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Abstract

In this work, we consider the task of automated
emphasis detection for spoken language. This
problem is challenging in that emphasis is af-
fected by the particularities of speech of the
subject, for example the subject’s accent, di-
alect or pitch. To address this task, we propose
to utilize generative speech deep nets to pro-
duce an emphasis-devoid speech sample for the
speaker. This requires extracting the text of the
spoken voice, and then using a pre-recorded
voice sample from the speaker to produce an
emphasis-devoid speech for this task. By com-
paring the generated speech with the spoken
voice, we are able to isolate patterns of empha-
sis which are relatively easy to detect.

1 Introduction

We as humans have developed a deep sensitivity to
the ‘music’ of speech, meaning its stress, rhythm
and intonation. Intonation in particular may be
used to express wonder, cynicism or emphasis, and
any one of these may alter (or even completely
reverse) the meaning of a sentence.

Let us take for example the simple sentence ‘I
did not take your bag.’ Placing emphasis on dif-
ferent words of the sentence can affect its overall
meaning: Emphasizing the subject of the sentence
– ‘I did not take your bag’ – implies that the bag
may still have been taken, but by someone else.
Emphasis on the possessive adjective – ‘I did not
take your bag’ – implies that I did take a bag, only
a different one. And emphasis on the object – ‘I did
not take your bag’ – implies that I took a different
object of yours, and so on.

Establishing the correct emphasis in a spoken
sentence is therefore central to correct interpreta-
tion of that sentence. Indeed, written language
has long ago adopted tools to convey emphasis or
meaning, such as italicization, punctuation marks,
and the more recent use of emoji symbols. Hence,
understanding and classifying word emphasis is an

important task for fields related to human-machine
interaction, for example machine translation, spo-
ken information retrieval, automated question re-
sponse, sentiment analysis and speech synthetics.

Our contribution. The task of automated empha-
sis detection is complicated by the fact that dif-
ferent languages, dialects or accents already fea-
ture inherent differences in emphasis. In addition,
different voices resonate at different frequencies.
Hence, this makes our task speaker specific. Tra-
ditional methods utilize extraction of specific hand
picked features such as the fundamental frequency
(F0), energy and duration of the spoken word. In
contrast we propose to address this problem by cor-
relating the sentence of the speaker with the same
emphasis-devoid sentence of the same speaker. The
cross correlation of the same words spoken by the
same subject is high, while the correlation of the
same words when one of them is emphasized is
significantly lower. In order to obtain an emphasis-
devoid sample of the word, we employ the most
recent generative speech models: Given a previous
sample of the user’s voice and any text, the models
create a close approximation to the user reciting
the text.

An overview of our computational approach is
as follows: Our detector is composed of several
separate modules. A voice encoder processes the
speech sample to produce a representative embed-
ded vector capturing the speaker’s voice character-
istics. Given the query statement, a speech-to-text
(STT) module generates text from the spoken sen-
tence. Then a text-to-speech (TTS) module uses
the embedded vector and the text of the spoken sen-
tence to generate an audio waveform of the same
text as if produced by the same speaker, but devoid
of any special emphasis. This constitutes the ‘deep-
fake’ synthesized version of the speech. Finally, an
analyzer will compare the query statement and its
deepfake. As these differ solely in emphasis, this
final step can identify the emphasized words.



Figure 1: Algorithm workflow.

2 Related Work

Prosody and word emphasis are the subjects of sig-
nificant research in the field of speech correction, in
particular as relates to speech of non-native speak-
ers. They have also attracted much attention in the
field of neural TTS synthesis, where attention to
emphasis can yield more expressive speech.

Intonation models, such as the Fujisaki (Fujisaki,
1983), Hirst (Hirst, 1992), Rise/Fall/Connection
(RFC) (Taylor, 1994) and Tilt models (Taylor,
1998), aim to provide linguistically meaningful in-
terpretations to an utterance. Basic components of
intonation events include pitch accents and edge
tones (Ladd, 2008). Pitch accents are associated
with syllables and signify emphasis, while edge
tones occur at the edges of the phrase and give cues
such as continuation, question or statement. Kun
et al. (Li et al., 2010) used intonation detection in
order to detect errors in English speech, and to then
provide corrective feedback to speakers of English
as a second language. They developed a pitch ac-
cent detector based on a Gaussian mixture model,
and used features based on energy, pitch contour
and vowel duration.

There have been several relevant contributions
in the field of generative TTS, with the overarching
goal of improving generated prosody. Several vari-
ational (Hsu et al., 2019; Zhang et al., 2019) and
non-variational (Skerry-Ryan et al., 2018; Wang
et al., 2018) models have been suggested for learn-
ing latent prosodic representations.

3 Our Work

We present a new approach for emphasis detection
based on a comparison between the spoken word
and its generative counterpart. Our algorithm uses
a sample from a target speaker, and extracts rep-

resentative features from it. Then given a spoken
query statement, the algorithm extracts the text of
the query, and produces a ‘vanilla’ TTS version of
this text (that is, TTS with no specific emphasis)
using the previously extracted representative fea-
tures. This emphasis-void speech is then compared
to the query statement by cross correlation.

Background. Recent vanilla neural TTS synthe-
sis technologies have achieved realistic synthetic
speech generated from a very small sample of a
speaker’s voice (Ren et al., 2019; Kim et al., 2021;
Jia et al., 2018). These TTS models are based
on deep neural networks, and are trained using
an encoder-decoder architecture. They map input
characters or phonemes to acoustic features (for ex-
ample, mel-spectrograms) or directly to the wave-
form. The acoustic features can be converted into
waveforms via vocoders (van den Oord et al., 2016;
Yang et al., 2021).

Our work is based primarily on the SV2TTS
TTS architecture (Jia et al., 2018). This specific
architecture is composed of three independently
trained neural networks:
• A speaker encoder (based on (Wan et al., 2018)),
which uses a sample of the speaker’s voice to com-
pute a fixed size embedding vector.
• A sequence-to-sequence synthesizer (based on
(Shen et al., 2018b)), which constructs a mel-
spectrogram from a sequence of grapheme or
phoneme inputs, conditioned on the embedding
vector.
• An autoregressive WaveNet vocoder (Oord et al.,
2016), which converts the mel spectrogram into the
time-domain waveform.
Our construction. The workflow of the algorithm
is illustrated in Figure 1. Our emphasis detector is
composed of five distinct ordered parts:



Figure 2: RMS sliding window and word separation.

Step 1: Encoder. The above encoder utilizes a
voice sample provided by the speaker to create an
embedding vector representing the voice properties
of the speaker.

Step 2: Speech to text. The speaker’s query state-
ment is inputted into an STT module, which ex-
tracts the text of this statement.

Step 3: Text to speech. The TTS module uses
the synthesizer described above. Both the text pro-
duced from the STT step and the embedding vector
produced by the encoding step are fed to the syn-
thesizer, which then produces a waveform.

This waveform is an emphasis-devoid generative
model of the speaker reciting the query statement.
We recall that vanilla neural TTS systems are not
capable of synthesizing emphasis due to the loss
of sentiment information (Bai et al., 2022). This
computed waveform serves as our baseline for the
task of emphasis detection.

Step 4: Waveform comparison. Having com-
puted the synthesized speech, we can compare it
to the spoken query statement, to determine which
word or words are emphasized. Our comparison
technique is detailed in Section 3.1 below.

3.1 Comparison between waveforms

Our premise is that the synthesizer can produce
a reasonable imitation of emphasis-devoid speech
of the speaker. The emphasis of a word by the
speaker may differ from the synthesizer waveform
in that the speaker’s word is either higher or lower
pitched relative to the normal voice produced by
the synthesizer. Hence, a cross correlation test
between the respective spectrograms of these two
waveforms may allow us to identify the special
emphasis made by the speaker. Our approach differ
from traditional methods in that, we don’t assume
what features are changed (pitch, duration, energy)
but instead we assume that the words themselves
are uncorrelated enough with the regular speech in

order from a human to detect them.
To effectively compare words, we need to first

separate both the synthetic and query speech into
their distinct words. This is done using a sliding
root mean square (RMS) window, while applying
a low threshold to distinguish between spoken and
silent parts of the speech (Qi and Hunt, 1993) (see
Figure 2). We then compute the fast Fourier trans-
form (FFT) for each individual word, and compare
for each word its two spectrograms, which corre-
spond to the synthesized and spoken speech. We
discovered two kinds of miscorrelation:

The first is pitch accents and edge tones, mean-
ing that the speaker’s emphasis of a word is accom-
plished by modulating regular speech into a higher
(or sometimes lower) fundamental frequency F0.
In this case, the general shape of the spectrogram
remains the same, but its central frequency shifts.
This is identifiable by the peak of the cross correla-
tion of the two spectrograms.

The second is continuous modulation, wherein
the speaker modulates the voice up and down sev-
eral times during the word utterance. Here the
spectral distribution is significantly different, and
is more evenly spread out compared to the autogen-
erated waveform. In this case the cross-correlation
between the two spectrograms is low for all fre-
quency shifts. Detection of differences due to pitch
accent is illustrated in Figure 3: The top line illus-
trates the above comparison for the word ‘bag’ in
the sentence ‘I did not take your bag’ (i.e., where
the word ‘take’ and not ‘bag’ is emphasized.) The
comparison is between the spoken and generated
waveforms’ spectrograms. One can see that the
spectral analysis of the two waveforms are quite
similar, and this is due to the fact that the word
‘bag’ was not emphasized in this query. The fig-
ure showing the cross-correlation between the two
spectrograms shows that the peak is close to zero,
implying a relatively high correlation between the
two waveforms. The bottom line of the figure illus-



Figure 3: Comparison for the words ‘bag’ (top) and
‘take’ (bottom) in a sentence where ’take’ was empha-
sized. Left: original and generated waveforms in the
frequency domain. Right: their cross correlation.

Figure 4: continuous modulation comparison. The x-
axis represents the frequency measured in Hz, and the
y-axis represents energy (left) and the normalized cross-
correlation value (right) respectively.

trates the comparison of the word ‘take’ in the same
sentence (where ’take’ was indeed emphasised). It
is readily seen that the synthesized and spoken spec-
trum of the waveforms differ significantly. The cor-
responding cross correlation demonstrates a shift
of the peak correlation of the signal by about 80Hz,
which is almost 30% of the fundamental frequency.

The general shape of these two spectrograms
does not differ significantly, and so by applying
a threshold on the frequency shift (around 10%
of F0), it is possible to identify if the word was
emphasized or not. For continuous modulation the
cross correlation peak is below 0.05 of the total
energy (see Figure 4), which was regarded as too
low.

4 Implementation and experiments

As already mentioned in Section 3 above, our en-
coder and decoder are adapted from the SV2TTS
architecture (Jia et al., 2018), which is itself based
on the recurrent sequence-to-sequence Tacotron2
network (Shen et al., 2018a), extended with an at-
tention network to support multiple speakers, simi-
lar to the scheme suggested for Deep Voice2 (Gib-
iansky et al., 2017).

We used the sample-by-sample autoregressive

WaveNet (Oord et al., 2016) as a vocoder to invert
synthesized mel-spectrograms emitted by the syn-
thesis network into time-domain waveforms. This
architecture is composed of 30 dilated convolu-
tion layers, similar to what was described in (Shen
et al., 2018b). The network is not directly condi-
tioned on the output of the speaker encoder. The
mel-spectrogram predicted by the synthesizer net-
work captures the information needed to produce
a multi-speaker vocoder. To train the speech syn-
thesis and vocoder neural networks, we used the
VCTK dataset (Christophe Veaux, 2017), which
contains 44 hours of speech from 109 speakers.
We downsampled the audio files to 16 kHz, and
trimmed leading and trailing silent sequences.

Our word emphasis predictor, described in Sec-
tion 3 above, computes the word by word cross-
correlation between the generated and original
words. Since the number of samples for the gen-
erated and original words are not of the same in
length, a simple linear interpolator is applied in the
frequency domain.

For our experiments, we constructed a dataset
of over a hundred different voice samples: five
different speakers of different gender and accents
recited five different sentences, each sentence with
word emphasis on one of four different words (in
different parts of speech). The five sentences are:
(i) “I did not take your bag.” (ii) “Hello, this is our
intonation project.” (iii) “There are very few black
rhinos left in Africa.” (iv) “I saw her face under the
hood.” (v) “Why did you give Sarah the sandwich
with mustard.” The above underlined words were
the ones given emphasis. These are words which
seemed to us plausible as words people would want
to emphasis and which may change the original
meaning of the sentence.

We obtained an accuracy, precision, recall, and
F1 score of 92, 89.14, 89.33, and 89.23, respec-
tively between the ground truth and predicated re-
sults.

The project is open source and can be found on-
line.1 It runs as a python application with three
distinct parts: (i) Configuration of a user using
live or recorded voice recording. (ii) Recording a
sentence from a chosen user to create a synthetic
voice. (iii) Word emphasis detector - the recording
is converted into text and a separation is applied.
Each word is placed in a different box, with em-
phasized word boxes highlighted. Pressing a box

1https://github.com/hila-wiesel/Intonation-Project



Figure 5: Control panel illustration.

will open the spectrum analysis of the original and
synthesized words, alongside the cross correlation
between them (See figure 3).

The control panel is shown in figure 5. The origi-
nal speech in the time domain is represented in blue,
the mel-spectrogram of the synthesized speech as
outputted from the decoder is found above, and the
embedding vector of this specific user used to gen-
erate the synthetic words is found alongside. The
result highlights the word ‘take’ which was found
to be emphasized by the algorithm in this specific
example (which was correct). Videos demonstrat-
ing the use of the application are also provided.2

5 Conclusions and Future Work

In this paper, we presented the layout and empir-
ical results for our word emphasis detector. This
problem is especially challenging in that emphasis
is affected by dialect and accent, and also different
voices may differ significantly in their resonance.
We introduced a novel approach using deep genera-
tive speech modules to produce an emphasis-devoid
speech sample for any speaker. We used double
conversion from speech to text and back to speech
again. By comparing the generated and spoken
voice, we were able to isolate patterns of emphasis
which were relatively easy to detect.

While our focus in this work is on emphasis de-
tection using audio features, emphasis can also be
detected using the content of the text itself, for ex-
ample word order, information structure, syntactic
structures, and certain linguistic devices, such as
repetition and contrast. Though this approach is
not within the scope of our paper, it can be used to
enforce the emphasis decision as its purpose.

Our experiments were based on recitation speech
as opposed to spontaneous speech or dialogue, but
we believe that our approach is general enough to

2https://www.youtube.com/@intonationdetection-kl7np

apply to all these modalities.
For future work, we intend to use our technique

to further study the effects of emphasis on the fun-
damental features of utterance, and expand the clas-
sification process not only to detect emphasis, but
also for other speech related tasks such as, senti-
ment analysis, machine translation, spoken infor-
mation retrieval, automated question response, and
speech synthetics.

Another important direction would be to investi-
gate the content and purpose behind the emphasised
words. For example, do words adjacent to the em-
phasized word share certain properties? Are less
common words less likely to be emphasized? This
study could be used to improve emphasis detection
and its analysis.
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