts to for-
mal medical and legal reports. Additionally, the
output concepts exhibit a high cardinality and fol-
low a long-tail distribution, further complicating
the normalization process.

While this problem has been extensively stud-
ied for the English language over the past decade,
resources and methods for medical term normal-
ization in other languages, especially on informal
texts, remain scarce.

To address this issue, research efforts have
been directed toward developing multi-lingual zero-
shot contrastive models, pre-trained on large col-
lections of medical notes, research articles, and
multi-lingual medical ontologies. Although these
embedding-based models demonstrate versatility,
they lack the ability to effectively transfer their
knowledge to more informal language usage.

A recently-introduced technique, called ontol-
ogy pre-training (OP) (Portelli et al., 2022), has
shown the potential to alleviate this challenge. OP
utilizes a medical ontology to generate artificial
samples, and has been shown to enhance the per-
formance of term normalization models on English
datasets with different writing styles. Our proposal
is to extend this method to multiple languages and
investigate the impact of including/excluding tar-
get languages during the pre-training phase on the
downstream performance of the model.

In light of this objective, we aim to address the
following research questions:

1. Is using OP in a different language more ef-
fective than using a zero-shot multilingual
model?



2. What is the influence of incorporating multi-
ple languages during OP on the overall effec-
tiveness of the model?

3. Is using OP in a different language more effec-
tive than fine-tuning on the target language?

4. Can using OP in a different language serve
as an effective starting point for further fine-
tuning the model on the target language?

By investigating these research questions, we
seek to contribute to the advancement of multi-
lingual medical term normalization and facilitate
more accurate and efficient medical information
processing across languages.

2 Related Work

Medical term normalization has been widely ex-
plored as both a classification and ranking problem
(Yuan et al., 2022). In the classification approach,
neural architectures encode the input term into a
hidden representation and output a distribution over
classes (Tutubalina et al., 2018; Niu et al., 2019).
However, scaling this approach to ontologies con-
taining thousands of concepts becomes challenging
due to the scarcity of comprehensive datasets.

On the other hand, the ranking approach aims
to rank concepts based on their similarity to the
input term (Li et al., 2017; Sung et al., 2020a). In
this method, systems are trained on binary classi-
fication tasks, where positive samples consist of
term-concept pairs, while negative samples consist
of term-concept pairs that do not match. The raw
output of the model is then used for ranking the
concepts.

Recent advances have successfully combined
classification and ranking approaches. For instance,
Ziletti et al. (2022) proposed a system that inte-
grates a BERT-based classifier (Devlin et al., 2019)
with a zero/few-shot learning method to incorpo-
rate label semantics in input instances (Halder et al.,
2020), leading to improved performance in single-
model and ensemble settings.

Notably, novel contrastive pre-training strate-
gies have been introduced in systems like BioSyn
(Sung et al., 2020b), CODER (Yuan et al., 2022),
SapBERT (Liu et al., 2021), and KRISSBERT
(Zhang et al., 2021), which leverage UMLS to en-
hance medical embeddings in BERT-based mod-
els. While SapBERT employs self-alignment meth-
ods, CODER maximizes similarities between posi-
tive term-term pairs and term-relation-term triples,

achieving state-of-the-art results on various tasks,
including zero-shot term normalization. Moreover,
KRISSBERT introduced an extensive pre-training
procedure based on self-supervision and a combina-
tion of traditional masked language modeling with
contrastive losses, which proved highly effective
for medical entity linking, a type of term normaliza-
tion that utilizes the full original context (instead
of using only the extracted term).

While significant progress has been made, the
focus has primarily been on English language re-
sources, and there remains a considerable scarcity
of datasets and models for languages other than
English, especially regarding informal texts, which
are the most challenging ones.

Some notable resources are the ones shared by
SMM4H, (Weissenbacher et al., 2022; Magge et al.,
2021) a yearly workshop that recently introduced
small entity extraction and normalization datasets
in Spanish, French, and Russian, but the resources
for non-English languages are still limited. An-
other interesting addition is the MedNLP-SC social
media task1, which consists of adverse drug event
detection and normalization from tweets in four
languages: Japanese, English, French, and German.
However, all the data are synthetic, as the Japanese
tweets are generated using a language model and
then automatically translated to the other languages.
The Japanese samples are still annotated by hu-
mans, so the dataset might prove to be useful for
future research.

In contrast, medical ontologies often have offi-
cial translations available, offering an intriguing
opportunity to explore the possibility of leverag-
ing them to address similar tasks in non-English
languages. Exploring multi-lingual normalization
approaches could pave the way for more inclusive
and effective medical information processing sys-
tems across languages.

3 Datasets

3.1 Ontology
We select MedDRA (Medical Dictionary for Reg-
ulatory Activities) (Brown et al., 1999) as a medi-
cal ontology, a subset of the UMLS (Bodenreider,
2004) ontology specialized in mapping diseases,
symptoms, and medical procedures. In particular,
we consider only the two lowest levels of the on-
tology: Preferred Terms (PT) and Lowest Level
Terms (LLT). LLTs are the set of terms which are

1https://sociocom.naist.jp/mednlp-sc/

https://sociocom.naist.jp/mednlp-sc/


the closest to the ones used in everyday speaking
(e.g., “muscle burning sensation”). PTs, on the
other hand, are more formal terms, and are used
to group several LLTs. For example, the LLTs
“muscle burning sensation”, “muscle ache”, “ten-
derness muscle”, and “localized muscle pain” are
all grouped under the PT “myalgia”.

The version of MedDRA we use contains 25,255
PTs and 51,109 LLTs. Each PT groups between 1
and 194 LLTs, with an average of 3 LLTs per PT.

We consider three languages for the ontology:
English, French, and Russian. For each language
we create a simplified tabular dataset that associates
each LLT with its PT: Eng, Fre, and Rus.

3.2 Finetuning Datasets

We evaluate the models on three medical term nor-
malization datasets that contain diseases, symp-
toms, or adverse events, all of which can be mapped
to the MedDRA ontology. We selected datasets
written in three different languages, namely En-
glish, French, and Russian, to better analyze the
effects of the multilingual training.

CADEC (Karimi et al., 2015). Public dataset
containing 1,250 English posts from the health fo-
rum “AskaPatient”, containing user-reported ad-
verse drug events mapped to a MedDRA PT/LLT.
The language is informal.

Quaero (Névéol et al., 2014). Public dataset
containing 2,498 French MEDLINE titles and 38
French EMEA documents, annotated for the pres-
ence of several categories of UMLS concepts. We
consider only the DISORDER category.

RDRS (Sboev et al., 2022). Public dataset con-
taining 3,821 Russian posts from the health forum
“otzovik.com”, containing user-generated medicine
reviews, where medical entities are mapped to a
MedDRA PT/LLT. The dataset also includes anno-
tations for mentions of Medications. We consider
the Disease and ADR (Adverse Drug Reaction)
entities.

All datasets are preprocessed to contain only the
medical entity mentions and their PT label. If the
samples were labeled with an LLT in the original
dataset, they are re-mapped to a PT using the Med-
DRA ontology to ensure an uniform output space
containing only PT terms.

To test the generalization capabilities of the mod-
els, it is important to test them on different sets of

Name CADEC Quaero RDRS
Language English French Russian
Total samples 5,866 3,128 12,294
Train samples 3,535 1,876 7,376
Test samples 2,330 1,252 4,918

unseen % 4.76% 28.89% 4.37%
Unique PTs 443 1,154 929

Table 1: Statistics of the three datasets used, including
the percentage of samples with unseen labels in the test
set and the overall number of unique PTs.

unseen labels. For this reason, we create three
random splits of train/test samples using a 60:40
proportion. Given a train and a test set, every test
sample with label pt falls into one of the following
categories:

• seen, if pt is present in the training set;
• unseen, if pt is not present in the training set.

The most important set of samples to measure
the generalization capabilities of the models is un-
seen.

Table 1 contains some statistics related to the
datasets. We can see that Quaero is likely to be the
most challenging dataset, as it contains the highest
number of unique PTs (1,154) and the highest per-
centage of unseen samples in the test set (28.89%).

4 Models

For all the experiments, we used SapBERT multi-
lingual (Liu et al., 2021), which is one of the best
dataset-agnostic BERT-based models for medical
term embedding. It was trained on the UMLS on-
tology (a super-set of MedDRA) using medical
terms in over 20 languages. Tests on several multi-
lingual term normalization datasets show that the
models achieve promising results in all languages
(Liu et al., 2021).

4.1 Baseline (Zero-shot)
As a baseline, we use SapBERT multilingual for
zero-shot term normalization following its original
paper.

First, we obtain a list of PT terms from the Med-
DRA ontology in one of the available languages
(Eng, Fre, Rus). All the PTs are embedded using
the model, generating a vocabulary of embedded
terms. Given a sample s, the same embedding
model is used to generate its embedding. The em-
bedding of s is then compared with all the entries
p in the pre-computed vocabulary. We select as



prediction the PT p that minimizes the cosine simi-
larity with s.

CosineSim(s, p) =
s · p

||s|| ||p||
Note that there is no need for the pre-computed

vocabulary and the sample to belong to the same
language.

4.2 Ontology Pre-training (OP)
Following Portelli et al. (2022), we use the simpli-
fied tabular ontology dataset (Section 3.1), which
maps LLTs to PTs, to pre-train the model. A linear
layer is added on top of the SapBERT model, with
one output for each of the possible PT terms in the
ontology. Give an ontology dataset (Eng, Fre, Rus),
the model is trained to normalize each LLT to the
correct PT. Differently from previous works, we
also perform OP in multiple languages.

4.3 Fine-tuning (FT)
Fine-tuning is framed as a classification task. A
linear layer is added on top of the SapBERT model,
with one output for each of the possible PT terms in
the ontology. Given a finetuning dataset (CADEC,
Quaero, RDRS), the model is trained to output the
correct PT for each input term.

Fine-tuning can be applied either directly to the
baseline model (FT) or after the OP step (OP+FT).

4.4 Training and Evaluation Details
The hyperparameters used for training the models
in the different configurations (FT, OP, and OP+FT)
are reported in Table 2. All the experiments were
carried out using an NVIDIA GeForce RTX 3090
GPU (24 GB).

The models are evaluated using accuracy, that
is the percentage of samples labeled with the cor-
rect PT on the test set. The accuracy is computed
on all samples, seen samples, and unseen samples.
However, the accuracy on unseen samples is the
most important metric to measure the generaliza-
tion abilities of the models. Note that a sample is
considered unseen when the model has not been
fine-tuned on data containing its label. OP mod-
els have technically “seen” all possible output la-
bels, however they have never encountered samples
coming from the target (fine-tuning) dataset, which
might have a different language and/or vocabulary
to express the same concept, requiring a domain
shift. All the reported metrics are an average over
three runs.

Model
Num

Epochs
Batch
Size

CADEC 10 16
FT Quaero 10 4

RDRS 10 16
1 language 30 128

OP 2 languages 15 128
3 languages 10 128

CADEC +3 16
OP+FT Quaero +3 4

RDRS +3 16

Table 2: Hyperparameters and training time for all the
experiments.

Test Dataset
Vocabulary CADEC Quaero RDRS

Eng 45.72 67.41 32.31
Fre 40.01 69.60 29.61
Rus 36.21 60.25 36.20

Table 3: Performance of the zero-shot models on all
samples of the three datasets. Each model matches the
samples in the dataset with the most similar term in the
English, French or Russian MedDRA vocabulary. The
best result for each dataset is bolded.

5 Results

5.1 Zero-shot

Table 3 reports the results for the zero-shot models
on all samples of the datasets.

For each dataset, the best performance is
achieved by the model which uses the pre-
computed terms belonging to the same language as
the dataset: Eng for CADEC, Fre for Quaero, and
Rus for RDRS.

Another notable fact is that the datasets present
different levels of difficulty: the best performance
on Quaero is 69.60%, on CADEC it is 45.72%,
and only 36.20% on RDRS. Since the samples in
Quaero come form research articles and EMEA
document, it contains more formal terms which are
similar to the ones found in the medical ontology,
and therefore easier to normalize. On the other
hand, CADEC and RDRS contain informal terms
written by internet users, and might contain typos
or layman terms, making them extremely more
challenging to normalize.

Lastly, we observe that even models using a
different vocabulary language have a reasonable
performance, confirming that SapBERT multilin-
gual is a strong baseline model. For example,
the best zero-shot model on CADEC is the En-



glish one, with 45.72% accuracy, but the French
model reaches an accuracy of 40.01%, which is
only 5 points apart. The performance of the En-
glish and French models are even closer on the
French dataset Quaero, where the English model
performs only 2.19 points worse than the French
one.

5.2 Fine-tuning (FT)

Table 4 reports the performance of the fine-tuned
models on the three datasets. As expected, fine-
tuning leads to very high performances, almost
doubling the accuracy of the models on CADEC
and RDRS compared to the zero-shot models (e.g.,
from 36.20% to 76.08% on RDRS all). However,
we can see that this is the effect of an extremely
high performance on the seen partition only, while
the performance on the unseen partition is 0 for all
the models.

Interestingly, this leads to a degraded perfor-
mance on the Quaero dataset: the performance
of the zero-shot model on Quaero is 69.60%, while
the FT model only reaches 57.67% on all samples.
This is because Quaero has the highest percentage
of unseen samples in the test set (as previously
observed in Table 1).

Partition CADEC Quaero RDRS
all 78.32 57.67 76.08

seen 82.23 81.10 79.55
unseen 00.00 00.00 00.00

Table 4: Performance of the fine-tuned models on the
three datasets. The performance is reported for the
samples with seen labels, unseen labels, and all samples.

5.3 Ontology Pre-training (OP)

Table 5 reports the performance of the OP models
on the three datasets, considering all samples.

If we focus on the OP models that use only one
language (first three rows), we observe that the
accuracy on the test datasets is always higher than
the one reached by the zero-shot models, even for
the challenging Quaero dataset.

Using a model that is trained only in languages
different from the one of the dataset (cells with
white background) seems to lead to slightly worse
performances compared with the zero-shot model.
For example, Eng on Quaero and Rus on Quaero
reach 64.59% and 49.52% respectively, both of
which are lower than the 69.60% accuracy of the
zero-shot model. The same is true for the RDRS

dataset. CADEC seems to be an exception, as all
the OP models perform better than the zero-shot
one on this dataset.

If we combine different languages during OP,
the results are mixed. Looking at the second set of
rows in Table 5, we see that the OP model trained
on Eng + Fre reaches the best performance on
both CADEC and Quaero, surpassing the single-
language models. This means that the English and
French languages interact in a positive way, rein-
forcing the normalization capabilities of the model.
On the other hand, the RDRS dataset does not ben-
efit from the inclusion of other languages during
OP. The French language seems to be the least-
damaging one, as the models trained on Fre + Rus
reach 60.80% on RDRS, compared with 61.04%
using only Rus.

Using all three languages during OP, slightly
lowers the performance on CADEC and Quaero
(1-3 points), and lowers the performance on RDRS
by 6 points.

Test Dataset
OP Model CADEC Quaero RDRS

Eng 74.49 64.59 35.84
Fre 58.72 74.47 33.71
Rus 47.43 49.52 61.04

Eng + Fre 75.52 76.89 38.80
Eng + Rus 74.90 66.18 57.25
Fre + Rus 64.53 72.63 60.80

Eng + Fre + Rus 74.56 73.37 55.09
Zero-shot 45.72 69.60 36.20

FT 78.32 57.67 76.08

Table 5: Performance of the OP models on all samples
of the three datasets. The best OP result for each dataset
is bolded. A dark cell background means that the model
was pre-trained on the language of the test dataset.

Table 6 reports the results of the same models
on the unseen partition of the data.

All the OP models have higher accuracy than
the FT models. Moreover, the accuracy of the
models that have seen the target language during
OP (darker cells) is close to the performance of
the zero-shot models. For example, on the RDRS
dataset, the models OP Rus, OP Eng + Rus, OP Fre
+ Rus, and OP Eng + Fre + Rus, all have an unseen
accuracy within 6 points to the zero-shot model.

Considering the OP models which have never
seen the target language (cells with white back-
ground), the ones which use multiple languages
have a higher accuracy than the ones which use



Test Dataset
OP Model CADEC Quaero RDRS

Eng 57.14 59.82 15.41
Fre 39.43 69.59 16.24
Rus 31.84 38.54 33.64

Eng + Fre 50.49 68.49 20.74
Eng + Rus 53.45 57.88 31.89
Fre + Rus 43.72 64.99 29.76

Eng + Fre + Rus 49.29 64.98 29.51
Zero-shot 45.72 69.60 36.20

FT 00.00 00.00 00.00

Table 6: Performance of the OP models on unseen sam-
ples of the three datasets. The best OP result for each
dataset is bolded. A dark cell background means that
the model was pre-trained on the language of the test
dataset.

a single language. For example, on the RDRS
dataset, OP Eng + Fre has an accuracy of 20.74%,
higher than both OP Eng (15.41%) and OP Fre
(16.24%).

Figure 1 (Appendix A) summarizes all the re-
sults, allowing us to visually compare the perfor-
mance of the OP and FT models on the seen, un-
seen, and all data partitions. The first model on the
x-axis is always the FT model, while the horizontal
line represents the performance of the zero-shot
baseline model.

5.4 Ontology Pre-training + Fine-tuning
(OP+FT)

Finally, we analyze the OP+FT models. Tables 7
and 8 report the metrics of the OP+FT models on
the all and unseen data partitions respectively.

First, we focus on the ones that have seen the

Test Dataset
OP Model CADEC Quaero RDRS

Eng 85.01 77.64 77.96
Fre 83.13 80.83 77.55
Rus 82.57 71.33 79.28

Eng + Fre 84.60 80.67 77.93
Eng + Rus 84.44 75.91 78.91
Fre + Rus 82.84 78.30 78.64

Eng + Fre + Rus 84.31 79.10 78.66
Zero-shot 45.72 69.60 36.20

FT 78.32 57.67 76.08

Table 7: Performance of the OP+FT models on all sam-
ples of the three datasets. The best OP+FT result for
each dataset is bolded. A dark cell background means
that the model was pre-trained on the language of the
test dataset.

target language during OP (cells with darker back-
ground). The performance of the OP+FT models
on all and unseen samples is higher than FT models.
The highest performance is always achieved by the
models which have only seen one language during
OP. However, the gap between single-language and
multi-language models is reduced compared to 5.
Indeed, the model that uses all three languages dur-
ing OP performs only 1 point lower than the single-
language models on all samples (e.g., 78.66% vs
79.28% on RDRS). The performance on the unseen
samples is lower than the one reached by the OP
models (Table 6) and the zero-shot models, because
the fine-tuning has caused the models to partially
forget information about the unseen classes.

If we focus on the models that have never seen
the target language during OP (cells with white
background), we can see that the performance on
all samples is always higher than the one reached
by the FT model. This means that any OP model
can be used as an effective starting point to fine-
tune a dataset-specific model, even if the language
of the new dataset is different from the one it has
seen during pre-training. As regards the perfor-
mance on the unseen samples, it is lower than
the one achieved by a zero-shot model. However,
it seems that models pre-trained on multiple lan-
guages can help reach a higher accuracy on unseen
samples, compared to single-language models, as
seen for the OP models.

Figure 2 (Appendix A) summarizes all the re-
sults, allowing us to visually compare the perfor-
mance of the OP+FT and FT models on the seen,
unseen, and all data partitions.

Test Dataset
OP Model CADEC Quaero RDRS

Eng 35.75 40.46 05.09
Fre 19.15 50.13 04.13
Rus 16.20 22.12 12.91

Eng + Fre 31.76 49.94 07.45
Eng + Rus 30.32 35.20 11.52
Fre + Rus 20.72 43.13 10.65

Eng + Fre + Rus 28.80 43.77 12.06
Zero-shot 45.72 69.60 36.20

FT 78.32 57.67 76.08

Table 8: Performance of the OP+FT models on unseen
samples of the three datasets. The best OP+FT result for
each dataset is bolded. A dark cell background means
that the model was pre-trained on the language of the
test dataset.



6 Conclusions

We dealt with the task of medical entity normaliza-
tion and the problem of generalizing over long-tail
distributions. We tested the effectiveness of the on-
tology pre-training (OP) method in a multilingual
setting, combining OP in multiple languages with
FT.

We answered our initial research questions with
the following take-home messages:

1. Is using OP in a different language more ef-
fective than using a zero-shot multilingual
model?
As seen in Section 5.3, generally speaking, us-
ing an OP model trained on a single language
(different from the target language) will lead
to lower performance than using a strong zero-
shot multilingual model. The more the OP
language is different, the more performance
will be lost.

2. What is the influence of incorporating mul-
tiple languages during OP on the overall
effectiveness of the model?
As seen in Section 5.3, in general, using
multiple languages during OP will lead to
performances higher than zero-shot models.
However, some languages interact better than
others (e.g. English and French boost each
other’s performance better than English and
Russian). This is probably due to the fact that
some languages are more similar than others.
Increasing the number and diversity of lan-
guages during OP could lead to better general
performances.

3. Is using OP in a different language more
effective than fine-tuning on the target lan-
guage?
As seen in Section 5.3, using OP in a different
language always leads to higher performance
on the unseen partition, compared with FT
models. Using OP with multiple languages
(all different from the target language) further
improves the performance on unseen samples,
without much degradation for the seen sam-
ples.

4. Can using OP in a different language serve
as an effective starting point for further
fine-tuning the model on the target lan-
guage?

As seen in Section 5.4, yes, a model pre-
trained with OP in one or more languages
different from the target one can be further
fine-tuned on the target language. The per-
formance on both seen and unseen samples is
higher than a model which only uses FT, and
close to the one of a model which has seen the
target language during OP. The slight loss in
performance on unseen samples (even when
using the same language) is a well-known
“forgetting” phenomenon caused by perform-
ing consecutive fine-tuning procedures on the
same model. It would be interesting to explore
methods to alleviate the forgetting phase (e.g.,
using continual learning or other strategies
to prevent catastrophic forgetting (McInerney
et al., 2021)).

In general, we conclude that the models pro-
duced from the OP method benefit from the use
of multilingual training data. The models created
by a multilingual OP training have a good perfor-
mance across different languages and can be used
as a starting point to fine-tune models in different
languages which they were not trained on.

Limitations

The experiments were conducted using a single
pre-trained model (SabBERT). Adding a variety
of pre-existing pre-trained models would further
support the results found in the study.

The experiments were only performed using
three languages, English, French, and Russian, two
of which have higher affinity between each other. It
would be interesting to expand the analysis to other
different languages, such as Japanese and German,
for which the medical ontology is available. The
major setback in this direction is the scarcity of
annotated data for the medical entity normalization
task in languages other than English, especially if
we consider non-formal texts (e.g., user feedback
and reviews), which are the most challenging and
interesting ones.
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A Extended Results

Figure 1 summarizes all the results for the OP mod-
els, allowing us to visually compare the perfor-
mance of the OP and FT models on the seen, un-
seen, and all data partitions. The first model on the
x-axis is always the FT model, while the horizontal
line represents the performance of the zero-shot
baseline model.

Figure 2 reports the same results for all the
OP+FT models.
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Figure 1: Performance of the FT and OP models on the three datasets, for each data partition (seen, unseen and all).
The baseline is the zero-shot model in the target language.
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Figure 2: Performance of the FT and OP+FT models on the three datasets, for each data partition (seen, unseen and
all). The baseline is the zero-shot model in the target language.


