
A Computational Study of Matrix Decomposition Methods for
Compression of Pre-trained Transformers

Viktoria Chekalina1** Daniil Moskovskiy1* Sergey Pletenev1,2*

Mikhail Seleznyov1 Sergey Zagoruyko3 Alexander Panchenko1,4

1Skolkovo Institute of Science and Technology, 2HSE University,
3MTS AI, 4Artificial Intelligence Research Institute

{s.pletenev, d.moskovskiy, v.chekalina, a.panchenko}@skol.tech

Abstract

Transformer-based models have significantly
advanced the field of Natural Language Pro-
cessing. However, their large size and compu-
tational complexity present challenges. As a
result, there is considerable interest in develop-
ing approaches to compress these models with-
out compromising their performance on spe-
cific tasks. This paper presents a comparative
study of low-rank matrix and tensor factoriza-
tion techniques for compressing Transformer-
based models. Specifically, we apply Singu-
lar Value Decomposition (SVD) and Tensor
Train Matrix (TTM) decomposition to repre-
sent the fully connected layers in a compressed
form. Following Hsu et al. (2022), we extend
the FWSVD approach by adding Fisher infor-
mation to the TTM decomposition and present
a novel method called FWTTM.

Our experimental results indicate that the effi-
ciency of these methods varies with the com-
pression level. Notably, integrating Fisher in-
formation to align task and decomposition ob-
jectives enhances the performance of factor-
ized with TTM transformer-based models and
encoder-decoders.

1 Introduction

In recent years, the field of Natural Language Pro-
cessing has made significant progress with the de-
velopment of large pre-trained language models
such as BERT (Devlin et al., 2019). While these
models have achieved state-of-the-art performance
on various tasks, their size and computational re-
quirements make them challenging to deploy in
resource-constrained environments. As a result,
there has been growing interest in developing tech-
niques to compress these models while maintaining
their performance.

Language models often lose their capacity which
leads to worse quality at somewhat significant com-
pression levels. In this case, the models are fine-

*Equal contribution.

tuned until a certain quality is achieved on the task.
However, fine-tuning is also resource-intensive,
even for a compressed model. To make it more
efficient, we use the alignment of the low-rank
compression objective and the task objective as
introduced by Hsu et al. (2022). This makes the
compressed model more consistent with further
fine-tuning.

One approach to model compression is to apply
matrix factorization techniques to the heaviest part
of the Transformer – fully-connected layers (see
Table 2). The most popular and simplest choice is
to use the SVD to reduce the number of parameters
while retaining the model’s expressive power.

Applying SVD to a matrix can decrease its ex-
pressibility (Yang et al., 2018). However, addi-
tional techniques are employed to ensure a satisfac-
tory quality of the resultant model. Hsu et al. (2022)
introduce the Fisher Weighted SVD (FWSVD) ap-
proach, which considers the significance of each
parameter for the model’s performance during the
compression process based on gradient values.

Another method for compressing large language
models is Tensor-train matrix decomposition, or
simply TTM (Oseledets et al., 2011). TTM trans-
forms a weight matrix into a high-order tensor,
which is then expressed as a product of lower-
dimensional objects. In this study, we expand the
application of the Fisher Weighted SVD (FWSVD)
approach to TTM, creating a novel approach called
FWTTM.

Our contributions can be summarized as follows:

• We extend the previous work by Hsu et al.
(2022) and incorporate weighting based on
Fisher information inside the TTM decompo-
sition (we denote this approach as FWTTM).

• We provide a comprehensive analysis of the
performance of the BERT model compressed
with SVD, TTM, FWSVD, and FWTTM
on various ranks on tasks of GLUE bench-

mailto:a.panchenko@skol.tech

mark (Wang et al., 2019) and the BART
model (Lewis et al., 2020) on the sequence-to-
sequence tasks of text summarization and text
detoxification.

• We provide an implementation of the stud-
ied methods widely applicable to pre-trained
Transformer models, such as those at the Hug-
gingface repository.1

2 Related Work

This section reviews methods related to model
size reduction. It contains Knowledge distillation,
Quantization, Pruning, and low-rank Approxima-
tion techniques.

The first approach, Knowledge distillation (KD),
learns a student model with a smaller parameter
budget guided by a larger trainer model. These
methods can also transfer knowledge from a large
teacher model to a smaller student model (Hinton
et al., 2015). KD can improve the generalization
performance of the student model and reduce its
size and computational cost (Jiao et al., 2020). We
use DistilBERT (Sanh et al., 2019) – a distilled
version of the BERT model as one of the strong
baselines in our work.

Pruning is another powerful technique to reduce
the number of deep neural network parameters. The
goal of neural network pruning is to identify and re-
move unimportant connections to reduce the model
size without affecting network accuracy. Move-
ment pruning (Sanh et al., 2020) is an efficent ap-
proach for pruning unstructured networks. This
method gives high sparsity in the model while pre-
serving the original quality score. On the other
hand, such models will show effectiveness only
with specialized hardware and may not give any
benefits to standardized devices such as GPUs.

Block pruning is another effective method for
reducing the number of deep neural network pa-
rameters. This approach involves removing entire
blocks of unimportant connections rather than in-
dividual connections. This can result in a more
structured and efficient network architecture. One
example of block pruning is filter pruning, where
entire filters in a convolutional neural network are
removed (Li et al., 2017). Another example is chan-
nel pruning, where entire channels are removed
from the network (He et al., 2017). As opposed
to movement pruning, this approach encourages
pruning that can be optimized on dense hardware.

1github.com/s-nlp/compression

Layer/Model BERT BART

Full model 109 M 100% 140 M 100%
Fully connected layers 57 M 52% 84 M 60%
Embedding layers 24 M 22% 38 M 27%
Attention heads 28 M 26% 23 M 16%

Table 1: Number of parameters for different layers in
various Transformer architectures.

BERT

Compr. Rate SVD TTM

48% (53 M) 6 10
63% (69 M) 183 60
95% (102 M) 534 110

BART

Compr. Rate SVD TTM

60% (83 M) 10 10
74% (102 M) 210 64
90% (125 M) 460 96

Table 2: Ranks for different compression approaches.
The values in parentheses in the "Compr. Rate" column
represent the fraction of weights are left compared to
original uncompressed model. The values in the "SVD"
and "TTM" columns are ranks.

The quantization approach enables the reduc-
tion of the model size without compromising the
parameter count, achieved by reducing the num-
ber of bits allocated to each parameter. The con-
cept of quantization-aware training, which involves
training the model with the reduced weights, came
from general deep learning (Hawks et al., 2021) to
transformer-based encoders (Wang et al., 2022).

Low-rank approximation techniques provide an
alternative way to achieve model compression. One
such technique is SVD, which has been success-
fully applied to compress various components of
neural networks, such as word embeddings (Lan
et al., 2020), attention matrices (Michel et al.,
2019), and transformer layers (Hu et al., 2021).
Another approximation technique is TTM, which
decomposes high-order tensors into a sequence of
low-order tensors (Oseledets et al., 2011). TTM
has been employed for compressing word embed-
dings (Hrinchuk et al., 2020), CNNs (Garipov et al.,
2016), and even vision transformers (Minh et al.,
2022).

3 Low-rank Compression Methods

In this section, we describe the low-rank approxi-
mation methods used in our computational study
to compress feedforward layers of Transformers:
SVD, TTM, FWSVD, and our proposed FWTTM,
a novel approach.

3.1 Singular Value Decomposition (SVD)
We compress the initial model by replacing fully-
connected layers with their SVD analogs.

https://github.com/s-nlp/compression

Assuming that 𝑊 is a layer weight matrix, we
define SVD as follows: 𝒲 = 𝑈Σ𝑉 𝑇 . Then we
use truncated products of it 𝑈𝑟 = 𝑈 [:, : 𝑟],Σ𝑟 =
Σ[: 𝑟, : 𝑟], 𝑉𝑟 = 𝑉 [:, : 𝑟] to define weights for two
sequential linear layers, with which we will replace
the current:

𝒲2 = 𝑈𝑟

√︀
Σ𝑟 (1)

𝒲1 =
√︀
Σ𝑟𝑉

𝑇
𝑟 (2)

As a result, we get an approximation of linear
matrix 𝒲 ≈ 𝒲2𝒲1 and an approximation of the
initial layer 𝑌 ≈ 𝑋𝒲𝑇

1 𝒲𝑇
2 + 𝑏.

If 𝒲 has 𝑛𝑖𝑛, 𝑛𝑜𝑢𝑡 shape, the number of param-
eters in the layer before compression is 𝑛𝑖𝑛 ×𝑛𝑜𝑢𝑡;
after representation by truncated SVD, it is 𝑟 ×
(𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡).

3.2 Tensor Train Matrix
Decomposition (TTM)

In the TTM decomposition as defined by Oseledets
et al. (2011) the matrix 𝒲 ∈ R𝐼×𝐽 is repre-
sented in 2𝐷-order tensor 𝒯 ∈ R𝐼1×𝐽1×···×𝐼𝐷×𝐽𝐷

in TTM format, where 𝐼 =
∏︀𝐷

𝑘=1 𝐼𝑘, 𝐽 =∏︀𝐷
𝑘=1 𝐽𝑘. In other words, each element of 𝒯 is

computed as

𝒯𝑖1,𝑗1,...,𝑖𝐷,𝑗𝐷 =
∑︁
𝑟0,𝑟1,

...,𝑟𝐷−1,𝑟𝐷

𝒢1
𝑟0,𝑖1,𝑗1,𝑟1

𝒢𝐷
𝑟𝐷−1,𝑖𝐷,𝑗𝐷,𝑟𝐷

,

(3)

where 𝒢𝑑 ∈ R𝑅𝑑−1×𝐼𝑑×𝐽𝑑×𝑅𝑑 , 𝑑 = 1, 𝐷 − 1
are core tensors (cores) of TTM decomposition,
vector (𝑅0, . . . , 𝑅𝐷) is called TTM ranks. Note
that 𝑅0 = 𝑅𝐷 = 1 and 𝑅 = 𝑚𝑎𝑥(𝑅0, . . . , 𝑅𝐷).

The compression rate in a TTM layer, with re-
spect to the number of parameters is defined as
follows

c_rate =

𝑅(𝐼1𝐽1 + 𝐼𝐷𝐽𝐷) +𝑅2
𝐷−1∑︀
𝑑=2

𝐼𝑑𝐽𝑑

𝐷∏︀
𝑘=1

𝐼𝑘𝐽𝑘

(4)

We use our own implementation of this type of
layer based on the algorithm by Oseledets et al.
(2011).

3.3 Fisher Weighted SVD (FWSVD)
Hsu et al. (2022) propose injecting the Fisher in-
formation into decomposition algorithms to min-
imize the gap between decomposition and task-
oriented objectives. Fisher information determines

the importance of each parameter for predictions
in a given task (Bishop and Nasrabadi, 2007).
We follow the approach introduced by Hsu et al.
(2022) and approximate the Fisher matrix using
dataset 𝒟 = {𝑑1, . . . , 𝑑|𝒟|}, for each weight ma-
trix 𝒲 ∈ R𝐼×𝐽 :

ℐ𝒲 = E

[︃(︂
𝜕

𝜕𝒲
log 𝑝(𝒟|𝒲)

)︂2
]︃

ℐ𝒲 ≈ 1

|𝒟|

|𝒟|∑︁
𝑖=1

(︂
𝜕

𝜕𝒲
ℒ(𝑑𝑖;𝒲)

)︂2
(5)

Having this, ideally, we would want to solve
weighted low-rank approximation:⃒⃒⃒⃒⃒⃒√︀

ℐ𝒲 * (𝒲 − �̂�)
⃒⃒⃒⃒⃒⃒2

→ min
rank �̂�=𝑟

(6)

Unfortunately, this problem does not have a
closed-form solution. Therefore, Hsu et al. (2022)
propose to sum Fisher matrix by rows and solve
low-rank approximation with row-wise weighting,
which can be done using SVD:

ℐ̃𝒲 = diag (ℐ𝒲 · 1) ,
�̂� = ℐ̃𝒲𝒲 = 𝑈𝑆𝑉 𝑇 ,

(7)

where 1 = (1, . . . , 1) ∈ R𝐽×1, diag - diagonal
matrix with size ℐ × ℐ.

The resulted weighted factors for initial matrix
𝒲 ≈ �̂�𝑆𝑉 𝑇 are computed as follows:

�̂� = ℐ̃−1
𝒲 𝑈, 𝑆 = 𝑆, 𝑉 = 𝑉. (8)

As a result, we get low-rank approximations,
which account for parameter importances for the
target task.

3.4 Fisher Weighted TTM (FWTTM)
To apply the Fisher matrix to the TTM algorithm,
we represent equation 8 in the following format:

𝑌 = 𝑋
(︁
ℐ̃𝒲 + 𝜆1

)︁−1 (︁
ℐ̃𝒲 + 𝜆1

)︁
𝒲 + 𝑏

𝑌 = �̂� �̂� + 𝑏

𝑌 ≈ �̂� TTM
(︁
�̂�

)︁
+ 𝑏

(9)

We add regularization term 𝜆 in order to improve
numerical stability. Our numerical experiments
demonstrated the efficiency of such regularization
though the selection of the best suitable 𝜆 value is
an additional process. We discuss the process of
selection in the Appendix C. The algorithm consists
of the following steps:

FC Layers Regular FC TTM-10 SVD-6

Inference time (ms) 37.8 63.8 27.6
Power (10−5 kWh) 1.7 2.11 1.4

Table 3: Average inference time (in ms) and power
consumption for a BERT model with regular fully-
connected, SVD-6, and TTM-10 layers. The batch size
is equal to 1.

1. Compute the Fisher matrix ℐ𝒲 for the original
layer matrix 𝒲 .

2. Apply the ℐ𝒲 to 𝒲 and do original TTM
decomposition on �̂� .

3. For each forward step of the FWTTM algo-
rithm, we use the ℐ̃−1

𝒲 on 𝑋 to inverse matrix
from the previous step.

4 Transformer Compression Setup

This section describes our setup for compressing
Transformer models using low-rank approximation
approaches. We focus on two methods: TTM and
SVD, with and without Fisher information. We aim
to reduce the number of parameters in the model
while maintaining its performance. Furthermore,
we assume we can access the task-oriented model-
tuning process. We use the information obtained
within this process to improve the quality of the
compression and thus speed up the tuning by the
desired values.

4.1 Baselines

We compare our compressed model to the model
obtained by Distillation (Jiao et al., 2020), Block
Pruning (Sanh et al., 2020) and inference of the
original model with floating-point precision equal
to 16. Note that both Distillation and Block Pruning
are training-aware methods. It means they require
fine-tuning for the desired task so we can use it
only in the Double-train pipeline.

For mixed precision training and evaluation, we
use the FP16 library, which is built-in in PyTorch
(Paszke et al., 2019). We set the optimization level
to 01 and patched all torch functions and tensor
methods, except those that benefit from FP32 pre-
cision (softmax, etc.) For the two analyzed models,
we obtained a compression up to 52% for the BERT
model and 54% for the BART model. However,
since the tables show compression of the models
relative to the number of their parameters, but FP16
quantization keeps the number of parameters the

Memory (MB) / Layers Regular FC TTM-10 SVD-6

Model + input 418.7 204.6 204.9
After Forward 1069.5 840.1 851.9
After Backward 869.3 433.6 429.9
Peak usage 1101.1 901.8 865.7

Table 4: Memory usage for BERT with regular fully-
connected, SVD-6, and TTM-10 layers on an NVIDIA
A40 GPU. The measurements are for one forward-
backward operation with a batch size of 1.

same, we indicate the actual number of parameters
with a dagger (†).

4.2 Experimental setup

In this study, we evaluate the performance of four
proposed methods based on the BERT and BART
models. We apply three different compression ra-
tios to these models and present the resulting ranks
in Table 2. We also assess the performance of the
compressed BERT model on nine natural language
understanding tasks, including language acceptabil-
ity, sentiment analysis, paraphrasing, and natural
language inference. The compressed BART model
is evaluated on text summarization and detoxifica-
tion tasks.

Moreover, we run two setups for compress-
ing and evaluating models on the GLUE,
ParaDetox (Logacheva et al., 2022) and
XSUM (Narayan et al., 2018) datasets:

• Single-train. We fine-tune a model for each
task, compress it and measure performance.

• Double-train. We follow the same steps as for
the Single-train and fine-tune the compressed
model again on the same task.

4.3 Selection of hyperparameters

The proposed layer structure assumes two sets of
hyperparameters - TTM cores shapes and ranks for
both TTM and SVD.

For the maximum compression rate in TTM, non-
rank shapes of cores should be as close to each
other as possible. We choose 𝐼𝑘 ·𝐽𝑘 so that they are
equal and approximately equal to (𝐼 · 𝐽)1/𝐷. As a
cores, we take objects with sizes [1× 8× 12×𝑅],
[𝑅× 12× 16×𝑅], [𝑅× 8× 16× 1].

Ranks 𝑟 for truncation in SVD and 𝑅 for TTM
are selected based on the desired compression level.

Method C. Rate AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

Full 100 % 0.79 0.88 0.57 0.84 0.90 0.91 0.87 0.67 0.92 0.54

DistilBERT 61 % 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48
FP16 eval. 100%† 0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48
Block Pruning (75%) 61% 0.72 0.85 0.24 0.83 0.83 0.86 0.87 0.52 0.88 0.56

SVD 0.37 0.24 0.00 0.36 0.20 0.50 0.47 0.48 0.52 0.51
FWSVD

49 %
0.38 0.25 0.00 0.33 0.39 0.50 0.40 0.49 0.51 0.56

TTM 0.40 0.38 0.00 0.37 0.20 0.53 0.42 0.50 0.69 0.51
FWTTM 0.44 0.58 0.01 0.37 0.26 0.56 0.42 0.50 0.70 0.51

SVD 0.45 0.63 0.01 0.36 0.22 0.51 0.54 0.54 0.78 0.48
FWSVD

63 %
0.55 0.54 0.07 0.52 0.55 0.62 0.70 0.58 0.79 0.55

TTM 0.44 0.65 0.01 0.40 0.16 0.54 0.52 0.48 0.74 0.48
FWTTM 0.47 0.71 0.00 0.43 0.18 0.64 0.56 0.47 0.72 0.49

SVD 0.70 0.81 0.26 0.82 0.69 0.88 0.87 0.53 0.90 0.53
FWSVD

95 %
0.78 0.88 0.55 0.84 0.87 0.90 0.88 0.64 0.92 0.55

TTM 0.76 0.87 0.52 0.79 0.86 0.87 0.86 0.65 0.91 0.48
FWTTM 0.77 0.88 0.56 0.83 0.88 0.90 0.88 0.66 0.92 0.46

Table 5: Results of different types of compression of BERT for experiment with task-oriented fine-tuning and further
compression (Single-train). The best results at each model size are in bold, best overall results are underlined.
Standard deviations are included in Table 9 in Appendix.

5 Computational performance and
Energy Metrics of Training Loops

In this section, we evaluate the memory require-
ments for a single training loop of the BERT model
using TTM- and SVD-based linear layers with
ranks 10 and 6, respectively (refer to Table 2). As il-
lustrated in Table 4, utilizing compressed represen-
tations considerably decreases the memory needed
for training. Notably, for a given compression
rate, the memory requirement remains consistent
regardless of the compression method—both TTM
and SVD-based models consume similar memory
amounts.

We assess electricity consumption with the
Eco2AI library2 (Budennyy et al., 2023). As shown
in Table 3, models with SVD layers achieve the
best results in terms of power efficiency. In con-
trast, TTM consumes more electricity and takes
longer, even when compared to the original model.
We hypothesize this increased consumption might
result from the sequential multiplication of multiple
cores during the forward function execution.

6 Experiments with NLU tasks

For experiments we use bert-base-uncased
checkpoint3 from the Hugging Face (Wolf et al.,
2019) model hub.

2github.com/sb-ai-lab/Eco2AI
3huggingface.co/bert-base-uncased

6.1 Experimental settings

We perform experiments on the GLUE benchmark
using the evaluation script and metrics provided
by Hugging Face library4. Additionally, we run
our experiments with five different random seeds
and report the average performance across runs to
ensure the robustness of our results.

6.2 Results

We report the evaluation results of the BERT model
on the GLUE benchmark using different compres-
sion methods in Tables 5 and 6, for Single- and
Double-train setups, respectively. We also show
the extended results across multiple random seeds
with standard deviations included in Tables 9, 10.
We observe that the overall absolute scores for the
Single-train setup are remarkably lower than those
for the Double-train setup, as previously reported
in research. This is because, after changing the
low-rank-based compression structure of the lay-
ers, additional fine-tuning is required to regain an
acceptable performance level. In this paper, we
present both setups because the Single-train setup
can be used for large models that do not fit into the
memory of available GPUs (as fine-tuning usually
requires double the model size to store gradients).

Experiments show that TTM decomposition out-
performs SVD at low ranks (i.e., high compression
levels), while SVD performs better at higher ranks.
This difference is more pronounced for Single-train

4github.com/huggingface/transformers/text-classification

https://github.com/sb-ai-lab/Eco2AI
https://huggingface.co/bert-base-uncased
https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification

Method C. Rate AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

Full (109 mln.) 100 % 0.79 0.88 0.57 0.84 0.90 0.91 0.87 0.67 0.92 0.54

DistilBERT 61% 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48
FP16 eval. 100%† 0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48
Block Pruning (75%) 61% 0.72 0.85 0.24 0.83 0.83 0.86 0.87 0.52 0.88 0.56

SVD 0.68 0.83 0.00 0.79 0.79 0.85 0.87 0.59 0.87 0.49
FWSVD

49%
0.68 0.82 0.04 0.79 0.79 0.85 0.87 0.56 0.86 0.54

TTM 0.69 0.83 0.15 0.78 0.81 0.84 0.87 0.60 0.86 0.43
FWTTM 0.68 0.83 0.14 0.78 0.81 0.84 0.87 0.60 0.86 0.41

SVD 0.75 0.86 0.43 0.83 0.84 0.89 0.88 0.64 0.90 0.50
FWSVD

63%
0.77 0.87 0.47 0.83 0.85 0.89 0.88 0.65 0.90 0.56

TTM 0.70 0.85 0.10 0.81 0.81 0.86 0.88 0.61 0.88 0.49
FWTTM 0.70 0.85 0.15 0.82 0.82 0.86 0.86 0.62 0.89 0.46

SVD 0.78 0.89 0.56 0.84 0.88 0.91 0.89 0.68 0.91 0.44
FWSVD

95%
0.79 0.89 0.56 0.84 0.88 0.90 0.89 0.69 0.91 0.51

TTM 0.77 0.88 0.52 0.83 0.83 0.89 0.88 0.68 0.90 0.51
FWTTM 0.78 0.89 0.54 0.83 0.88 0.90 0.89 0.67 0.91 0.49

Table 6: Results of different types of compression of BERT for experiments with task-oriented fine-tuning,
compression, and further fine-tuning (Double-train). The best results at each model size are in bold, best overall
results are underlined. Standard deviations are included in Table 10 in the Appendix.

than for Double-train.
Incorporating Fisher information consistently

improves SVD and noticeably improves TTM at
high ranks without degrading its performance at
other ranks. TTM performs poorly on some tasks,
such as CoLA, but better on others, such as STSB
(see Figure 3). Low-rank compression methods, es-
pecially FWSVD, outperform fine-tuned baseline
models of approximately the same size at medium
compression rates.

We also observe that for Double-train, FWSVD
at 63% compression rate performs comparably or
better than Distillation and Pruning baselines and
could be combined with FP-16 quantization.

7 Experiments with sequence-to-sequence
models

We test different layer compression methods on the
encoder-decoder model BART (Lewis et al., 2020)
on two sequence-to-sequence tasks. Namely, we
test different compression methods on a subtask of
textual style transfer - text detoxification and the
task of text summarization. In our experiments, we
use bart-base checkpoint from the HuggingFace
(Wolf et al., 2019) model hub. Examples of models
generation are shown in the Appendix B

7.1 Text Summarization

In our text summarization experiments, we use the
XSUM dataset (Narayan et al., 2018), which con-
tains news articles and their corresponding single-

sentence summaries. We aim to train BART to
generate accurate and concise summaries of the
input articles.

We evaluate the performance of models using the
ROUGE metrics (Lin, 2004): we use ROUGE-1
and ROUGE-2 to measure the overlap between the
generated and reference summaries at the unigram
and bigram levels and ROUGE-L to measure the
longest common subsequence between the gener-
ated and reference summaries.

7.2 Results

We present the results for summarization on the
XSUM dataset in Table 8. In the Single-train setup,
FWSVD outperforms other methods across differ-
ent compression levels for all metrics. However, in
the Double-train pipeline, FWTTM emerges as the
top performer at low ranks, while TTM excels only
in the ROUGE-2 metric at high ranks. In terms of
the remaining metrics, SVD demonstrates superior
performance. Notably, the tensor and matrix com-
pression techniques used in the Double-train setup
exhibit improved results compared to the baselines.

As the number of ranks increases, the quality
of the model does not experience linear grow, but
gains quality at certain ranks. Lower ranks elicit
hallucinations while on the medium compression
levels the models tend to simply copy the input text.
Finally, at high ranks, the model restores the ability
to summarization. This is only observed for the
Single-train approach.

https://huggingface.co/facebook/bart-base

Pipeline Single-train Double-train

Method C. Rate STA SIM FL J STA SIM FL J

bart-base 100 % - - - - 0.89 0.60 0.82 0.44
FP16 eval. 100%† - - - 0.89 0.60 0.82 0.44
Block Pruning (95%) 63% - - - - 0.92 0.34 0.30 0.12
Block Pruning (65%) 74% - - - - 0.82 0.60 0.73 0.36

SVD 0.97 0.18 0.10 0.01 0.75 0.59 0.65 0.28
FWSVD

60%

0.32 0.46 0.58 0.07 0.78 0.59 0.68 0.30
TTM 0.97 0.19 0.16 0.03 0.74 0.58 0.64 0.27
FWTTM 0.82 0.17 0.14 0.01 0.77 0.59 0.69 0.30

SVD 0.85 0.21 0.14 0.03 0.82 0.60 0.77 0.38
FWSVD

74%

0.32 0.46 0.58 0.07 0.87 0.61 0.80 0.42
TTM 0.99 0.17 0.06 0.01 0.82 0.61 0.75 0.37
FWTTM 0.97 0.17 0.45 0.08 0.84 0.62 0.76 0.38

SVD 0.85 0.42 0.72 0.25 0.86 0.61 0.81 0.43
FWSVD

90%

0.70 0.64 0.82 0.35 0.87 0.61 0.81 0.43
TTM 0.49 0.60 0.71 0.18 0.86 0.61 0.80 0.41
FWTTM 0.44 0.68 0.78 0.21 0.86 0.62 0.82 0.43

Table 7: Results of different types of BART compression for detoxification experiments with task-oriented fine-
tuning, compression, and further fine-tuning (Single-train and Double-train). The best results at each model size are
in bold, best overall results are underlined. Italic results represent senseless model outputs.

SVD FWSVD TTM FWTTM
Compression method (63% size)

0.4

0.5

0.6

0.7

0.8

Av
g.

 sc
or

e

GLUE

SVD FWSVD TTM FWTTM
Compression method (60% size)

0.1

0.2

0.3

0.4

J s
co

re

Detox

SVD FWSVD TTM FWTTM
Compression method (60% size)

20

22

24

26

28

30

RO
UG

E-
L

XSUM

Figure 1: Comparison of compression methods for GLUE, detox, XSUM with Double-train setup.

7.3 Text Detoxification
Text detoxification aims to rewrite a sentence in
a rude form into a neutrally formulated sentence
while preserving its meaning.

We use the parallel dataset ParaDetox (Lo-
gacheva et al., 2022) in our experiments. This
dataset contains pairs of sentences in rude and neu-
tral forms, which allows us to train text detoxifi-
cation models in a way similar to neural machine
translation. The scale of the dataset also makes
training faster and more convenient. We follow the
evaluation pipeline presented by Logacheva et al.
(2022) and measure the performance of our models
using three metrics: STA (style transfer accuracy),
SIM (similarity), and FL (fluency of the generated
text). STA measures how well the model trans-
fers the style of the input sentence from rude to
neutral. SIM measures how similar the meaning
of the generated sentence is to the input sentence.
FL measures how fluent and natural the generated

sentence is.

7.4 Results

We depict the results of our experiments with com-
pression in Table 7 and provide the extended ver-
sion of the table with variations included in Ta-
ble 11. Text generation also preserves the trend
shown in language comprehension. However, un-
like GLUE, in the task of detoxification, all the
compressed models in the Single-train pipeline are
hallucinating and generating senseless tokens at
low and medium ranks. We depict these results
with italic.

Overall, FWSVD shows the best results at most
of the compression leves in all the metrics. Both
SVD and FWSVD, however, demonstrate com-
parable performance at low and high ranks with
FWSVD being slightly better than others in J met-
ric at 74% compression rate. Another important
notion is that FWTTM is almost always better

Pipeline Single-train Double-train

Metric ROUGE ROUGE

Method C. Rate 1 2 L 1 2 L

bart-base 100% 42.4 19.6 34.5 42.4 19.6 34.5
FP16 eval. 100% 32.8 11.0 25.5 32.8 11.0 25.5
Block Pruning (95%) 63% - - - 23.4 5.7 18.8
Block Pruning (65%) 74% - - - 34.6 12.2 27.9

SVD 6.3 0.5 5.2 35.6 13.4 28.2
FWSVD

60%

8.1 0.5 6.8 35.5 13.6 28.4
TTM 4.2 0.2 3.7 36.1 13.9 28.6
FWTTM 5.0 0.2 4.2 36.0 13.8 28.6

SVD 8.1 0.5 6.9 40.2 17.4 32.4
FWSVD

74%

21.2 4.4 16.5 40.6 17.8 32.9
TTM 6.0 0.4 4.9 39.3 16.7 31.5
FWTTM 7.3 0.4 5.9 39.6 16.9 31.8

SVD 30.8 9.9 23.8 41.6 18.8 33.8
FWSVD

90%

39.4 16.5 31.7 41.6 18.8 33.8
TTM 27.2 7.1 20.5 41.3 18.6 33.5
FWTTM 29.0 8.0 21.8 41.5 18.8 33.6

Table 8: Results of different types of compression of BART for experiments on XSUM dataset with task-oriented
fine-tuning and further compression (Single-train and Double-train). The best results at each model size are in bold,
best overall results are underlined. Italic results represent senseless model outputs.

than TTM, same applied for the pair of SVD and
FWSVD. Therefore, it is essential to highlight that
the Fisher information acquired for the language
modeling task also contributes to improvements in
metrics that are not directly related to LM (such as
STA and FL); moreover, they are obtained by the
auxiliary neural network model.

For the task of text detoxification compression
has also more inconsistent results. With double-
train approach quality of the models does grow lin-
early with ranks. But without additional finetuning
models leads to generate random texts up to 90%
compression rate (see Table 7) The exception is the
FWSVD method, which at least restores the ability
to generate meaningful text on 75% compress rate.
A high STA score should not be misleading, the
score itself is based on retrieving toxicity in the text,
and sentences of random tokens are not toxic. This
is also evident in the other metrics, which show
close to zero scores.

8 Conclusion

In the proposed work, we explore the Transformer
compression techniques that involve low-rank and
tensor decomposition of its most heavy part – fully-
connected layer that takes 50-60% of all the param-
eters depending on the exact model. We test the
performance of compressed BERT and BART mod-
els on natural language understanding and genera-

tion tasks and compare the suggested compression
with other popular approaches, such as pruning,
distillation, and quantization. Furthermore, for the
first time, we adapt the method proposed by Hsu
et al. (2022) to TTM decomposition by incorporat-
ing Fisher information, which measures the impor-
tance of individual layer parameters concerning the
training objectives.

Our experiments, summarized in Figure 1, show
that incorporating Fisher information (FW* mod-
els) consistently improves the quality of the com-
pression for both SVD and TTM. When address-
ing the NLU and the sequence-to-sequence prob-
lems, TTM and FWTTM approaches exhibit supe-
rior quality at lower ranks. Moreover, FWTTM
shows comparable performance to FWSVD at
95% compression rate. In generating non-toxic
text, FWTTM outperforms other methods across
most metrics. However, a notable difference in
metrics STA and FL distinguishes it from SIM
behavior. As the compression ratio decreases,
the performance gap between the methods dimin-
ishes. At a medium compression level, baseline
approaches based on training-aware distillation,
pruning, and quantization, demonstrate inferior or
comparable performance to the respective in each
group decomposition-based methods.

9 Limitations

In this section, we discuss the limitations of this
work. First, the TTM algorithm requires more
hyperparameters: core ranks, core shapes and so
on. Moreover, despite being better at low and
medium ranks, TTM and FWTTM have a notice-
able drawback. As it can be seen from Table 3,
forward passes for models, compressed with TTM
and FWTTM, are slower than for SVD and even
the original fully-connected layer. This is due to
the fact that both in TTM and FWTTM contain
more tensors, and actual multiplications require
more time and power.

10 Potential Risks and Ethical
Considerations

On the one hand, training large models from scratch
can harm the environment due to resource wastage.
However, our proposed model mitigates this issue
by significantly reducing the number of parameters
and floating point operations required for learning
and fine-tuning, thereby minimizing resource con-
sumption. This approach can potentially reduce the
cost of training models to achieve desired perfor-
mance levels in the future.

Additionally, it is important to highlight our com-
mitment to ethical practices. We strictly adhere to
the principle of not using private data or data that
contains confidential, harmful, or discriminatory
information. Instead, we rely on publicly available
pre-trained models and datasets from the Hugging
Face repository.

By acknowledging these potential risks and up-
holding ethical standards, we aim to ensure respon-
sible and sustainable research practices.

11 Acknowledgements

The work was supported by the Center in the field
of Artificial Intelligence in the direction of opti-
mizing management decisions to reduce the carbon
footprint on the basis of the Skolkovo Institute of
Science and Technology under Contract No. 70-
2021-00145/10841 dated 02.11.2021.

References

Christopher M. Bishop and Nasser M. Nasrabadi.
2007. Pattern Recognition and Machine Learn-
ing. J. Electronic Imaging, 16(4):049901.

SA Budennyy, VD Lazarev, NN Zakharenko,
AN Korovin, OA Plosskaya, DV Dimitrov,

VS Akhripkin, IV Pavlov, IV Oseledets, IS Bar-
sola, et al. 2023. Eco2ai: carbon emissions track-
ing of machine learning models as the first step
towards sustainable ai. In Doklady Mathematics,
pages 1–11. Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume
1 (Long and Short Papers), pages 4171–4186.
Association for Computational Linguistics.

Timur Garipov, Dmitry Podoprikhin, Alexander
Novikov, and Dmitry P. Vetrov. 2016. Ultimate
tensorization: compressing convolutional and
FC layers alike. CoRR, abs/1611.03214.

Benjamin Hawks, Javier M. Duarte, Nicholas J.
Fraser, Alessandro Pappalardo, Nhan Tran,
and Yaman Umuroglu. 2021. Ps and qs:
Quantization-aware pruning for efficient low la-
tency neural network inference. Frontiers Artif.
Intell., 4:676564.

Yihui He, Xiangyu Zhang, and Jian Sun. 2017.
Channel pruning for accelerating very deep neu-
ral networks. In IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017, pages 1398–1406. IEEE
Computer Society.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey
Dean. 2015. Distilling the knowledge in a neural
network. CoRR, abs/1503.02531.

Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mir-
vakhabova, Elena D. Orlova, and Ivan V. Os-
eledets. 2020. Tensorized embedding layers. In
Findings of the Association for Computational
Linguistics: EMNLP 2020, Online Event, 16-20
November 2020, volume EMNLP 2020 of Find-
ings of ACL, pages 4847–4860. Association for
Computational Linguistics.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian
Lou, Yilin Shen, and Hongxia Jin. 2022. Lan-
guage model compression with weighted low-
rank factorization. In The Tenth International
Conference on Learning Representations, ICLR

https://doi.org/10.1117/1.2819119
https://doi.org/10.1117/1.2819119
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
http://arxiv.org/abs/1611.03214
http://arxiv.org/abs/1611.03214
http://arxiv.org/abs/1611.03214
https://doi.org/10.3389/frai.2021.676564
https://doi.org/10.3389/frai.2021.676564
https://doi.org/10.3389/frai.2021.676564
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1109/ICCV.2017.155
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2020.findings-emnlp.436
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=uPv9Y3gmAI5
https://openreview.net/forum?id=uPv9Y3gmAI5

2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net.

Peng Hu, Xi Peng, Hongyuan Zhu, Mohamed
M. Sabry Aly, and Jie Lin. 2021. OPQ: com-
pressing deep neural networks with one-shot
pruning-quantization. In Thirty-Fifth AAAI Con-
ference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2021, The
Eleventh Symposium on Educational Advances
in Artificial Intelligence, EAAI 2021, Virtual
Event, February 2-9, 2021, pages 7780–7788.
AAAI Press.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2020. Tinybert: Distilling BERT for natural
language understanding. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP
2020, Online Event, 16-20 November 2020, vol-
ume EMNLP 2020 of Findings of ACL, pages
4163–4174. Association for Computational Lin-
guistics.

Zhenzhong Lan, Mingda Chen, Sebastian Good-
man, Kevin Gimpel, Piyush Sharma, and Radu
Soricut. 2020. ALBERT: A lite BERT for
self-supervised learning of language representa-
tions. In 8th International Conference on Learn-
ing Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: denoising sequence-to-sequence
pre-training for natural language generation,
translation, and comprehension. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 7871–7880. Association
for Computational Linguistics.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan
Samet, and Hans Peter Graf. 2017. Pruning fil-
ters for efficient convnets. In 5th International
Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summa-
rization Branches Out, pages 74–81, Barcelona,

Spain. Association for Computational Linguis-
tics.

Varvara Logacheva, Daryna Dementieva, Sergey
Ustyantsev, Daniil Moskovskiy, David Dale,
Irina Krotova, Nikita Semenov, and Alexander
Panchenko. 2022. Paradetox: Detoxification
with parallel data. In Proceedings of the 60th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages
6804–6818. Association for Computational Lin-
guistics.

Paul Michel, Omer Levy, and Graham Neubig.
2019. Are sixteen heads really better than one?
In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Infor-
mation Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada,
pages 14014–14024.

Hoang Pham Minh, Nguyen Nguyen Xuan, and
Tran Thai Son. 2022. Tt-vit: Vision transformer
compression using tensor-train decomposition.
In Computational Collective Intelligence - 14th
International Conference, ICCCI 2022, Ham-
mamet, Tunisia, September 28-30, 2022, Pro-
ceedings, volume 13501 of Lecture Notes in
Computer Science, pages 755–767. Springer.

Shashi Narayan, Shay B. Cohen, and Mirella La-
pata. 2018. Don’t give me the details, just the
summary! topic-aware convolutional neural net-
works for extreme summarization. In Proceed-
ings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, pages
1797–1807. Association for Computational Lin-
guistics.

Ivan V. Oseledets, Eugene E. Tyrtyshnikov, and
Nickolai Zamarashkin. 2011. Tensor-train ranks
for matrices and their inverses. Comput. Methods
Appl. Math., 11(3):394–403.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. Pytorch: An imperative style, high-

https://ojs.aaai.org/index.php/AAAI/article/view/16950
https://ojs.aaai.org/index.php/AAAI/article/view/16950
https://ojs.aaai.org/index.php/AAAI/article/view/16950
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=rJqFGTslg
https://openreview.net/forum?id=rJqFGTslg
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.18653/v1/2022.acl-long.469
https://doi.org/10.18653/v1/2022.acl-long.469
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://doi.org/10.1007/978-3-031-16014-1_59
https://doi.org/10.1007/978-3-031-16014-1_59
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.2478/cmam-2011-0022
https://doi.org/10.2478/cmam-2011-0022
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

performance deep learning library. In Advances
in Neural Information Processing Systems 32:
Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December
8-14, 2019, Vancouver, BC, Canada, pages 8024–
8035.

Victor Sanh, Lysandre Debut, Julien Chaumond,
and Thomas Wolf. 2019. Distilbert, a distilled
version of BERT: smaller, faster, cheaper and
lighter. CoRR, abs/1910.01108.

Victor Sanh, Thomas Wolf, and Alexander M.
Rush. 2020. Movement pruning: Adaptive spar-
sity by fine-tuning. In Advances in Neural Infor-
mation Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, vir-
tual.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel R. Bowman.
2019. GLUE: A multi-task benchmark and anal-
ysis platform for natural language understand-
ing. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net.

Zheng Wang, Juncheng B. Li, Shuhui Qu, Flo-
rian Metze, and Emma Strubell. 2022. Squat:
Sharpness- and quantization-aware training for
BERT. CoRR, abs/2210.07171.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, and Jamie Brew. 2019. Hugging-
face’s transformers: State-of-the-art natural lan-
guage processing. CoRR, abs/1910.03771.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov,
and William W. Cohen. 2018. Breaking the soft-
max bottleneck: A high-rank RNN language
model. In 6th International Conference on
Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net.

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/eae15aabaa768ae4a5993a8a4f4fa6e4-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.48550/arXiv.2210.07171
https://doi.org/10.48550/arXiv.2210.07171
https://doi.org/10.48550/arXiv.2210.07171
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ
https://openreview.net/forum?id=HkwZSG-CZ

A Extended Results

In this section we provide extended results for all the experiments with average scores and standard
deviations over runs with 5 different random seeds. Note that for all the experiments with BERT
and BART, for both pipelines, Single-train and Double-train, adding Fisher information improves the
performance of FWTTM over the standard TTM approach.

Method Size AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

bert-base 100% 0.79 0.88 0.57 0.84 0.90 0.91 0.87 0.67 0.92 0.54

DistilBERT 61% 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48
bert-base FP-16 100%† 0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48
Block Pruning (75%) 61% 0.72 0.85 0.24 0.83 0.83 0.86 0.87 0.52 0.88 0.56

SVD 0.37 ± 0.01 0.24 ± 0.12 0.00 ± 0.00 0.36 ± 0.01 0.20 ± 0.09 0.50 ± 0.02 0.47 ± 0.10 0.48 ± 0.01 0.52 ± 0.02 0.51 ± 0.07
FWSVD

49%
0.38 ± 0.03 0.25 ± 0.15 0.10 ± 0.01 0.33 ± 0.01 0.39 ± 0.33 0.50 ± 0.01 0.40 ± 0.11 0.49 ± 0.03 0.51 ± 0.01 0.56 ± 0.00

TTM 0.44 ± 0.02 0.58 ± 0.06 0.02 ± 0.03 0.37 ± 0.01 0.25 ± 0.22 0.56 ± 0.01 0.43 ± 0.17 0.50 ± 0.03 0.72 ± 0.02 0.51 ± 0.07
FWTTM 0.44 ± 0.07 0.58 ± 0.08 0.01 ± 0.02 0.37 ± 0.00 0.26 ± 0.23 0.56 ± 0.02 0.42 ± 0.14 0.50 ± 0.04 0.70 ± 0.03 0.51 ± 0.07

SVD 0.45 ± 0.02 0.63 ± 0.07 0.01 ± 0.02 0.36 ± 0.01 0.22 ± 0.11 0.51 ± 0.03 0.54 ± 0.06 0.54 ± 0.06 0.78 ± 0.03 0.48 ± 0.07
FWSVD

63%
0.55 ± 0.03 0.54 ± 0.10 0.07 ± 0.03 0.52 ± 0.02 0.55 ± 0.20 0.62 ± 0.02 0.70 ± 0.07 0.58 ± 0.05 0.79 ± 0.05 0.55 ± 0.02

TTM 0.44 ± 0.02 0.65 ± 0.03 0.01 ± 0.02 0.40 ± 0.02 0.16 ± 0.00 0.54 ± 0.06 0.52 ± 0.14 0.48 ± 0.00 0.74 ± 0.03 0.48 ± 0.08
FWTTM 0.47 ± 0.05 0.71 ± 0.02 0.00 ± 0.02 0.43 ± 0.02 0.18 ± 0.04 0.64 ± 0.07 0.56 ± 0.14 0.47 ± 0.01 0.72 ± 0.06 0.49 ± 0.07

SVD 0.70 ± 0.02 0.81 ± 0.02 0.26 ± 0.14 0.82 ± 0.00 0.69 ± 0.22 0.88 ± 0.00 0.87 ± 0.01 0.53 ± 0.06 0.90 ± 0.01 0.53 ± 0.08
FWSVD

95%
0.78 ± 0.01 0.88 ± 0.00 0.55 ± 0.02 0.84 ± 0.00 0.87 ± 0.01 0.90 ± 0.00 0.88 ± 0.01 0.64 ± 0.01 0.92 ± 0.01 0.55 ± 0.04

TTM 0.76 ± 0.01 0.87 ± 0.00 0.52 ± 0.02 0.79 ± 0.00 0.86 ± 0.01 0.87 ± 0.01 0.86 ± 0.00 0.65 ± 0.01 0.91 ± 0.01 0.48 ± 0.01
FWTTM 0.77 ± 0.02 0.88 ± 0.00 0.56 ± 0.02 0.83 ± 0.00 0.88 ± 0.01 0.90 ± 0.00 0.88 ± 0.01 0.66 ± 0.01 0.92 ± 0.01 0.46 ± 0.10

Table 9: Results of different types of compression of BERT for experiment with task-oriented fine-tuning and further
compression (Single-train). The best results at each model size are in bold, best overall results are underlined.

Method Size AVG STSB CoLA MNLI MRCP QNLI QQP RTE SST2 WNLI

bert-base 100% 0.79 0.88 0.57 0.84 0.90 0.91 0.87 0.67 0.92 0.54

DistilBERT 61% 0.76 0.87 0.51 0.82 0.87 0.89 0.88 0.59 0.91 0.48
bert-base FP-16 100%† 0.78 0.88 0.55 0.83 0.88 0.90 0.88 0.67 0.91 0.48
B.P. (75%) 61% 0.72 0.85 0.24 0.83 0.83 0.86 0.87 0.52 0.88 0.56

SVD 0.68 ± 0.01 0.83 ± 0.00 0.00 ± 0.01 0.79 ± 0.01 0.79 ± 0.01 0.85 ± 0.00 0.87 ± 0.00 0.59 ± 0.01 0.87 ± 0.00 0.49 ± 0.08
FWSVD

49%
0.68 ± 0.01 0.82 ± 0.01 0.04 ± 0.05 0.79 ± 0.00 0.79 ± 0.00 0.85 ± 0.01 0.87 ± 0.00 0.56 ± 0.03 0.86 ± 0.00 0.54 ± 0.06

TTM 0.69 ± 0.01 0.83 ± 0.00 0.15 ± 0.01 0.78 ± 0.00 0.81 ± 0.01 0.84 ± 0.00 0.87 ± 0.00 0.60 ± 0.01 0.86 ± 0.01 0.43 ± 0.08
FWTTM 0.68 ± 0.01 0.83 ± 0.00 0.14 ± 0.02 0.78 ± 0.00 0.81 ± 0.00 0.84 ± 0.00 0.87 ± 0.00 0.60 ± 0.01 0.86 ± 0.00 0.41 ± 0.09

SVD 0.75 ± 0.02 0.86 ± 0.00 0.43 ± 0.02 0.83 ± 0.00 0.84 ± 0.01 0.89 ± 0.00 0.88 ± 0.01 0.64 ± 0.02 0.90 ± 0.01 0.50 ± 0.10
FWSVD

63%
0.77 ± 0.00 0.87 ± 0.00 0.47 ± 0.02 0.83 ± 0.00 0.85 ± 0.01 0.89 ± 0.01 0.88 ± 0.01 0.65 ± 0.01 0.90 ± 0.01 0.56 ± 0.01

TTM 0.70 ± 0.01 0.85 ± 0.00 0.10 ± 0.10 0.81 ± 0.00 0.81 ± 0.01 0.86 ± 0.00 0.88 ± 0.01 0.61 ± 0.01 0.88 ± 0.00 0.49 ± 0.09
FWTTM 0.70 ± 0.02 0.85 ± 0.00 0.15 ± 0.05 0.82 ± 0.00 0.82 ± 0.01 0.86 ± 0.00 0.88 ± 0.01 0.62 ± 0.02 0.89 ± 0.01 0.46 ± 0.06

SVD 0.78 ± 0.01 0.89 ± 0.00 0.56 ± 0.02 0.84 ± 0.00 0.88 ± 0.02 0.91 ± 0.00 0.89 ± 0.01 0.68 ± 0.01 0.91 ± 0.01 0.44 ± 0.08
FWSVD

95%
0.79 ± 0.04 0.89 ± 0.00 0.56 ± 0.03 0.84 ± 0.00 0.88 ± 0.01 0.90 ± 0.00 0.89 ± 0.01 0.69 ± 0.01 0.91 ± 0.01 0.51 ± 0.08

TTM 0.77 ± 0.05 0.88 ± 0.00 0.52 ± 0.03 0.83 ± 0.00 0.83 ± 0.06 0.89 ± 0.00 0.88 ± 0.00 0.68 ± 0.02 0.90 ± 0.00 0.51 ± 0.07
FWTTM 0.78 ± 0.02 0.89 ± 0.00 0.54 ± 0.01 0.83 ± 0.00 0.88 ± 0.01 0.90 ± 0.00 0.89 ± 0.00 0.67 ± 0.04 0.91 ± 0.01 0.49 ± 0.07

Table 10: Results of different types of compression of BERT for experiments with task-oriented fine-tuning,
compression, and further fine-tuning (Double-train). The best results at each model size are in bold, best overall
results are underlined.

According to the Table 9, both TTM and FWTTM provide the best average score across all tasks.
Moving on to the lower compression rates, FWTTM is outperforming both TTM and vanilla SVD
approach, having 0.47 average GLUE score compared to 0.44 and 0.45 for TTM and SVD, respectively.
Moreover, on the 95% compression rate despite being slightly worse than FWSVD on average, FWTTM
demonstrates better scores for CoLA, the most challenging task from the whole dataset.

In the Double-train setup (Table 10), FWSVD performs better than others in terms of the average scores.
FwTTM, however, shows comparable to FWSVD performance at 49% and 95% compression rates being
0.01 worse on average, but this difference is not statistically significant.

For the task of detoxification, in the Single-train setup, all the models fail to generate anything
meaningful on all the compression rates up to 90% (see Table 11), the same is correct for summarization
(Table 12). We provide generation examples for both detoxification and summarization in Tables 13 and
14, respectively.

In the Double-train pipeline FWTTM is the best by SIM, FL and J at 60% compression rate, and has
the best overall SIM score at 90% comression rate.

Pipeline Single-train Double-train

Method C. Rate STA SIM FL J STA SIM FL J

bart-base 100 % 0.89 0.60 0.82 0.44 0.89 0.60 0.82 0.44
FP16 eval.† 100 % 0.89 0.60 0.82 0.44 0.89 0.60 0.82 0.44
B.P. (95%) 63% - - - - 0.92 0.34 0.30 0.12
B.P. (65%) 74% - - - - 0.82 0.60 0.73 0.36

SVD 0.97 ± 0.04 0.18 ± 0.01 0.10 ± 0.05 0.01 ± 0.02 0.75 ± 0.01 0.59 ± 0.01 0.65 ± 0.01 0.28 ± 0.01
FWSVD

60%

0.32 ± 0.01 0.46 ± 0.01 0.58 ± 0.01 0.07 ± 0.01 0.78 ± 0.02 0.59 ± 0.01 0.68 ± 0.00 0.30 ± 0.01
TTM 0.97 ± 0.04 0.19 ± 0.02 0.16 ± 0.04 0.03 ± 0.01 0.74 ± 0.02 0.58 ± 0.01 0.64 ± 0.02 0.27 ± 0.01
FWTTM 0.82 ± 0.03 0.17 ± 0.02 0.14 ± 0.02 0.01 ± 0.01 0.77 ± 0.00 0.59 ± 0.00 0.69 ± 0.00 0.30 ± 0.00

SVD 0.85 ± 0.06 0.21 ± 0.01 0.14 ± 0.05 0.03 ± 0.01 0.82 ± 0.01 0.60 ± 0.01 0.77 ± 0.01 0.38 ± 0.01
FWSVD

74%

0.32 ± 0.01 0.46 ± 0.01 0.58 ± 0.01 0.07 ± 0.01 0.87 ± 0.00 0.61 ± 0.01 0.80 ± 0.01 0.42 ± 0.01
TTM 0.99 ± 0.02 0.17 ± 0.01 0.06 ± 0.07 0.01 ± 0.01 0.82 ± 0.01 0.61 ± 0.01 0.75 ± 0.01 0.37 ± 0.01
FWTTM 0.97 ± 0.01 0.17 ± 0.02 0.45 ± 0.00 0.08 ± 0.01 0.84 ± 0.01 0.62 ± 0.00 0.76 ± 0.01 0.38 ± 0.01

SVD 0.85 ± 0.01 0.42 ± 0.01 0.72 ± 0.01 0.25 ± 0.01 0.86 ± 0.00 0.61 ± 0.00 0.81 ± 0.00 0.43 ± 0.00
FWSVD

90%

0.70 ± 0.10 0.64 ± 0.01 0.82 ± 0.00 0.35 ± 0.01 0.87 ± 0.01 0.61 ± 0.00 0.81 ± 0.00 0.43 ± 0.00
TTM 0.49 ± 0.17 0.60 ± 0.01 0.71 ± 0.00 0.18 ± 0.01 0.86 ± 0.01 0.61 ± 0.00 0.80 ± 0.01 0.41 ± 0.01
FWTTM 0.44 ± 0.02 0.68 ± 0.01 0.78 ± 0.02 0.21 ± 0.01 0.86 ± 0.00 0.62 ± 0.00 0.82 ± 0.00 0.43 ± 0.00

Table 11: Results of different types of compression for the bart-base model for experiments with detoxification
with task-oriented fine-tuning, compression, and further fine-tuning (Single-train and Double-train). The best results
at each model size are in bold, best overall results are underlined. Italic results represent senseless model outputs.

Pipeline Single-train Double-train

Metric ROUGE ROUGE

Method C. Rate 1 2 L 1 2 L

bart-base 100% 42.4 19.6 34.5 42.4 19.6 34.5
FP16 eval. 100% 32.8 11.0 25.5 32.8 11.0 25.5
Block Pruning (95%) 63% - - - 23.4 5.7 18.8
Block Pruning (65%) 74% - - - 34.6 12.2 27.9

SVD 6.3 ± 0.6 0.5 ± 0.1 5.2 ± 0.4 35.6 ± 0.0 13.4 ± 0.0 28.2 ± 0.0
FWSVD

60%

8.1 ± 2.3 0.5 ± 0.2 6.8 ± 1.7 35.8 ± 0.1 13.6 ± 0.0 28.4 ± 0.1
TTM 4.2 ± 0.4 0.2 ± 0.0 3.7 ± 0.4 36.1 ± 0.1 13.9 ± 0.1 28.6 ± 0.1
FWTTM 5.0 ± 0.6 0.2 ± 0.0 4.2 ± 0.5 36.0 ± 0.1 13.8 ± 0.1 28.6 ± 0.1

SVD 8.1 ± 1.3 0.5 ± 0.2 6.9 ± 1.0 40.2 ± 0.1 17.4 ± 0.1 32.4 ± 0.0
FWSVD

74%

21.2 ± 0.9 4.4 ± 0.4 16.5 ± 0.6 40.6 ± 0.1 17.8 ± 0.1 32.9 ± 0.1
TTM 6.0 ± 1.6 0.4 ± 0.2 4.9 ± 1.3 39.3 ± 0.1 16.7 ± 0.1 31.5 ± 0.1
FWTTM 7.3 ± 1.7 0.4 ± 0.2 5.9 ± 1.2 39.6 ± 0.1 16.9 ± 0.0 31.8 ± 0.0

SVD 30.8 ± 0.9 9.9 ± 0.5 23.8 ± 0.8 41.6 ± 0.1 18.8 ± 0.0 33.8 ± 0.1
FWSVD

90%

39.4 ± 0.2 16.5 ± 0.1 31.7 ± 0.1 41.6 ± 0.1 18.8 ± 0.1 33.8 ± 0.1
TTM 27.2 ± 0.3 7.1 ± 0.3 20.5 ± 0.4 41.3 ± 0.1 18.6 ± 0.1 33.5 ± 0.1
FWTTM 29.0 ± 0.3 8.0 ± 0.2 21.8 ± 0.3 41.5 ± 0.1 18.8 ± 0.0 33.6 ± 0.1

Table 12: Results of different types of compression of BART for experiments on XSUM dataset with task-oriented
fine-tuning and further compression (Single-train and Double-train). The best results at each model size are in bold,
best overall results are underlined. Italic results represent senseless model outputs.

In summarization, FWSVD is a leader in both Single-train and Double-train pipelines. Moreover,
FWSVD is the only method not to hallucinate at 74% compression rate in Single-train. FWTTM, however,
consistently outperforms TTM by most metrics on all compression rates in the Double-train pipeline.

B Generation examples for Sequence-to-Sequence Tasks

Approach C. Rate Source (toxic) Generated (neural)

Ground
Truth

- or are you pulling this out of your ass ? Are you making things up out of thin air?

this piece of human garbage should rot in jail. this criminal should be in jail

bart-detox - or are you pulling this out of your ass ? or are you pulling this out of your behind?.

this piece of human garbage should rot in jail. this piece of human should rot in jail.

SVD 60% or are you pulling this out of your ass ? worldly, you you you your your your life life
life...The South South South south south south

this piece of human garbage should rot in jail. worldly. garbage garbage garbage, human hu-
man human::: jail jail. jail. The prison.

TTM 60% or are you pulling this out of your ass ? in the D D D M M M S S S N N N T T T Th Th
Th

this piece of human garbage should rot in jail. in the jail jail jail prison prison prison back back
back D D D T T T M M

FWSVD 60% or are you pulling this out of your ass ? absoror are you pull pull pull out out out of the
ass ass ass???...

this piece of human garbage should rot in jail. this piece piece piece human human human
garbage garbage rot rot rot in jail jail jail prison
jail jail

FWTTM 60% or are you pulling this out of your ass ? in the D D D D D D D D D D D D D D D D D
D D D

this piece of human garbage should rot in jail. in the prison prison prison prison prison D D D
D D D D D D D D D D D

SVD 74% or are you pulling this out of your ass ? you are not out of the country. may may be be
your out out out on out out

this piece of human garbage should rot in jail. this garbage garbage garbage trash trash trash
be jail jail. not jail jail jail prison. jail jail

TTM 74% or are you pulling this out of your ass ? , is is just just just about about about the other
other other line line line....

this piece of human garbage should rot in jail. not not be be be in other other other line line
line lines lines lines....

FWSVD 74% or are you pulling this out of your ass ? or are you pulling this out out out of your
ass?...,.. 3.

this piece of human garbage should rot in jail. this piece of human garbage should rot rot rot in
jail....,..).

FWTTM 74% or are you pulling this out of your ass ? in the t

this piece of human garbage should rot in jail. to be be be be be be be be be be be be be be be
be be be be be be be be be be be be be be be be
be

SVD 90% or are you pulling this out of your ass ? or are you pulling this out of you?I don’t know,
I’m in a bad mood

this piece of human garbage should rot in jail. This piece should rot in jail.It’s not good to have
it jailed.

TTM 90% or are you pulling this out of your ass ? or are you pulling this out of your ass?.

this piece of human garbage should rot in jail. This piece of human garbage should rot in jail.

FWSVD 90% or are you pulling this out of your ass ? or are you pulling this out of your behind?.

this piece of human garbage should rot in jail. this piece of human should rot in jail.

FWTTM 90% or are you pulling this out of your ass ? Or are you pulling this out?

this piece of human garbage should rot in jail. this piece of human garbage should rot in jail.

Table 13: Detoxification examples for different bart-base compression ratios for fine-tuning and further compres-
sion (Single-train). Senseless outputs depicted with italic.

Approach C. Rate Examples

Document - Four police officers were injured in the incident on Friday night. A man, aged 19, and a boy,
aged 16, have been charged with six counts of aggravated vehicle taking. They are due to appear
before Belfast Magistrates’ Court on Monday. The 19-year-old man has also been charged with
driving while disqualified and using a motor vehicle without insurance.

Summary - Two teenagers have been charged in connection with an incident in west Belfast in which a car
collided with two police vehicles.

SVD 60% in the the the 19 19— man man man woman woman woman man man in in in a a driving driving
driving

TTM 60% in the the the police police police in a a a one one one the

FWSVD 60% in in in the the the as as as a a a in a a morning morning morning

FWTTM 60% in in in the the the police police police in a a a high high high High

SVD 74% a a " """")))):):):: the the the range of range range range ranges ranges ranges between between
between

TTM 74% ...::: T T T had had had been been a a a other other other have have have

FWSVD 74% Two men have been charged with six counts of the aggravated vehicle taking.

FWTTM 74% people people people, have have have been been been in a a political political political

SVD 90% A man and a woman have been charged with a series of offences, including a charge of possession
of a vehicle without a licence or licence licence.

TTM 90% Three men have been charged with offences relating relating to a police incident in north west
west west.

FWSVD 90% Four people have been charged after a car was stolen during a police operation in Belfast.

FWTTM 90% Two men have been charged with offences of aggravated vehicle taking, following a police
incident in Belfast.

Table 14: Summarization examples for different bart-base compression ratios for fine-tuning and further compres-
sion (Single-train). Senseless outputs depicted with italic.

C Experimental details

Dataset Learning Rate Epochs Batch Size Weight Decay Dropout Max Length

GLUE (Single-train) 5e-5 3 32 0.01 0.1 512
GLUE (Double-train) 2e-5 3 32 0.0 0.1 512
XSUM (Single-train) 8e-5 5 32 0.01 0.1 512
XSUM (Double-train) 3e-5 3 32 0.01 0.1 512
ParaDetox (Single-train) 5e-5 5 16 1e-5 0.1 512
ParaDetox (Double-train) 1e-5 3 16 1e-5 0.1 512

Table 15: Hyperparameters for the experiments.

This section provides additional experimental setups to supplement the main experimental section.
We conducted experiments on 4 NVIDIA RTX 3090 GPUs, with 5 different random seeds per each
experiment. We have optimized hyperparameters for each experiment individually for all the values
specified on the corresponding row in table 15. The weight hyperparameter 𝜆 is adjusted over the range of
0 to 0.1, using a step size of 0.005. For each step, three tasks were taken from GLUE: STSB, CoLA, and
RTE and two tables were constructed for the Single-train and Double-train setups. We selected the best 𝜆
value in terms of performance quality on these tasks. The final hyperparameter 𝜆 = 0.06 was used for all
experiments.

D Additional plots for all experimental setups

0.5 0.6 0.7 0.8 0.9
compressed / original

0.00

0.20

0.40

0.60

M
at

th
ew

s's
 c

or
re

la
tio

n

FWSVD
BERT ft
SVD
TTM
FWTTM

CoLA

0.5 0.6 0.7 0.8 0.9
compressed / original

0.20

0.40

0.60

0.80

F1

FWSVD
BERT ft
SVD
TTM
FWTTM

MRPC

0.5 0.6 0.7 0.8 0.9
compressed / original

0.30

0.40

0.50

0.60

0.70

0.80

Ac
cu

ra
cy FWSVD

BERT ft
SVD
TTM
FWTTM

MNLI-m / MNLI-mm

0.5 0.6 0.7 0.8 0.9
compressed / original

0.50

0.60

0.70

0.80

0.90

Ac
cu

ra
cy FWSVD

BERT ft
SVD
TTM
FWTTM

QNLI

0.5 0.6 0.7 0.8 0.9
compressed / original

0.40

0.60

0.80
F1

FWSVD
BERT ft
SVD
TTM
FWTTM

QQP

0.5 0.6 0.7 0.8 0.9
compressed / original

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

FWSVD
BERT ft
SVD
TTM
FWTTM

RTE

0.5 0.6 0.7 0.8 0.9
compressed / original

0.50

0.60

0.70

0.80

0.90

Ac
cu

ra
cy

FWSVD
BERT ft
SVD
TTM
FWTTM

SST-2

0.5 0.6 0.7 0.8 0.9
compressed / original

0.40

0.50

0.60

0.70

0.80

0.90

Pe
ar

so
n

co
rre

la
tio

n

FWSVD
BERT ft
SVD
TTM
FWTTM

STSB

0.5 0.6 0.7 0.8 0.9
compressed / original

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

FWSVD
BERT ft
SVD
TTM
FWTTM

WNLI

0.5 0.6 0.7 0.8 0.9
compressed / original

0.40

0.50

0.60

0.70

0.80

Ac
g.

 sc
or

e

FWSVD
BERT ft
SVD
TTM
FWTTM

GLUE

Figure 2: Performance of bert-base-uncased model with task-oriented fine-tuning and further compression
(Single-train) on a GLUE benchmark.

0.5 0.6 0.7 0.8 0.9
compressed / original

0.00

0.20

0.40

0.60

M
at

th
ew

s's
 c

or
re

la
tio

n

FWSVD
BERT ft
SVD
TTM
FWTTM

CoLA

0.5 0.6 0.7 0.8 0.9
compressed / original

0.78

0.80

0.82

0.85

0.88

0.90

F1
FWSVD
BERT ft
SVD
TTM
FWTTM

MRPC

0.5 0.6 0.7 0.8 0.9
compressed / original

0.78

0.80

0.82

0.84

Ac
cu

ra
cy

FWSVD
BERT ft
SVD
TTM
FWTTM

MNLI-m / MNLI-mm

0.5 0.6 0.7 0.8 0.9
compressed / original

0.80

0.82

0.84

0.86

0.88

0.90

Ac
cu

ra
cy

FWSVD
BERT ft
SVD
TTM
FWTTM

QNLI

0.5 0.6 0.7 0.8 0.9
compressed / original

0.80

0.82

0.84

0.86

0.88

0.90

F1

FWSVD
BERT ft
SVD
TTM
FWTTM

QQP

0.5 0.6 0.7 0.8 0.9
compressed / original

0.50

0.60

0.70

Ac
cu

ra
cy

FWSVD
BERT ft
SVD
TTM
FWTTM

RTE

0.5 0.6 0.7 0.8 0.9
compressed / original

0.86

0.88

0.90

0.92

Ac
cu

ra
cy

FWSVD
BERT ft
SVD
TTM
FWTTM

SST-2

0.5 0.6 0.7 0.8 0.9
compressed / original

0.82

0.84

0.86

0.88

Pe
ar

so
n

co
rre

la
tio

n

FWSVD
BERT ft
SVD
TTM
FWTTM

STSB

0.5 0.6 0.7 0.8 0.9
compressed / original

0.35

0.40

0.45

0.50

0.55

Ac
cu

ra
cy

FWSVD
BERT ft
SVD
TTM
FWTTM

WNLI

0.5 0.6 0.7 0.8 0.9
compressed / original

0.60

0.65

0.70

0.75

0.80

Av
g.

sc
or

e

FWSVD
BERT ft
SVD
TTM
FWTTM

GLUE

Figure 3: Performance of bert-base-uncased model with task-oriented fine-tuning, compression and further
fine-tuning (Double-train) on a GLUE benchmark.

0.6 0.7 0.8 0.9
compressed / original

0.4

0.6

0.8

1.0

ST
A

FWSVD
BART ft
SVD
TTM
FWTTM

Style Transfer Accuracy

0.6 0.7 0.8 0.9
compressed / original

0.2

0.4

0.6

SI
M

FWSVD
BART ft
SVD
TTM
FWTTM

Content Similarity

0.6 0.7 0.8 0.9
compressed / original

0.0

0.2

0.4

0.6

0.8

FL

FWSVD
BART ft
SVD
TTM
FWTTM

Fluency

0.6 0.7 0.8 0.9
compressed / original

0.0

0.1

0.2

0.3

0.4

J

FWSVD
BART ft
SVD
TTM
FWTTM

Joint score

Figure 4: Performance of bart-base model with task-oriented fine-tuning and further compression (Single-train)
on a text detoxification task.

0.6 0.7 0.8 0.9
compressed / original

0.75

0.80

0.85

ST
A

FWSVD
BART ft
SVD
TTM
FWTTM

Style Transfer Accuracy

0.6 0.7 0.8 0.9
compressed / original

0.500

0.525

0.550

0.575

0.600

0.625

SI
M

FWSVD
BART ft
SVD
TTM
FWTTM

Content Similarity

0.6 0.7 0.8 0.9
compressed / original

0.65

0.70

0.75

0.80

FL

FWSVD
BART ft
SVD
TTM
FWTTM

Fluency

0.6 0.7 0.8 0.9
compressed / original

0.25

0.30

0.35

0.40

0.45

J

FWSVD
BART ft
SVD
TTM
FWTTM

Joint score

Figure 5: Performance of bart-base model with task-oriented fine-tuning, compression and further fine-tuning
(Double-train) on a text detoxification task.

0.6 0.7 0.8 0.9
compressed / original

10

20

30

40

FWSWD
BART ft
SVD
TTM
FWTTM

ROUGE-1

0.6 0.7 0.8 0.9
compressed / original

0

5

10

15

20

FWSWD
BART ft
SVD
TTM
FWTTM

ROUGE-2

0.6 0.7 0.8 0.9
compressed / original

10

20

30

FWSWD
BART ft
SVD
TTM
FWTTM

ROUGE-L

Figure 6: Performance of bart-base model with task-oriented fine-tuning and further compression (Single-train)
on a XSUM benchmark.

0.6 0.7 0.8 0.9
compressed / original

36

38

40

42

FWSWD
BART ft
SVD
TTM
FWTTM

ROUGE-1

0.6 0.7 0.8 0.9
compressed / original

14

16

18

FWSWD
BART ft
SVD
TTM
FWTTM

ROUGE-2

0.6 0.7 0.8 0.9
compressed / original

28

30

32

34

FWSWD
BART ft
SVD
TTM
FWTTM

ROUGE-L

Figure 7: Performance of bart-base model with task-oriented fine-tuning, compression and further fine-tuning
(Double-train) on a XSUM benchmark.

