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Abstract

Since their inception, embeddings have become
a primary ingredient in many flavours of Natu-
ral Language Processing (NLP) tasks supplant-
ing earlier types of representation. Even though
multilingual embeddings have been used for the
increasing number of multilingual tasks, due
to the scarcity of parallel training data, low-
resource languages such as Sinhala, tend to
focus more on monolingual embeddings. Then
when it comes to the aforementioned multi-
lingual tasks, it is challenging to utilize these
monolingual embeddings given that even if the
embedding spaces have a similar geometric ar-
rangement due to an identical training process,
the embeddings of the languages considered are
not aligned. This is solved by the embedding
alignment task. Even in this, high-resource
language pairs are in the limelight while low-
resource languages such as Sinhala which is
in dire need of help seem to have fallen by
the wayside. In this paper, we try to align
Sinhala and English word embedding spaces
based on available alignment techniques and
introduce a benchmark for Sinhala language
embedding alignment. In addition to that, to fa-
cilitate the supervised alignment, as an interme-
diate task, we also introduce Sinhala-English
alignment datasets. These datasets serve as
our anchor datasets for supervised word em-
bedding alignment. Even though we do not
obtain results comparable to the high-resource
languages such as French, German, or Chinese,
we believe our work lays the groundwork for
more specialized alignment between English
and Sinhala embeddings.

1 Introduction

Embedding spaces have been shown to have similar
geometric arrangements (Mikolov et al., 2013b;
Lample et al., 2018) especially when the training
process is similar but, separately trained spaces are
not aligned by default and that is a huge burden
when it comes to certain multilingual tasks where
having aligned embeddings are required.

Aligned embeddings are useful in multilingual
tasks since similar words and sentences in each
language can be considered to reside closer to each
other in a common embedding space. So that we
can do mathematical operations on the embeddings
regardless of the language (Feng et al., 2022; Con-
neau and Lample, 2019).

The alignment is required for two types of em-
bedding models:

1. Embedding models separately trained on
monolingual data (Mikolov et al., 2013a; Bo-
janowski et al., 2017) and

2. Multilingual embedding models trained on
parallel multilingual data (Feng et al., 2022;
Conneau and Lample, 2019; Conneau et al.,
2020).

As far as the multilingual models are concerned,
most of the time the training process itself im-
plicitly encourages alignment (Feng et al., 2022;
Conneau and Lample, 2019). Conversely, when
the monolingual models are concerned, the align-
ment has to be done explicitly after the models are
trained. Multilingual models (Feng et al., 2022;
Conneau and Lample, 2019; Conneau et al., 2020)
are becoming more common for multilingual tasks
nowadays due to the aforementioned implicit align-
ment of the training process (Feng et al., 2022;
Conneau and Lample, 2019).

Monolingual embedding models have been there
for decades and aligning monolingual embedding
models is beneficial in various aspects rather than
using multilingual models.

* Monolingual models are lightweight

* Can be run using simpler libraries and frame-
works

* Using multilingual models may be redundant
due to supporting many languages (Feng et al.,



2022; Conneau and Lample, 2019; Conneau
et al., 2020)

* Multilingual model accuracy can be com-
promised due to the support of many lan-
guages (Feng et al., 2022)

* The accuracy for low-resource languages can
be less compared to high-resource languages
due to training data imbalance (Feng et al.,
2022) in multilingual models (Eg: ~700 Sin-
hala tokens in XLM-R (Conneau et al., 2020)
vocabulary)

* Training or fine-tuning a multilingual model
is time and resource-consuming (Feng et al.,
2022; Conneau and Lample, 2019; Conneau
et al., 2020)

Therefore, aligning existing monolingual mod-
els is still vital. Aligned word embedding mod-
els for common high-resource languages are of-
ficially provided by FastText! but most of the
aligned low-resource language models are not pub-
licly available. Sinhala being such a low-resource
language, suffers from the aforementioned diffi-
culties (de Silva, 2019; Ranathunga and de Silva,
2022). Several related works to the Sinhala lan-
guage have been done previously by Smith et al.
(2016) using Procrusts and Liyanage et al. (2021)
using VecMap but, our attempt to properly make
everything ready and available for future research.
Therefore, our effort here is to,

* Set a benchmark for Sinhala word embedding
alignment

* Introduce dataset induction methods for low-
resource languages when parallel word cor-
pora are not available

+ Introduce MUSE?-like (Lample et al., 2018)
alignments datasets for Sinhala-English lan-
guage pair

* Provide aligned embeddings for Sinhala-
English pair

* Release the code-base? related to all the ex-
periments we have conducted.

"https://bit.1ly/3LGoDrE
Zhttps://github.com/facebookresearch/MUSE
Shttps://bit.ly/3t3SKu7

This is more so the case for low-resource lan-
guages such as Sinhala (de Silva, 2019). This prob-
lem gets further accentuated due to the unreliable
nature of the quality of existing parallel corpora
for such low-resource languages (Kreutzer et al.,
2022).

2 Related Work
2.1 Embedding Generation

The first major turning point in the word embed-
ding domain was the introduction of Word2Vec
by Mikolov et al. (2013a).Subsequently, two new
Word2Vec-like embedding models were released
which are the well-known Glove (Pennington et al.,
2014) and FastText (Bojanowski et al., 2017) mod-
els. Those are global embedding models.

The idea behind Embeddings from Language
Models (ELMo) (Peters et al., 2018) is generating
a context-based embedding for a given word. In
the transformers Vaswani et al. (2017) era, the first
member of context-based transformer encoders is
the BERT (Devlin et al., 2019) which is a stack
of transformer encoders trained on two objectives
named Masked Language Modeling (MLM) and
Next Sentence Prediction. After that many variants
of BERT have been released including sentence
transformers (Reimers and Gurevych, 2019).

2.2 Word Embedding Alignment Techniques

For word embedding alignment, there have
been different approaches since the release of
Word2Vec (Mikolov et al., 2013a). The first work
we come across is the work by Mikolov et al.
(2013b) in 2013. In the following subsections, we
are talking about the major approaches that have
been there for word embedding alignment.

2.2.1 Simple Linear Mapping

Our first method is to find a linear mapping W,
assuming the geometric arrangements of two em-
bedding spaces are similar as per Mikolov et al.
(2013b). The optimizing objective, therefore, is to
minimize the Euclidean distance between the target
and the mapped vectors as per Equation 1.
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2.2.2 Orthogonal Mapping

The second method we are trying is, finding an or-
thogonal mapping between the normalized source
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and the target embedding spaces (Xing et al., 2015).
The major improvement we can expect from this
mapping is that the optimizing objective is, from
one perspective, optimizing the cosine distance be-
tween the target and the mapped embedding. The
optimizing objective is as per Equation 2.
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2.2.3 Orthogonal Procrustes Mapping

In this case, the orthogonal transformation matrix
is approximated using the product UV”, where
U and V are the transformation matrices of sin-
gular value decomposition (SVD) of the product
XTY where X and Y are the original source and
target embeddings (Smith et al., 2016). As we
know the U and V7 matrices only perform transla-
tion, rotation, uniform scaling, or a combination of
these transformations, and no deformations are per-
formed. Therefore the UVT will simply align one
embedding space to the other with the assumption
that the geometric arrangement of the two spaces
is similar.

2.2.4 CSLS Optimization

The third method we are trying is minimizing the
Cross-domain similarity local scaling (CSLS) loss
(Equation 3) as the optimization criterion (Joulin
et al., 2018a). The mapping is assumed to be or-
thogonal and the emending is assumed to be nor-
malized.
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Joulin et al. (2018a) have addressed the so-called
hubness problem in embedding alignment. Hubs
are words that appear too frequently in the neigh-
bourhoods of other words. There have been solu-
tions to mitigate this issue at inference by using dif-
ferent criteria (loss) such as Inverted Softmax (IFS)
or CSLS, rather than using the same criteria used at
the training phase. Using different criteria for infer-
ence adds an inconsistency. Therefore Joulin et al.
(2018a) have included the CSLS criteria directly
to the training objective and have achieved better
results compared to previous related work. This is
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one of the alignment techniques used by FastText
for their official aligned word vectors.

2.2.5 Unsupervised Techniques

The fourth method we are trying is the unsuper-
vised alignment method where a parallel dictio-
nary is not needed for the alignment where creating
a quality parallel dictionary may consume extra
time and resources. Unsupervised alignment can
be done using,

* Traditional statistical optimization tech-
niques: Artetxe et al. (2018) use an unsuper-
vised initialization for the seed words based
on the word similarity distributions claiming
that the similar words of two languages should
have similar distributions and then improve
the mapping in an iterative manner using a
self-learning technique. This method has been
published as a framework called VecMap®.

The work by Grave et al. (2019) is about Pro-
crustes analysis which learns a linear transfor-
mation between two sets of matched points
X ¢ RX4and Y € R" 9, If the corre-
spondences between the two sets are known
(i.e., which point of X corresponds to which
point of Y'), then the linear transformation can
be recovered using least square minimization
or finding the orthogonal mapping between
the two spaces just like in supervised meth-
ods described just above. In this case, we
do not know the correspondence between the
two sets, nor the linear transformation. There-
fore, the goal is to learn an orthogonal matrix
Q@ € Oy, such that the set of points X is close
to the set of points Y and 1-to-1 correspon-
dences (permutation matrix) can be found.
They use the Wasserstein distance or Earth
Mover Distance as the measure of distance
between our two sets of points and then com-
bine it with the orthogonal Procrustes, leading
to the problem of Procrustes in Wasserstein
distance or Wasserstein Procrustes (WP).

Aboagye et al. (2022) have proposed Quan-
tized Wasserstein Procrustes (QWP) Align-
ment which reduces the computational cost
of the permutation matrix approximation in
WP by quantizing the source and target em-
bedding spaces.

4https: //github.com/artetxem/vecmap
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* Adversarial methods: One of the well-
known unsupervised techniques is adversarial
techniques where a Generator tries to mimic
the desired results while a Discriminator tries
to distinguish the real results from the genera-
tor results. The contest between the Generator
and the Discriminator ends up having a Gen-
erator that can generate almost similar real
results which the Discriminator can no longer
distinguish. The work by Lample et al. (2018)
follows an adversarial approach where they
have obtained similar accuracy numbers as
supervised alignment techniques by then.

2.3 English-Sinhala Embedding Alignment

Smith et al. (2016) have published® EN-Si align-
ment matrix along with 77 other languages. How-
ever, they have only worked in the Si—En direction
(i.e. mapping En as the target). Their alignment
datasets have not been published and most of the
later experiments have been done using the MUSE
datasets. Both MUSE and Smith et al. (2016) not
having published an En-Si dataset we have to create
our own dataset for supervised alignments as well
as alignment result evaluation. Recently Liyanage
et al. (2021) have experimented VecMap to align
English and Sinhala embedding spaces for lexicon
induction task

2.4 Alignment Datasets

The works by Guzman et al. (2019), Hameed et al.
(2016), Bafion et al. (2020) and Vasantharajan et al.
(2022) that are comprised of sentence and para-
graph level parallel entries. Apart from that there
are several sentence and document-level parallel
corpora available in OPUS®. They are well suited
for higher-level multilingual tasks like Machine
Translation (MT) but, not for lower-level tasks like
word embedding alignment.

When it comes to word-level parallel corpora
or simply dictionaries, we can find very few open-
source resources for English-Sinhala language pair-
ing. For most of the common language pairs, com-
mon alignment datasets have been published by
MUSE but Sinhala is not available there. The dic-
tionary Subasa Ingiya’ (Wasala and Weerasinghe,
2008) is one of them which is a small dictionary
that contains about 36000 pairs and contains not
only word pairs but also phrases. The next resource

Shttps://bit.1ly/3PTRW3Y
®https://opus.nlpl.eu/
7https ://subasa.lk/?page_id=3738

is by Wickramasinghe and De Silva (2023) which
introduces several pure word-level dictionaries.

3 Methodology

In this section, we present the methodologies we
followed to obtain,

1. An alignment dataset for supervised embed-
ding alignment

2. The alignment matrix between English and
Sinhala word embedding spaces

Our primary research objective is to have an
aligned Sinhala word embedding space with an-
other high-resource language word embedding
space such as English. We are experimenting with
some of the techniques mentioned in Section 2.2.
For the supervised techniques we need a parallel
word corpus where each parallel pair acts as so-
called Anchor words. For that purpose, we are
creating an English-Sinhala parallel word dictio-
nary which is our first task. The results we obtained
and comparison with existing results are presented
in Section 4.

3.1 Alignment Dataset Creation

Our first task is to create an alignment dataset for
the supervised alignment. We experimented with
two statistical methods and one available dataset
adaptation to form the parallel word dictionary
alias, our alignment dataset. In this section, we
are presenting those techniques.

3.1.1 Pointwise Mutual Information Criterion

Pointwise Mutual Information (PMI) is used to
identify how given two events are associated with
each other. In Natural Language Processing (NLP)
this measure is slightly improved as positive PMI
where negative PMI values are clipped to 0 and
this measure is used to identify context words of a
given word.

P(x)P(y)
= logy (cmﬁffffﬁﬁzni)(y))

pmi(z,y) = loga <
4)

ppmi(sre, tgt) = max {pmi(sre,tgt),0}
N.count(sre, tgt)

- mar {l0g2 (Count(SrC)-COUnt(tgt)> ’O}
()
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We used the PPMI measure between source and
target word pairs in several parallel English-Sinhala
corpora and by applying a threshold to PPMI we
tried to obtain the corresponding translation (i.e.
target word) for each source word.

Even if there are many sentence and paragraph-
level parallel corpora out there, by considering the
size and quality (alignment), we selected only the
following English-Sinhala parallel corpora to ex-
tract the dictionaries.

1. CCAligned-v1® - by El-Kishky et al. (2020)

2. OpenSubtitles-v2018° - Initially by Tiede-
mann (2016)

In our case, the N should be the total number
of data points in the parallel corpus. Hence it be-
comes a global context rather than a local context.
We observed that the dictionary building becomes
unstable, i.e. many false pairs along with few cor-
rect pairs in the result. Therefore, we experimented
with another approach that pays more attention to
the local context.

3.1.2 Conditional Probability Product

In this approach, we have made a simple but valid
assumption. That is, "In a parallel corpus, the
corresponding word translation pairs should co-
occur”. In other words, "If two source and target
language words co-occur more often, then there is
a high chance for them to be a translation pair". If
we can have a large enough corpus then we can say
that this measurement tends to be more accurate
due to the sampling statistics being closer to popu-
lation statistics. Based on this assumption, we can
find word translation pairs, as utilized in the corre-
sponding optimization criterion in Equation 6, by
finding the source-target word pairs that maximize
the product of the two conditional probabilities:

1. Finding the target word in the context of the
source word (corresponding translation) given
the source word - P(target|source)

2. Finding the source word in the context of the
target word (corresponding translation) given
the target word - P(sourcel|target)

8https://bit.1ly/3PEC7P
*https://bit.ly/3PEE5xh

max [P (src|tgt) P (tgt|src)]
sre,tgt

P(sre,tgt)?
= max
sretgt | P(source) P(target) ©)

count(src, tgt)?
= max
sreitgt | count(src).count(tgt)

We used the same two corpora, CCAligned and
OpenSubtitles, used in ppmi method explained
in Section 3.1.1 to build the dictionaries here as
well. This dataset is referred to as Prob-based-dict
throughout the paper.

3.1.3 Using an Available Dataset

Recent work by Wickramasinghe and De Silva
(2023) has introduced three English-Sinhala paral-
lel dictionary datasets and the FastText version of
that can be used for our work directly. They have
published the datasets in GitHub'.

Subsets of their dataset have been used to per-
form the embedding alignment. When building
the alignment dataset we used 5k unique source
words in the trainset and 1.5k unique source words
in the test set. Not only that in the training set,
we built the dataset purposefully including the
most frequent English and Sinhala words. That
is how MUSE datasets have been built as well. The
datasets derived from this have been referred to
with En-Si-para and Si-En-para prefixes in the pa-
per.

3.1.4 Dataset Statistics

The statistics of the dataset are shown in Table 1.
We have shown the unique word percentage with
and without stop-words and, the lookup-precision
with respect to the FastText (Bojanowski et al.,
2017; Joulin et al., 2017) vocabularies as described
in Equation 7. Spacy'!(En) and work by Lakmal
et al. (2020) (Si) have been used for stop-word
removal wherever necessary.

The Look-up Precision, Py, means, the propor-
tion of a word present in the FastText vocabulary,
given that word is present in our alignment dic-
tionary. It is explained in Equation 7. The same
thing can be simplified according to Equation 8
where Nyocqp 18 the alignment dataset vocabulary
size and Ny qitaple 1S the number of dataset vocab-
ulary words available in FastText vocabulary.

Ohttps://bit.1ly/3ZDPrx2
11https: //spacy.io/models/en


https://bit.ly/3PECd7P
https://bit.ly/3PEE5xh
https://bit.ly/3ZDPrX2
https://spacy.io/models/en

word present in the FastText vocabulary
P =P( Sliatiid )
word present in the dictionary
(7N
N .
Py, = coverage = ~available (8)
Nvocab

3.2 Embedding Alignment

We have conducted the embedding alignment
with FastText embeddings for English (En) (cc'?,
wiki!?) and Sinhala (Si) (cc'#, wiki!®) trained on
Common Crawl'® (cc) and Wikipedia'” (wiki) with
the same setups followed by Joulin et al. (2018a).

* Learning rate in {1, 10, 25, 50} and number
of epochs in {10, 20}

* Center the word vectors (optional)

* The number of nearest neighbours in the
CSLS loss is 10

* Use the 12-normalized word vectors
* Use 200k word vectors for the training

We adopted our scripts from the alignment scripts
by MUSE and FastText'®. One major observation
was that when we use an alignment dataset that
consists of the most common words in languages,
we obtain a higher test accuracy than having an
alignment dataset without considering the most
frequent words in languages.

4 Experiments

In this section, we present the experiments we have
conducted and the obtained results and observa-
tions. We are using the FastText official embed-
dings of (Bojanowski et al., 2017). FastText pro-
vides two main embedding models: 1) Embeddings
trained on Wikipedia (wiki), 2) Embeddings trained
on Common-Crawl (cc).

Most of the previous related work has been done
using the wiki embeddings but, when it comes to
Sinhala wiki FastText embeddings, there are only

Phttps:
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18https:
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79030 word vectors in the official model (this is be-
cause the Sinhala content on Wikipedia is very low:
To get an idea, the number of English articles at
the moment are more than 6.5M while the number
of Sinhala articles are just around 20k) but, the cc
Sinhala model contains 808044 word vectors and
therefore the wiki vectors are not rich enough for
Sinhala. The experimental results also prove that
fact. Due to that fact, in some comparisons, we are
presenting the results obtained from the cc model.

Sinhala is morphologically richer than English
and therefore the alignment is comparatively diffi-
cult. In most cases, a single English word can have
multiple Sinhala representations. In that case, it is
not a good measure to check the @1 precision on
the test set to evaluate the alignment quality. There-
fore checking a higher top-k precision (like @5
or @10) will be a better measure. The Procrustes
alignment evaluation by Smith et al. (2016) also
shows comparatively low @1 precision for Sinhala
(language code Si - recall that they have performed
the Si—En mapping). According to Aboagye et al.
(2022) results, work by Joulin et al. (2018a) gives
the best alignment results and therefore we have
used Joulin et al. (2018a) as the main reference
paper for our work here.

4.1 Dataset Comparison

As explained in section 3.1, we have created the
alignment datasets in 3 different approaches, PPM
based, conditional probability-based, and using
a subset of the dataset by Wickramasinghe and
De Silva (2023). In the first experiment, we eval-
uated all the datasets by aligning the English and
Sinhala embeddings using the Procrustes (see sec-
tion 2.2.3) method. The results are shown in Ta-
ble 2.

We can see that the best accuracies have been
shown by the En-Si-para-cc-5k and En-Si-para-
wiki-5k datasets and therefore, for the rest of the
experiments we have used the datasets created us-
ing Wickramasinghe and De Silva (2023) dataset.

4.2 Alignment Results

Table 3 reports the look-up/translation precision
of the aligned wiki and cc English-Sinhala em-
beddings with different alignment techniques and
retrieval criteria. The term after the last plus sign
is the retrieval criteria. We can see that cc vectors
show better alignment than wiki vectors. Table 4
shows the translation precision of different align-
ment techniques. RCSLS gives the best alignment
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Entries Unique% Pr% Pr%

Dataset Language w.r.t. stopwords (Each language) (Both languages)

Unique Total | With Without wiki" cct | wiki” cct
Prob-based-  English 36713 67404 | 5447 5478 | 99.99  99.99 4770 99.99
dict Sinhala 53612 67404 | 79.54 79.67 | 39.22 100 ' '
en-si-para-  English 5000 12803 | 39.05 39.67 | 100.00 100.00 100,00 100.00
cc-5k' Sinhala 11403 12803 | 89.07 89.21 | 100.00 100.00 ' '
en-si-para-  English 5000 12782 | 39.12 39.74 | 100.00 100.00 10000 100.00
wiki-5k Sinhala 11394 12782 | 89.14  89.28 | 100.00 100.00 ' '
si-en-para-  English 2406 6113 | 39.36 40.73 | 100.00 100.00
CC-SkE Siniala 5000 6113 | 81.81 81.96 | 100.00 100.00 100.00°100.00
si-en-para-  English 2397 6104 | 39.27 40.63 | 100.00 100.00 10000 100.00
wiki-5k Sinhala 5000 6104 | 81.93 82.09 | 100.00 100.00 ' '

Table 1: Dataset Statistics: Statistics of the alignment datasets we have experimented with
* w.r.t. wiki-based FastText vocabulary # w.r.t. common-cawl FastText vocabulary

T Subsets of Wickramasinghe and De Silva (2023)

Dataset Retrieval
NN CSLS

Prob-based-dict 13.6 16.7

En-Si-para-cc-5k | 16.4 20.4

Table 2: En-Si Procrustes Embedding Alignment Re-
sults of cc-Fasttext embeddings on different datasets

in En—Si direction while the refined Procrustes
method gives the best accuracy in Si—En direc-
tion. Table 5 shows a comparison between the
Si-En alignment performed by Smith et al. (2016).
They have reported the alignment results in Si—En
direction only and also provided the alignment ma-
trix associated with the alignment. The evaluation
done using that alignment matrix and our evalu-
ation dataset (rows 2, 3 of Table 5) may not re-
flect the exact accuracy since the original alignment
dataset used by Smith et al. (2016) is not published
and, therefore we cannot guarantee that our evalua-
tion set and their training set are disjoint. Table 7
in Appendix A has further relevant analysis. Fig-
ure 1 shows the top-k retrieval distribution in both
source-target and target-source directions of the
aligned embeddings on the test sets for RCSL+NN
and RCSL+CSLS using cc-FastText embeddings.

4.3 Impact of Alignment Dataset Size

In this section, we experimented with how the align-
ment dataset affects the alignment. We have exper-
imented with an extended alignment dataset and
evaluated it with the same test sets used in Sec-
tion 4.2. The results are reported in Table 6.

5 Discussion and Future Work

According to Table 3 and 4, we observe that Si-
En alignment results are not on par with the high-
resource language pairs. We have identified several
possible reasons for this score difference.

5.1 Impact of the embedding model size

We observe cc Fasttext models have better align-
ment than wiki models. According to Table 3 re-
sults we can see 22.6% @1 reduction (22.6—17.5)
in En-Si direction and 41.5% @1 reduction
(28.9—16.9) in En-Si direction. This effect can
be expected due to the comparatively low (9.7% of
cc vocabulary) vocabulary size of the Sinhala wiki
FastText model (wiki-79k, cc-808k) and therefore
missing a great portion of information on the Si
side.

5.2 Quality of the alignment dataset

We have experimented only with the supervised
alignment techniques in this paper and, the final
alignment output solely depends on the quality of
the alignment datasets that are used. Our main
alignment experiments have been carried out using
alignment datasets created using the base datasets
provided by Wickramasinghe and De Silva (2023)
and, according to their paper, it is mentioned that
the so-called look-up score of the datasets are not
higher as expected. That indicates that there is an
issue with the quality/coverage of the base dataset
we used. According to Smith et al. (2016) the more
common word pairs in the alignment dataset the
better the alignment output we achieve. How we



wiki cc
Method En-Si Si-En En-Si Si-En
P@l P@5 P@I0| P@l P@5 P@I0| P@l P@5 P@I10| P@1 P@5 P@I10

Procrustes + NN 114 264 332 | 125 29.6 37.1 | 164 357 436 |21.3 399 474
Procrustes + CSLS 148 31.5 398 | 144 27.6 33.8 | 204 399 49.1 | 180 319 374
Procrustes+ refine + NN 13.7 255 313 | 158 33.0 393 | 193 349 423 | 289 457 513
Procrustes+ refine + CSLS | 16.1 29.0 35.7 | 16.9 31.0 36.7 | 20.9 38.6 46.3 | 21.7 36.6 41.6
RCSLS + spectral + NN 14.8 29.7 368 | 13.3 337 428 | 214 402 485 | 233 448 527
RCSLS + spectral + CSLS | 17.1 33.1 41.0 | 151 294 351 | 21.5 41.7 49.1 | 192 349 418
RCSLS + NN 153 304 375 | 13.2 341 433 | 21.5 409 483 | 233 449 53.2
RCSLS + CSLS 17.5 334 413 | 155 293 359 | 226 423 49.1 | 194 354 42.1

Table 3: English-Sinhala word translation average precisions (@1, @5, @10) from 1.5k source word queries
using 200k target words in wiki and cc Fasttext embeddings. Refine is the refinement step of Lample et al. (2018)
and, Spectral is the Convex relaxation step explained in Joulin et al. (2018b). For supervised alignments, two
different train-test dataset pairs have been used.

Joulin et al. (2018a) Ours

Method - -
en-es es-en | en-fr fr-en | en-de de-en | en-ru ru-en | en-zh zh-en | en-si si-en
Adv.+refine 81.7 83.3 | 823 82.1 740 722 | 440 59.1 325 314 - -
Wass. Proc.+refine | 82.8 84.1 | 82.6 829 | 754 733 | 437 59.1 - - - -
Procrustes 814 829 | 81.1 824 | 735 724 | 517 637 | 427 36.7| 204 18.0
Procrustes+ refine 824 839 | 823 832 | 753 732 | 50.1 635| 403 355 209 21.7
RCSLS + spectral 835 857 | 823 841 | 782 758 | 56.1 665 | 449 457 | 21.5 19.2
RCSLS 84.1 863 | 833 841 | 791 763 | 579 672 | 459 464 | 22.6 194

Table 4: Extended Comparison among different alignment techniques using CSLS retrieval. Here only the top-1
precision scores have been included

Dataset Scores

@1 @5 @10
Smith et al. (2016): On their original eval dataset” 22 40 45
Smith et al. (2016)+NN: On our eval dataset’ 25 44 50
Smith et al. (2016)+CSLS: On our eval dataset’ 26 43 49
our work best results 20 42 51

Table 5: Si—En Embedding Alignment Results with previous alignment work
* From Smith et al. (2016) official repository © Aligned using alignment matrix given in Smith et al. (2016) official
repository and evaluated using our evaluation set. The scores can be overestimated since we do not know the exact
alignment dataset used by the authors. If there is an intersection between the alignment dataset and our evaluation
dataset, the scores may not represent the exact alignment accuracy.

Unique Src Retrieval
Dataset within 200k NN CSLS
@l @5 @10 @1 @5 @10
En-Si-para-wiki-5k 5000 11.4 26.4 332 14.8 315 39.8
En-Si-para-wiki-full 27846 17.0 36.1 45.1 20.2 4224 50.9
En-Si-para-cc-5k 5000 16.4 35.7 43.6 20.4 39.9 49.1
En-Si-para-cc-full 27856 174 37.9 45.5 20.9 424 50.8

Table 6: En—Si Procrustes Embedding Alignment Results with different dataset sizes

created our alignment dataset was using the En-
glish column of the En-Es MUSE (Lample et al.,
2018) alignment datasets and, therefore even if the

frequent English words are included, no frequent
word selection criterion was imposed on the Sin-
hala word selection. We assumed that by selecting
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Figure 1: Top-k Retrieval distribution for RCSL align-
ment. (The numbers indicate how many pairs in the test
set are retrieved in En—Si and Si—En directions with
corresponding top-k values)

the most frequent English words would indirectly
lead to the most common Sinhala words. Also
assumed that MUSE datasets have been created
considering the most frequent words in the vocabu-
laries (Lample et al., 2018).

5.3 Alignment Techniques

Where we do not find a proper alignment dataset,
we can go for semi-supervised or unsupervised
alignment techniques. The unsupervised tech-
niques by Lample et al. (2018) and Grave et al.
(2019) have shown competitive results with the su-
pervised techniques. Therefore our next immediate
focus will be on semi-supervised and unsupervised
alignment techniques.

6 Conclusion

The alignment dataset we used (En-Si-para-cc) has
been constructed using the most frequent words in
both languages as discussed in Section 5.2. We
observed that when we do the alignment using in-
frequent words (i.e. alignment dictionary created
without specifically considering frequent terms)
the precision is worse. That is because the most
frequent words’ embeddings can be assumed well
positioned in the embedding spaces rather than in-
frequent words. That observation has been reported
by Smith et al. (2016) as well.

The obtained results show that Si—En alignment
is better than EN—Si alignment. We can explain
that observation as follows. FatText English em-
bedding space (wiki-256k, cc-2M) is considerably
larger than the Sinhala embedding space (wiki-79k,
cc-808k). Therefore aligning a larger embedding
space onto a smaller space is lossy than the other
way around given the probability of a given candi-
date word from the source not existing in the target
is high. Further, given that Sinhala is a highly in-
flected language compared to English (de Silva,
2019), multiple morphological forms which exist
in Sinhala, would invariably map to the parallel of
the root word in English. Thus extenuating the vi-
able pool of the Sinhala vocabulary to be matched
to their English counterparts. We can assume that
these are the reasons contributing to the drop in
the resultant improvement of the @5 and @10 pre-
cision in En—Si direction during the refinement
procedure.

When it comes to the retrieval criterion, the
CSLS gives better results than NN in most cases.
Then, as far as the training objective is considered,
RCSLS with CSLS as the retriever criterion has
shown the best precision in most cases. This is be-
cause the core idea of RCSL alignment is to make
both the training and retrieval consistent rather than
using two different criteria (Joulin et al., 2018a).
According to Aboagye et al. (2022), the RCSL ap-
proach by Joulin et al. (2018a) has the highest
average alignment quality/accuracy among avail-
able cross-lingual embedding alignment techniques
and, from our experiments for En-Si alignment, we
could verify that fact. We have used alignment
datasets with 5k unique source words for the ex-
periments since most of the other work has been
carried out with that configuration (Joulin et al.,
2018a) but, from Table 6 results we see that we can
achieve better results by having a larger dataset.
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Joulin et al. (2018a) Ours
en-es es-en | en-fr fr-en | en-de de-en | en-ru ru-en | en-zh zh-en | en-si si-en
Adv.+refine+NN 79.1 78.1 | 78.1 782 | 713 69.6 | 373 453 | 309 219 - -
Adv.+refine+CSLS | 81.7 833 | 823 82.1 | 740 722 | 440 59.1| 325 314 - -

Method

Procrustes+NN 774 773 | 749 76.1 | 684 677 | 470 582 | 40.6 302 | 164 213
Procrustes+CSLS 814 829 | 81.1 824 | 735 724 | 517 63.7| 427 367 | 204 18.0
RCSLS+NN 81.1 849 | 805 805 | 750 723 | 553 67.1 | 436 40.1 | 215 233
RCSLS+CSLS 84.1 863 | 833 841 | 791 763 | 579 672 | 459 464 | 22.6 194

Table 7: Extended Comparison nearest neighbour (NN) and CSLS retrieval Criteria. Here only the top-1 precision
scores have been included

A Impact of Retrieval Criterion

Table 7 shows a comparison of how Si-En aligned
embeddings behave with different retrieval criteria
with other language pairs. In all the other language
pair results given in Joulin et al. (2018b), the RC-
SLS criterion outperforms the NN criterion in both
directions but, in our case, Si—En direction, NN
has shown the best results while En—Si shows the
best results with CSLS. This effect can be clearly
seen in Table 3 as well. Joulin et al. (2018b) says,
RCSLS transfers some local information encoded
in the CSLS criterion to the dot product. to estab-
lish a suggestion as to why RCSLS outperforms
NN in their results but, it seems RCSLS need not
be the best retriever criterion for all the cases and,
could depend on the language pair and the align-
ment direction.



