
Training Generative Question-Answering on Synthetic Data Obtained
from an Instruct-tuned Model

Kosuke Takahashi, Takahiro Omi, Kosuke Arima
Stockmark

kosuke.takahashi, takahiro.omi, kosuke.arima@stockmark.co.jp

Tatsuya Ishigaki
National Institute of Advanced Industrial Science and Technology

ishigaki.tatsuya@aist.go.jp

Abstract

This paper presents a simple and cost-effective
method for synthesizing data to train question-
answering systems. For training, fine-tuning
GPT models is a common practice in resource-
rich languages like English, however, it be-
comes challenging for non-English languages
due to the scarcity of sufficient question-
answer (QA) pairs. Existing approaches use
question and answer generators trained on
human-authored QA pairs, which involves
substantial human expenses. In contrast,
we use an instruct-tuned model to generate
QA pairs in a zero-shot or few-shot manner.
We conduct experiments to compare various
strategies for obtaining QA pairs from the
instruct-tuned model. The results demonstrate
that a model trained on our proposed synthetic
data achieves comparable performance to a
model trained on manually curated datasets,
without incurring human costs.

1 Introduction

Fine-tuning large language models (LLMs) has
been proven effective for enhancing question-
answering systems (Dong et al., 2019). However,
extending this approach to languages other than
English presents challenges due to the scarcity
of adequate QA pairs for training. In this study,
we specifically target Japanese as a representative
non-English language. We propose a straightfor-
ward approach that synthesizes Japanese QA pairs
using an instruct-tuned model.1

Question-answering tasks can be categorized
into two main settings: questions with context and
without context (Kurihara et al., 2022). In this
study, we focus on the context-based setting as
shown in Figure 1. In this setting, the system takes
a question along with the accompanying context
as input. The model generates an answer by utiliz-
ing the information provided within the context.

1Our experiments utilize OpenAI’s ChatAPI with the gpt-
3.5-turbo-0613 model.

Figure 1: The task of the generative context-aware QA.

On the other hand, the setting without context in-
volves the system processing only the question as
input.

We present a straightforward yet cost-effective
method for generating synthetic question-answer
(QA) pairs. Existing QA systems are trained on
either human-authored datasets or automatically
generated QA pairs (Sachan and Xing, 2018; Tang
et al., 2018), both leading to high labor costs.
By contrast, this paper investigates utilizing an
instruct-tuned model inspired by their reasonable
ability to produce synthetic dataset (Gilardi et al.,
2023). We use a context as input and generate
both the corresponding question and its answer.
The instruct-tuned model allows us to produce QA
pairs in a zero-shot or few-shot manner, eliminat-
ing the need for manual curation.

Our experiments compare question-answering
systems fine-tuned on synthetic data generated
through various strategies. Specifically, we ex-
plore different sources of contexts, the number of
shots fed into the instruct-tuned model, and the
quantity of QA pairs generated. The evaluation
on JSQuAD’s evaluation dataset (Kurihara et al.,
2022) provides three findings. Firstly, employ-
ing contexts extracted from a corpus with similar
characteristics to the evaluation dataset yields im-
proved performance. Secondly, the one-shot strat-
egy outperforms the zero-shot approach. Lastly,
generating three QA pairs for each context is more
effective than generating a lower number of QA
pairs. The top-performing model fine-tuned on our



synthetic data exhibits comparable performance to
models trained on manually curated data.

2 Related Work

Existing QA focus on two major settings:
"closedQA" with context and "commonsens-QA"
without context (Kurihara et al., 2022). For the
former, which we target, the QA systems receive a
question along with a context, such as a Wikipedia
article, and generate an answer. On the other hand,
in the latter setting, the systems only receive a
question as input.

There are two types of QA systems: extrac-
tive and generative. Extractive methods extract an
answer as it is from the context by models like
BERT (Rajpurkar et al., 2016), while generative
methods often use the expressions that are not in
the context by models like T5 (Raffel et al., 2020)
or GPT (Brown et al., 2020). Our focus is on the
latter.

While several manually created datasets exist in
English, such as SQuAD (Rajpurkar et al., 2016)
and QuALITY (Pang et al., 2022), these resources
do not directly apply to the Japanese language.
For Japanese, JSQuAD (Kurihara et al., 2022) and
JAQKET2 are available. We use JSQuAD3 be-
cause the evaluation data of JAQKET is not public.

Existing studies synthesize QA pairs by two
main approaches: supervised (Lee et al., 2020;
Sachan and Xing, 2018; Tang et al., 2018) and
unsupervised (Puri et al., 2020). The supervised
approaches train question-answer generators using
manually created datasets. Our approach gener-
ates QA pairs from contexts in a zero-shot or few-
shot manner, eliminating the need to train gener-
ators. In the unsupervised approach, Puri et al.
(2020) uses a named entity recognizer (NER) for
answer candidate extraction while our approach
uses only an instruct-tuned model in end-to-end
and does not require NER.

3 Synthesizing QA Pairs

We describe our approach in this section.

2https://www.nlp.ecei.tohoku.ac.jp/projects/
jaqket/#Reference

3Strictly, JSQuAD is not for evaluating generative QA,
but the span extraction-based setting. We use this data be-
cause there is no common evaluation data in Japanese for
generative QA. Our models generate answers not extract
spans, thus, we also conduct human evaluations.

Based on the given texts, please make a pair of an-
swerable question and answer.
Please make the answer in Japanese polite lan-
guage.
Please respond in the JSON format.

## example
texts:"texts to extract the pair of question and an-
swer"
output:{"Question":"the question that can be an-
swered from the texts", "Answer":"the answer to
the question"}

## input
texts:{QA context}
output:

Figure 2: An example of zero-shot prompt to generate
a pair of QA.

texts:"Resolving technical debt is difficult; we
look at JAL’s challenge...(omitted)...JAL’s watch-
word is Go To Cloud...(omitted),

output:{"Question":"What watchwords does
Japan Airlines stand for?", "Answer":"JAL’s
watchword is Go To Cloud."}

Figure 3: An translated sample of the “## example”
part in one-shot prompt. Note that the original is in
Japanese.

3.1 Source Contexts and Filtering

We generate N question-answer pairs from each
context. N is set to one or three in our exper-
iments. We compare three specific sources of
contexts: 1) a random sample of 6,000 Japanese
Wikipedia articles (wiki), 2) a random sample
of 6,000 news articles (news), and 3) contexts in
JSQuAD’s training dataset (JSQuAD). To collect
the news articles, we gathered the most accessed
articles from a search engine 4 during the period
from May 2022 to May 2023. We limit each con-
text to the first 300 characters before generating
QA pairs by the instruct-tuned model.

3.2 Prompts for Generating QA Pairs

We provide examples of zero-shot and one-shot
prompts with the setting N = 1 in Figure 2 and

4The URL of the engine/dataset is hidden to preserve the
anonymity of authors, and will be shown after acceptance



Figure 3, respectively. These prompts aim to gen-
erate QA pairs from a context. In the zero-shot
prompt, we first present the task instructions, fol-
lowed by an explanation of the structure oh how
an input text is represented, and their desired out-
put JSON structure as shown in the “## example”
section. For the setting N > 1, we modify the
example of the JSON structure to include more
QA pairs. Then, we write an input text in the
“## input” section. In the zero-shot prompt set-
ting, we only write the format of input and out-
put structures, without including actual texts or the
expected question-answer pairs corresponding to
the context. On the other hand, in the one-shot
prompt, we replace the “## example” section in 2
with the prompt shown in Figure 3. Unlike the
zero-shot prompt, the one-shot prompt includes
actual example contexts and their corresponding
expected QA pairs. To better understand the ef-
fects of prompt engineering, we compare these
two prompts in our experiments. The tuples of a
context and generated QA pairs are used to fine-
tune a GPT by the prompt shown in Figure 4.

4 Experiments

Evaluation Dataset and Compared Models:
We use the JSQuAD (Kurihara et al., 2022) for
evaluation. This evaluation data contains 4,470
human-authored QA pairs given Wikipedia arti-
cles as contexts. We use whole evaluation data for
the automatic evaluation while randomly sampled
500 instances are used for manual evaluation.

We conduct a comprehensive comparison by
exploring various combinations of contexts, the
number of generated QA pairs denoted as N and
prompts. Regarding contexts, we consider three
options: wiki, news, JSQuAD, and, as detailed in
Sec. 3.1. For N , we compare N = 1 and N = 3.
We compare zero-shot and one-shot prompts 5.

Our proposed models are compared with two
models: 1) a plain GPT model without fine-tuning
and 2) a model fine-tuned on QA pairs from the
JSQuAD training dataset (Human), where these
QA pairs are human-authored while our proposed
QA pairs are not human-authored.

Fine-tuning We use the synthesized QA pairs
to fine-tune the Japanese version of GPT-

5We are constrained to one-shot due to the input length
limit of ChatGPT.

## Instruction
{QUESTION}

## Context
{CONTEXT}

## Response

Figure 4: The prompt to generate answers with the fine-
tuned GPT-NeoX.

Batch Size: {4, 8},
Learning Rate: {0.00001, 0.00005, 0.000001},
Epoch: {3, 4, 5,}, r: {4, 8, 16, 64, 128}, α: {1, 4, 16}

Table 1: The search range values in LoRA fine-tuning.

NeoX (Black et al., 2022)6. To achieve improved
speed, we employ LoRA fine-tuning (Hu et al.,
2022). In generating answers, we use a prompt
in the zero-shot setting (Figure 4).
Metrics: For automatic evaluation, we employ
BERTScore (Zhang et al., 2020) and BLEU (Pa-
pineni et al., 2002). BERTScore is implemented
on our own with a Japanese BERT model.7 As for
BLEU, SacreBLEU library (Post, 2018) is used.

These automatic metrics may not directly cap-
ture the correctness of an answer to a given ques-
tion. To address this, we also conduct manual eval-
uations by human judges. We ask four judges, who
are experts in natural language processing or lin-
guistics, to assess whether the generated answer is
correct or not. We showed tuples of questions, an-
swers, and contexts to the judges. We report the
accuracy obtained from the manual evaluation.
Parameters We conducted a grid search for tun-
ing parameters: batch size, learning rate, the num-
ber of epochs, as well as LoRA’s hyperparameters
(specifically α and r). The range of values ex-
plored during this search is provided in Table 1.
Subsequently, the model that attained the highest
BERTScore was chosen for evaluation.

5 Results

In this section, we present the results on JSQuAD.

5.1 Automatic Evaluation
Our primary interest lies in examining the impact
of each strategy for synthesizing QA pairs on the

6https://huggingface.co/cyberagent/
open-calm-7b

7https://huggingface.co/cl-tohoku/
bert-base-japanese-v3



performance of the downstream question answer-
ing task. Specifically, we focus on comparisons in-
volving different contexts, prompts, and the quan-
tities of automatically generated QA pairs.

Table 2 presents the scores of BERTScore and
BLEU obtained by varying the contexts while
keeping other settings, i.e., N and prompts are
fixed. The table is divided into five sections. Start-
ing from the top, the first section displays scores
for QA models trained on human-authored QA
pairs (Human) from the JSQuAD training dataset,
along with the plain GPT model (GPT) without
fine-tuning. The second and third sections show-
case scores obtained when N is fixed to one, but
we vary the prompts to zero-shot and one-shot.
The fourth and fifth sections represent scores when
we use N = 3.
Impact of Context on Performance: We ob-
serve that using contexts extracted from the news
dataset yields relatively low scores, e.g., 0.713 and
0.747 in terms of BERTScore for zero-shot and
one-shot settings with N = 3, respectively. The
wiki context performs better (0.706 and 0.838)
than news (0.713 and 0.747) for the same settings.
Notably, the JSQuAD context achieves the highest
BERTScore of 0.863 and 0.889 with N = 1 and
N = 3, respectively. The results suggest that us-
ing Wikipedia as context provides an advantage,
likely because the JSQuAD evaluation data is also
derived from Wikipedia.
Impact of Prompts on Performance: The one-
shot prompt is more effective. As shown in Table
2, the model fine-tuned on the zero-shot QA pairs
(N = 1) generated from the contexts in JSQuAD
training dataset achieves a BERTScore of 0.724.
However, the one-shot prompts with N = 1 ex-
hibit a significant performance gain, reaching a
BERTScore of 0.863.
Effect of the Number of Generated QA Pairs on
Performance: As we increase the number of QA
pairs for context, there is a gain of 2.6 points in
BERTScore (from 0.863 to 0.889). Remarkably,
the achieved BERTScore of 0.889 is comparable
to that of a model trained on human-authored QA
pairs (0.899), despite our approach not utilizing
any human-authored QA pairs.

5.2 Evaluation by Human Judges:

We present the results of the manual evalua-
tion. Table 3 shows the comparisons between
three outputs: answers generated by 1) our best

context N prompt BERTscore BLEU
Human - - 0.899 5.64
GPT - - 0.601 0.00
news 1 zero 0.697 0.02
wiki 1 zero 0.713 0.03

JSQuAD 1 zero 0.724 1.55
news 1 one 0.738 0.11
wiki 1 one 0.775 0.09

JSQuAD 1 one 0.863 4.83
news 3 zero 0.713 0.38
wiki 3 zero 0.706 0.23

JSQuAD 3 zero 0.740 1.85
news 3 one 0.747 1.25
wiki 3 one 0.838 1.66

JSQuAD 3 one 0.889 6.77

Table 2: Performances on different contexts and num-
bers of generated QA pairs.

QA Pairs Accuracy (%)
JSQuAD (N = 3, one-shot prompt) 45.4

Human 38.4
Gold 90.4

Table 3: Accuracy calculated as the number of correct
question-context-answer tuples divided by the total 500
evaluation instances.

performing model (JSQuAD (N = 3), and one-
shot prompt) and 2) a model that is fine-tuned
on human-authored QA pairs from the JSQuAD
training dataset, and 3) gold answers in JSQuAD
evaluation dataset. Remarkably, despite our ap-
proach does not use any human-authored QA
pairs, the achieved accuracy is 45.4% while the
model fine-tuned on human-authored QA pairs
achieves only 38.4% in terms of accuracy. Gilardi
et al. (2023) mention that automatic annotation
with an instructor-tuning model has higher qual-
ity than annotations by crowd-workers, and our re-
sults are consistent with their claim. Note that the
performance of both fine-tuned models falls sig-
nificantly behind the Gold standard (90.4%), indi-
cating ample room for improvement.

6 Conclusions

This paper proposed to use an instruction-tuned
model for synthesizing QA pairs. Our experimen-
tal results demonstrate that the models trained on
automatically generated QA pairs achieve compa-
rable or even superior performance compared to
the fine-tuned model trained on human-authored
QA pairs. In future studies, we plan to explore
the relationship between the diversity of automat-
ically generated QA pairs and their impact on the
performance of downstream QA tasks.



References
Sidney Black, Stella Biderman, Eric Hallahan, Quentin

Anthony, Leo Gao, Laurence Golding, Horace
He, Connor Leahy, Kyle McDonell, Jason Phang,
Michael Pieler, Usvsn Sai Prashanth, Shivanshu
Purohit, Laria Reynolds, Jonathan Tow, Ben Wang,
and Samuel Weinbach. 2022. GPT-NeoX-20B: An
open-source autoregressive language model. In Pro-
ceedings of BigScience Episode #5 – Workshop on
Challenges & Perspectives in Creating Large Lan-
guage Models, pages 95–136, virtual+Dublin. Asso-
ciation for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey
Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot
learners. In Advances in Neural Information Pro-
cessing Systems, volume 33, pages 1877–1901. Cur-
ran Associates, Inc.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli.
2023. Chatgpt outperforms crowd workers for tex-
t-annotation tasks. Proceedings of the National
Academy of Sciences, 120(30):e2305016120.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Kentaro Kurihara, Daisuke Kawahara, and Tomohide
Shibata. 2022. JGLUE: Japanese general lan-
guage understanding evaluation. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 2957–2966, Marseille, France.
European Language Resources Association.

Dong Bok Lee, Seanie Lee, Woo Tae Jeong, Donghwan
Kim, and Sung Ju Hwang. 2020. Generating diverse
and consistent QA pairs from contexts with informa-
tion-maximizing hierarchical conditional VAEs. In
Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 208–
224, Online. Association for Computational Lin-
guistics.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi,
Nikita Nangia, Jason Phang, Angelica Chen,

Vishakh Padmakumar, Johnny Ma, Jana Thompson,
He He, and Samuel Bowman. 2022. QuALITY:
Question answering with long input texts, yes! In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5336–5358, Seattle, United States. Associa-
tion for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Raul Puri, Ryan Spring, Mohammad Shoeybi, Mostofa
Patwary, and Bryan Catanzaro. 2020. Training ques-
tion answering models from synthetic data. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP),
pages 5811–5826, Online. Association for Compu-
tational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Mrinmaya Sachan and Eric Xing. 2018. Self-training
for jointly learning to ask and answer questions. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 629–640, New
Orleans, Louisiana. Association for Computational
Linguistics.

Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo
Sun, Shujie Liu, Yuanhua Lv, and Ming Zhou.
2018. Learning to collaborate for question answer-
ing and asking. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1564–1574, New Orleans, Louisiana. Association
for Computational Linguistics.



Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.


