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Abstract

Contextualized embeddings have proven to be
powerful tools in various NLP tasks. How-
ever, their interpretability and how they en-
code lexical semantics remain challenging is-
sues. In this paper, we tackle this problem
by using definition modeling, a technique that
aims to generate human-readable definitions for
words, as a means to evaluate and understand
high-dimensional semantic vectors. We intro-
duce the Vec2Gloss model, which generates
glosses from the contextualized embeddings
of target words. The systematic gloss patterns
provided by Chinese Wordnet enable us to ex-
amine the mechanism behind the model’s gloss
generation. To delve deeper into this mech-
anism, we devise two dependency indices to
measure the semantic and contextual dependen-
cies of the generated glosses. These indices
allow us to analyze the generated texts at both
the gloss and token levels. Our results demon-
strate that the proposed Vec2Gloss model
enhances our understanding of lexical seman-
tics in contextualized embeddings.

1 Introduction

The rapid advancement of distributed semantic
models has led to remarkable achievements, with
machine performance in some language-related
benchmarks either matching or even surpassing that
of human non-experts (Maru et al., 2022; Chowd-
hery et al., 2022). These successes are often at-
tributed to the complex pretrained language models
(Peters et al., 2018; Devlin et al., 2019; Radford
et al., 2019; Raffel et al., 2020), which are com-
monly referred to as sentence encodings in the liter-
ature (Pavlick, 2022). In contrast to traditional dis-
tributional semantic models (Lenci, 2018; Boleda,
2020), sentence encodings adopt a top-down train-
ing approach, prioritizing sentence processing as
the primary goal. As a result, word-level semantics
naturally emerge as inherent properties (Pavlick,
2022).

Studies have demonstrated that sentence en-
codings do capture lexical semantics. Although
the contextualized embeddings of each token are
highly intertwined with both semantics and syn-
tax (Yenicelik et al., 2020), one can still access
a wealth of information on word-level lexical se-
mantics by averaging the vectors across contexts
and model layers. When appropriately configured,
these emerging lexical representations outperform
explicitly trained static word vector models (Vuli¢
et al., 2020). It can be argued that these contextu-
alized embeddings are possibly sense-aware. This
means that one could build sense embeddings for
word sense disambiguation tasks, where the goal
is to find the nearest neighbor of the target word in
the sense embedding space (Scarlini et al., 2020b).
These studies have demonstrated that while sen-
tence encodings are not explicitly trained for word-
level semantics, they do capture the nuances of
word usage to a certain degree.

Indeed, the interpretability of these models and
their ability to represent lexical semantics remain
significant challenges. Various evaluation methods
have been proposed to address this issue. One
unique approach is definition modeling, which
aims to generate a definition for a given word. This
approach is argued to offer a more transparent and
direct evaluation of the word’s semantic represen-
tation (Noraset et al., 2017; Gardner et al., 2022).
In the context of distributional semantic models,
definition modeling can be understood as first en-
coding the semantic representations into one or
multiple vectors, based on which a language model
generates the corresponding definitions. Previous
studies have explored various model architectures
with fruitful results. The key advantage of defi-
nition modeling lies in the ability to analyze the
embeddings in a natural language form, i.e., the
definitions. Instead of indirectly examining a high-
dimensional vector through word analogies and
similarities, we can now probe into (distributional)



lexical semantics transparently using human lan-
guage.

The subsequent challenge lies in systematically
examining the generated definitions, especially
when these are produced by a model that may or
may not fully capture the intricacies of definitional
language. In this paper, we address this challenge
by investigating the model-generated definitions us-
ing a relatively standardized gloss language to train
a definition generation model. Our gloss dataset
comes from the Chinese Wordnet (CWN) (Huang
et al., 2010)1, where lexical senses of each word
are differentiated and described with a relatively
constrained set of glossing rules.

We formulate the definition modeling as a vector-
to-text task. Inspired by the sense embedding and
the sequence-to-sequence architecture of definition
modeling (Scarlini et al., 2020b; Mickus et al.,
2019), we further encode the context-sensitive
word sense into an encoding vector, from which
the model learns to decode the gloss sentences. To
evaluate the generated definitions, we use human
ratings and propose two indices to examine the con-
textual and semantic dependencies closely. With
these two indices, we conduct gloss and token-level
analyses of the generated definitions and show that
they fairly reflect aspects of lexical semantics.

The overarching goal of this work is to explore
the possibility of gloss generation using only one
contextualized vector. We propose that a genera-
tion model can be trained on relatively constrained
gloss patterns extracted from the fine-grained CWN
glosses. To evaluate the performance of the model,
we conduct human rating experiments, accompa-
nied by a comprehensive analysis of the generated
gloss patterns.”

2 Related Work

2.1 Patterns in gloss languages

Dictionary definitions, or word glosses, are often
referred to as “language about language”, or “met-
alanguage” (Sinclair, 1991; Johnson and Johnson,
1998; Hanks, 2013). One prominent theory in met-
alanguage is the Natural Semantic Metalanguage
(NSM) (Wierzbicka, 1972; Durst, 2004), which
posits that universal semantic primitives can ac-
count for the meanings of words. Additionally,

'The data are accessible at https://lopentu.

github.io/Cwnieb/

>The code and the rating material are available at
the anonymized repository: https://github.com/
seantyh/vec4gloss

Barque and Polguere (2004) have classified sense
descriptions into “word paraphrases” and “word
interpretations’ based on their formal nature. (cf.
Pottier, 1974 and Pustejovsky, 1998)

While previous studies on metalanguage often
adopt a logical or formal semantic approach, the
Corpus Pattern Analysis (CPA) proposed by Hanks
(2004) offers a new direction for analyzing word
glosses from the perspective of syntagmatic pat-
terns. According to Firth (1957), the meanings of
a word are influenced by the context formed by
surrounding terms. In a similar vein, Hanks (2004,
2013) analyze concordance lines from corpora to
generalize typical patterns of certain words. These
groups of words constitute a lexical set, which is
united by a common semantic type.

While not precisely following the methodology
in CPA, the gloss language in CWN attempts to
incorporate lexical sets and semantic types into its
gloss. For example, one of the gloss patterns® for
adverbial senses is shown below. Similar glossing
guidelines are established across different lexical
categories.

Word 1R

very
Sense FmPERRE

describing exceeding normal extent
Gloss Pattern  3%... fUREE

describing ... extent

Therefore, the glosses in CWN provide a fer-
tile ground to systematically model its gloss lan-
guage. However, the complexity of the gloss pat-
terns makes them challenging for logical or formal
analyses. Therefore, utilizing deep learning for
definition modeling is beneficial in exploring the
hidden information within these gloss patterns.

2.2 Definition Modeling

Definition modeling aims to generate a definition
for a given target word (Gardner et al., 2022; No-
raset et al., 2017). Noraset et al. (2017) utilized
hypernym embeddings to generate dictionary defi-
nitions. Gadetsky et al. (2018) incorporated context
words’ embeddings and an attention-based skip-
gram model to improve definition modeling for pol-
ysemous words. More recent research in definition
modeling has incorporated various architectures to
better capture semantic vectors and improve defini-
tion generation. Recurrent neural networks, varia-
tional generative models, and pretrained language

3For more examples, please see the manual of

CWN (in Chinese), https://lope.linguistics.
ntu.edu.tw/cwn/documentation
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models have been used to obtain semantic represen-
tations of the target word (Ishiwatari et al., 2019;
Reid et al., 2020; Zhang et al., 2020). Additionally,
some studies have leveraged lexical resources like
HowNet and WordNet to construct latent vectors
or use them as guiding signals (Dong and Dong,
2006; Luo et al., 2018a,b; Blevins and Zettlemoyer,
2020; Li et al., 2020; Scarlini et al., 2020a; Yang
et al., 2020).

Contextualized embeddings have indeed demon-
strated their ability to capture important aspects of
lexical semantics (Peters et al., 2018; Loureiro and
Jorge, 2019). For instance, Scarlini et al. (2020b)
showed that a simple 1-nearest-neighbor algorithm
using these sense vectors achieves comparable per-
formance with other more complex supervised
model architectures in the word sense disambigua-
tion task. This finding indicates that the contex-
tualized embeddings carry significant semantic in-
formation that can be effectively utilized not only
for disambiguating polysemous words but also for
improving definition modeling tasks.

The proposed Vec2Gloss model is designed
to tackle the definition modeling task using a
sequence-to-sequence approach with an encoder-
decoder architecture (cf. Mickus et al., 2019;
Bevilacqua et al., 2020). However, a key difference
is that the objective of Vec2Gloss is to decode
the definition from the encoded vectors while si-
multaneously fine-tuning the encoder to optimize
the semantic vector. To achieve this, we utilize
the pretrained mT5 (Xue et al., 2021) text-to-text
model architecture but introduce a tight bottleneck
between the encoder and decoder. This design deci-
sion restricts the decoder’s access to the full context
of the input sentence, making it unable to rely on
collocations directly for gloss generation. There-
fore, the decoder must learn the gloss’s regularities
from the encoded vectors to generate accurate and
contextually appropriate definitions.

3 Vec2Gloss Model

The goal of the Vec2Gloss model is to generate
a coherent gloss based on the semantic vector of
a word, which is derived from CWN. This task
is closely related to, yet distinct from, common
NLP tasks. Unlike typical NLP tasks that involve
obtaining an encoder representation and mapping
a lexical word or sense into a vector, the primary
objective of this model is to optimize the vector
specifically for decoding the gloss.
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Figure 1: The model architecture of Vec2Gloss. The
model follows a general encoder-decoder architecture
but introduces a bottleneck between the encoder and
decoder. The decoder is restricted to only seeing the
target word’s semantic vector (vseq, ), rather than having
access to the complete encoder states.

On the other hand, this task goes beyond a stan-
dard autoregressive approach, as the generated
gloss must be conditioned on a vector rather than
prompts or input sequences. While an encoder-
decoder architecture might be the most suitable op-
tion, the standard task involves mapping between
input and output text. As a result, it is unclear
whether the model learns to decode the gloss di-
rectly from the semantic vector or simply translates
it from the input text.

To leverage the encoder-decoder architecture
while ensuring the model relies on the semantic
vector to decode the gloss, we implement a tight
bottleneck between the encoder and decoder (see
Figure 1). The input to the model is a sentence
containing a target word. The encoder processes
the input sentence, resulting in a set of encoder
states. We then apply a predefined target mask
to these encoder states, selecting only the vectors
corresponding to the target word. These selected
vectors are then averaged to create a single vec-
tor, which is fed into the decoder responsible for
generating the gloss sequence.

Notably, unlike the standard architecture that in-
corporates cross attention between encoder states,
the decoder in our model has access to only one
encoder vector. As a result, the decoder cannot rely
on the complete input sentences and is compelled
to focus solely on the target word’s semantic vector
(Vsem)- In this way, the encoder is encouraged to
compress as much relevant information as possible
into the target word’s semantic vector, while the de-
coder must learn the regularities of gloss generation
independently, without relying on potential collo-



cation cues between word context and gloss. In
summary, the model learns both the target word’s
semantic vector through the encoder and the gloss
sequence through the decoder.

To enhance the model’s ability to capture the
patterns of gloss sequences, we propose a denoising
stage before training for the vector-to-gloss task. In
this denoising stage, a standard encoder-decoder
architecture is employed, and the model is trained
to reconstruct the corrupted spans in the glosses.
The objective of this stage is to pretrain the model
to better understand the regularities and structures
of gloss language.

Following the denoising stage, we proceed to the
fine-tuning stage, where we introduce the bottle-
neck between the encoder and decoder components.
During fine-tuning, the model receives a sentence
containing a target word, along with a target mask.
It is tasked with learning the target word’s semantic
vector using the encoder and then generating the en-
tire gloss sentence exclusively from this semantic
vector using the decoder.

3.1 Denoising stage

To improve the model’s ability to capture the un-
derlying patterns in gloss language, we initiate the
training process with a denoising objective. This
approach has been used in previous studies (Lewis
et al., 2020), and it involves preparing pairs of ex-
amples comprising corrupted spans as inputs and
their corresponding dropped-out spans as outputs.
The denoising objective has demonstrated its ef-
fectiveness in downstream tasks while also being
computationally efficient, as it reduces the length
of decoding sequences (Raffel et al., 2020). An ex-
ample of such a pair is provided below, with literal
translations shown in italics:

Input  DISTFEES T () HZRRURRE, -
using text medium (X) -out information.
Target (X)FiE(Y)

(X)express<{Y)

The <{X) and {Y) tokens are special sentinel
tokens unique to each example. The spans used
in the denoising objective are character-based and
may not necessarily align with word boundaries.
To introduce corruption, random locations within
the spans are selected, and their lengths (measured
in characters) are drawn from a Poisson distribution
with a parameter A = 2, ensuring that the length
values are clipped between 1 and 4 (inclusive). If
the input sequence is longer than 20 characters, an
additional corrupted span is created using the same

parameter settings. These examples are extracted
from the word glosses in CWN, and 26,118 pairs
are generated for the denoising objective.

In the denoising stage, we utilize the pretrained
T5 encoder-decoder architecture (mt 5-base) to
train the denoising objective (Xue et al., 2021).
During this stage, no bottleneck is applied between
the encoder and decoder components. The model
parameters are updated using the AdamW opti-
mizer, with a learning rate of 10~*. The values
of 51 and 5 in the optimizer are set to 0.9 and
0.999, respectively, and weight decay is configured
to 0.01.

To schedule the learning rate, a linear schedule
is employed. The batch size used for training is set
to 8. The model is trained for 3 epochs, and the
training process takes approximately 30 minutes
when executed on an AS000 GPU. The parameters
obtained after training in this denoising stage serve
as the starting point for the subsequent fine-tuning
stage.

3.2 Fine-tuning stage

In the fine-tuning stage, the primary objective is to
establish the relationships between the target words
embedded in the sentences and their corresponding
glosses in CWN. To achieve this, we maintain the
standard TS5 encoder-decoder transformer-based ar-
chitecture while simultaneously introducing a tight
bottleneck between the encoder and decoder com-
ponents.

Specifically, during fine-tuning, we select and av-
erage only the target word’s encoder states from the
input sentence. These encoder states might consist
of more than one token, depending on the length
and complexity of the target word. The resulting av-
eraged encoder states serve as the semantic vector
representation of the target word. The decoder is
then trained to generate a complete gloss sentence
based solely on this semantic vector.

The training data is sourced from the sense in-
ventories of CWN. For each example sentence in a
CWN sense, a training instance is created, consist-
ing of a pair of input and target sequences. The in-
put sequence is an example sentence where the tar-
get words are identified by enclosing them within
a pair of angular brackets. On the other hand, the
target sequences are composed of glosses associ-
ated with the corresponding senses, preceded by
their respective part-of-speeches, and followed by
a Chinese full-width period. In total, there are



76,969 instances in the training dataset, while the
evaluation dataset comprises 8,553 pairs. A sample
instance is provided below:

Input  HANEIE S 1A EF A BE) -
She didn’t {(say) a word for some reason.
Target VA o ZRBERE - HEEEEENE -

VA. Using vocal organs to convey
a message with speech.

The model architecture closely follows the stan-
dard TS, allowing the trained weights from the
denoising stage to directly apply to this model. Dur-
ing preprocessing, the target words’ angular brack-
ets are removed to create the target mask. This
mask is crucial for selecting the relevant encoder
states and generating the semantic vector, which
serves as the input to the decoder. As a result, the
decoder’s cross-attention will always receive a sin-
gle vector as input.

During training, the model is treated as a text-
to-text task, where the objective is to generate the
gloss sequence from the given input sentence. How-
ever, during inference, the encoder and decoder can
operate independently. That is, the encoder can be
used to obtain a semantic vector from a given sen-
tence. This semantic vector can then be flexibly
transformed or manipulated before being passed to
the decoder for gloss generation.

During the fine-tuning stage, the training proce-
dure remains the same as the denoising stage, with
the only difference being the number of epochs. In
this stage, the model is trained for 10 epochs. The
training process takes approximately 100 minutes
when executed on an A5000 GPU.

3.3 Automatic evaluations

The automatic evaluation of definition generation
is presented in Table 1, which displays the BLEU
and METEOR scores for each lexical category. The
overall BLEU score is .41, and the overall ME-
TEOR score is .62. Notably, the noun category
(N) has the lowest score, while the proper name
category (Nb) has the highest score.

The higher score for proper names may be at-
tributed to their specific characteristics in CWN.
Many proper names used in CWN are family names
or foreign names, which tend to have shorter and
more standardized definitions. As a result, the
model might find it easier to capture these shorter
glosses, leading to higher scores for the proper
name category. The proper names category com-
prises 188 items.

For other categories, the interpretation of the au-

POS N BLEU METEOR
N 2,801 .35.01)  .59(.01)
V 4376 43(01)  .63(.01)
D 432 41(02)  .62(.02)
O 530 41(02)  .63(.01)
Nb 414 .63(.02)  .74(.02)
All 8,553 .41(.01)  .62(.01)

Table 1: Automatic evaluation metrics on different lexi-
cal categories, which are nouns (N), verbs (V), adverbs
(D), others (O), and proper names (Nb). Numbers in
parentheses are standard errors.

tomatic metrics is less straightforward. The scores
only indicate the textual similarity between the gen-
erated and reference glosses. However, at a given
score level, the generated gloss might still be unin-
telligible to human readers or merely a paraphrased
version of the reference gloss. Therefore, to gain
deeper insights and to assess the quality of the gen-
erated glosses, additional human evaluations are
conducted, including a rating experiment, a gloss
dependency analysis, and a token dependency anal-
ysis.

4 Human Evaluations

4.1 Rating experiment

In the rating experiment, human raters are em-
ployed to assess the quality of the generated def-
initions, specifically focusing on their semantic
interpretability and syntactic well-formedness. The
task is designed as a multiple-choice task, with
each entry comprising a definition in Chinese and
a list of four-word options. Among the four op-
tions provided, only one is correct, representing a
well-formed and semantically accurate definition.
A total of 140 entries are used in the evaluation,
and these entries are derived from two sources: the
Academia Sinica Balanced Corpus of Modern Chi-
nese (ASBC) (Huang and Chen, 1998) and CWN.

To ensure consistency, we only select words
composed entirely of Chinese characters, exclude
proper nouns, and filter out words with less than
10 occurrences in the corpus. Among the 140 test
items, 40 are new words with their definitions gen-
erated by our Vec2Gloss model, which we refer
to as V2G:ex vivo. For each test item, the correct an-
swer (target word) is randomly and equally chosen
from four different lexical categories: nouns, verbs,
adverbs, and other word classes. The incorrect



options for each question are also from the same
word class, randomly selected from the collection
of words derived from ASBC. Among the remain-
ing 100 words, 20 use definitions from CWN, and
80 are generated by the model, which we refer to as
V2G:in vivo. The word class composition is identi-
cal for the words from CWN, and the target words
are randomly selected from the dataset and evenly
distributed across the different word classes.

The experiment involved five native Chinese
speakers majoring in linguistics, who were re-
cruited as raters. They were assigned several tasks
to assess the quality of the definitions generated
by the Vec2Gloss model. In the first task, raters
were presented with a set of four options, and they
had to determine the most suitable term from those
options based on the given definition. The sec-
ond task focused on evaluating the semantic inter-
pretability of a definition. Raters were asked to
rate on a five-point acceptability judgment scale
to what extent the definition could well explain
the word that had been selected as the correct an-
swer in the previous task. Similarly, in the third
task, raters were asked to evaluate the syntactic
well-formedness of a definition. They rated the
well-formedness of the definition based on their
internal grammar, again using a five-point accept-
ability judgment scale. The evaluation results are
presented in Table 2. The Vec2Gloss model
achieved promising performance compared to the
original glosses in CWN.

Table 3 presents more detailed results for the
evaluations of vector-generated glosses. The mean
values for syntactic well-formedness are consider-
ably high across all four lexical categories, both
for V2G:in vivo and V2G:ex vivo. This indicates
that the model-generated definitions are generally
well-formed from a syntactic perspective. However,
the results show that the semantic interpretability
scores for V2G:ex vivo are lower than those for
V2G:in vivo. This indicates that the model may

Source Correctness Meange,  Meangy,
CWN 95(.02) 4.47(.15) 4.82(.10)
V2G:in vivo .88(.03) 3.51(.16) 4.58(.09)
V2G:ex vivo .86(.04) 2.53(.22) 4.51(.12)

Table 2: Human evaluation results for definitions gener-
ated from different sources, with Meange, and Meanyy,
representing the mean value of semantic interpretability
and syntactic well-formedness, respectively.

face challenges in generating semantically inter-
pretable definitions for new words. Despite the
lower interpretability scores for V2G:ex vivo, the
multiple-choice task still achieves over 80% cor-
rect rates in every category, similar to the results
of V2G:in vivo. This suggests that even though
the generated definitions for new words might be
less semantically interpretable, they are still often
correct and align with the correct word class. Ad-
ditionally, the semantic scores of nouns are lower
than those of other categories for both V2G:in vivo
and V2G:ex vivo. This implies that the model may
struggle more with generating semantically inter-
pretable definitions for nouns compared to other
word classes. To gain further insights and investi-
gate possible reasons for the evaluation results, a
gloss dependency analysis is conducted.

4.2 Gloss dependency analysis

In the gloss dependency analysis, two indices are
computed for each token in the generated glosses to
represent their reliance on the preceding contexts
and the semantic vector, respectively. First, the
token likelihood under the full context and the orig-
inal semantic vector (pgy) is compared to the likeli-
hood when all of its preceding contexts are masked
during decoding (pmask)- If a token is mostly deter-
mined by the context alone, masking the preceding
contexts would significantly impact the token like-
lihood (pmask)- Hence, the negative likelihood ratio
(dsem) Will be larger, indicating a higher reliance
on the context. Similarly, if a token is primarily
driven by the semantic vector, replacing it while
leaving the preceding context intact will lower the
likelihood (prep), and the ratio (d.x) will be larger,
signifying a higher reliance on the semantic vec-
tor. To calculate these indices, the semantic vector
(vsem) obtained from the encoder is replaced with
another word’s semantic vector from the same lex-
ical category. The indices are all calculated using
the shifted reference glosses of each sense as the
decoder inputs, ensuring a consistent comparison.

5sem

= —log (prep / pfull)
Oetx = — 1Og (pmask/ pful])

The gloss-level indices are computed by aver-
aging the token-level indices for each token, dsem
and dc ., in the generated glosses. The results are
shown in Figure 2. One notable observation is that
the contextual dependency scores are comparable
across the four different lexical categories, indicat-
ing that the preceding contexts play a similar role



oS V2G:in vivo V2G:ex vivo
P
Correctness  Meangey, Meangy, Correctness  Meangep, Meangy,
N 94 (04) 3.18(.35) 4.14(.25) .86 (.08) 1.92(.40) 4.32(.34)
A% .89 (.06) 3.63(.34) 4.79(.10) .86 (.08) 2.74 (46) 4.48(.27)
D .84 (.06) 3.75(31) 4.69(.18) 84 (07) 2.76(43) 4.74(.16)
(0] 85 (.06) 3.47(32) 4.70(.16) .86 (.10) 2.70 (.45) 4.50(.20)

Table 3: Human evaluation results for different lexical categories of definitions generated from V2G:in vivo and
V2G:ex vivo. The semantic evaluation scores of nouns are lower than those of other categories for both sources.

in shaping the generated glosses across all cate-
gories. However, the semantic vector dependency
indices show more significant differences. Specif-
ically, the glosses of nouns have higher semantic
dependency scores, followed by verbs, adverbs,
and others. These results align with the human rat-
ings, where the syntactic ratings are similar across
all categories, but nouns receive significantly lower
semantic rating scores. The higher semantic depen-
dency scores for nouns may suggest that nouns are
more likely to be used as nominal predicates, cate-
gorizing referents into a class with a holistic set of
properties. On the other hand, adverbs, which have
the lowest semantic dependency scores, primarily
serve to describe things by adding a single property
to the characterization of the referent (Baker and
Croft, 2017; Bolinger, 1980). However, despite
the relatively low semantic dependency scores, ad-
verbs still carry semantic meaning, such as indi-
cating manner, means, or instrumentality (Lyons,
1977; Lakoff, 1968). Therefore, further analysis is
needed to understand why certain tokens are more
pertinent to the semantic vector than others within
the adverb category.

4.3 Token dependency analysis

The gloss dependency analysis is followed by a
manual identification of chunks (referred to as
semantic constituency) in the gloss, where each
chunk is annotated with its corresponding seman-
tic type. Here, a chunk is defined as a significant
element that functions as a unit carrying a semantic
type (cf. Gerdes and Kahane, 2013).

Specifically, 244 adverbs are selected from
CWN whose gloss contains the word “Z54” shjian
‘event’, as these adverbs describe an explicit event
structure in their glosses. Each gloss is manually
segmented into length-variant chunks, and each
chunk is manually tagged with its corresponding
semantic type. Notably, the glosses of the first

words are not annotated with semantic types since
they typically follow a pattern based on their lexi-
cal category. For example, the glosses of adverbs
often start with the word 3% bido ‘indicate’, as seen
in the example below (the gloss of 3 jiclidn ‘in
arow’):

Gloss  R/[F—ZF{F/AE /%l By P AR 88 & -
To express the same event continuously
happens during the later-mentioned period.

Annot.  --/Event/Preposition/Time/Preposition/

Modifier/Action

In this dataset, there are a total of 905
chunks, where each chunk represents a signifi-
cant element that functions as a semantic type-
carrying unit. These chunks have been anno-
tated with 19 unique semantic types. From this
set of semantic types, we have selected six types
(event, action,modifier, preposition,
negation, others) that occur at least 25 times
(representing 10% of the glosses count) for further
analysis. These six selected semantic types account
for 59% of all the annotated chunks in the dataset.

The token-level indices are computed as de-
scribed in Section 4.2. It is important to note that
the annotated glosses may contain multiple exam-
ple sentences in CWN. Therefore, we extract and
average the semantic vectors from each sentence
to represent the target words. Subsequently, the
context and semantic vector dependency scores are
computed for each token, and these scores are then
averaged based on their corresponding semantic
types. The resulting averaged scores are presented
in Figure 3.

The gloss-level analysis is further supported by
distinctive dependency patterns observed across
different semantic types. Specifically, the action
types exhibit higher contextual dependency but rel-
atively lower semantic dependency scores. This
pattern aligns with the fact that act i on words typ-
ically serve as the main verbs in glosses. However,
it’s worth noting that the distribution of action



Dependency scores by lexical categories

Lexical category
o

(@]

??4*

N,

= =
M

0 2 4 6 8 10

Sem. vector dependency

- I :
2 4

6 8 10
Context dependency

Figure 2: Dependency scores by each lexical category. The left panel shows the semantic dependency and the right
one shows the context dependency scores. The letters along the vertical axis denote the lexical categories: nouns

(N), verbs (V), adverbs (D), and others (O).

Dependency scores by annotated semantic types
25

(67)
Preposition

I
o

Negation
(34)

-
o

Others
Modifier (48)
Event

(67)
Action
(159)
(162)

0.0 05 1.0 15 2.0 25 3.0 35
Context dependency

Sem. vector dependency
5

o
[

Figure 3: The dependency scores of six annotated se-
mantic types. The error bars denote one standard error
of semantic or context dependency scores. Numbers in
parentheses are the member count of the type.

words is highly skewed, with a few common
action words accounting for a significant por-
tion of all action words. As a result, the higher
contextual dependency scores may reflect the con-
strained word usage when generating glosses with
action words.

On the other hand, the preposition and
negation types show relatively higher semantic
vector dependency scores. This observation may
be attributed to the fact that prepositions are
used to introduce related complements, and the de-
coder requires guidance from the semantic vectors
to select the precise relations for the gloss. Simi-
larly, negat ion words are challenging to capture
solely through syntagmatic relations from the con-
text (Aina et al., 2019; Ettinger, 2020), leading the
decoder to rely more on additional cues from the

semantic vectors.

Interestingly, words that are highly predictable
given the adverb glosses, such as the event type,
display lower scores in both contextual and seman-
tic dependencies. This lower dependency indicates
that the decoder has sufficient information from the
context and semantic vectors to predict these words
accurately, resulting in reduced reliance on both
contextual and semantic cues.

5 Conclusion

This paper introduces the Vec2Gloss model,
a gloss generation model that directly decodes
glosses from semantic vectors. The study bene-
fits from the systematic gloss patterns provided by
Chinese Wordnet. Human evaluation of the gener-
ated glosses through a multiple-choice task demon-
strates that the Vec2Gloss-generated glosses are
both grammatically correct and semantically accu-
rate. Furthermore, we devised two indices to mea-
sure the semantic and syntactic dependencies of the
generated glosses. The results show that the glosses
for nouns are more semantically dependent, and
the prepositions and the negation words
in the glosses also need more semantic guidance.
These results shed light on how the model captures
lexical-semantic information through the definition
modeling task.

Overall, this paper contributes to advancing the
field of gloss generation. The systematic study of
glosses and the incorporation of semantic vectors
provide a foundation for further research in under-
standing the intricacies of lexical-semantic infor-
mation and refining gloss generation approaches.
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A Appendix

Table 4 illustrates some examples of the model-
generated glosses. Figure 4 and Figure 5 shows the
statistics of semantic type annotations in Section
4.3.
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Input Generated

1 fRGEYRBA o Dfa o REHFH AT
He hasn’t (yet) spoken. Dfa. Describing the situation not having finished
2 MR H e VC ° HUiife 2K -
He hasn’t yet (spoken). VC. Making a request.
3 B T fEE - VC ° T E
I (had) a meeting. VC. Holding a meeting.
4 EEBEMEEMEE - VI o B MR E Y B E
This (exemplifies) an important value. VJ. Showing the quality of the following situation.

Table 4: Examples of the model-generated glosses. The first three instances include the target words already existing
in CWN, but the sentences are all new to the model. The second and third ones show the context dependencies of
the generated glosses. The target word of the last instance is also new to the model, and the model still generates a
plausible gloss. Dfa. Degree adverb. VC. Action transitive verb. VJ. Stative transitive verb.
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Figure 4: Distribution of chunk frequencies of all semantic types by positions and sequence lengths.
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