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Abstract

Text-to-speech (TTS) systems are being built
using end-to-end deep learning approaches.
However, these systems require huge amounts
of training data. We present our approach
to built production quality TTS and perform
speaker adaptation in extremely low resource
settings. We propose a transfer learning ap-
proach using high-resource language data and
synthetically generated data. We transfer the
learnings from the out-domain high-resource
English language. Further, we make use of
out-of-the-box single-speaker TTS in the tar-
get language to generate in-domain synthetic
data. We employ a three-step approach to train
a high-quality single-speaker TTS system in a
low-resource Indian language Hindi. We use
a Tacotron2 like setup with a spectrogram pre-
diction network and a waveglow vocoder. The
Tacotron2 acoustic model is trained on English
data, followed by synthetic Hindi data from the
existing TTS system. Finally, the decoder of
this model is fine-tuned on only 3 hours of tar-
get Hindi speaker data to enable rapid speaker
adaptation. We show the importance of this
dual pre-training and decoder-only fine-tuning
using subjective MOS evaluation. Using trans-
fer learning from high-resource language and
synthetic corpus we present a low-cost solution
to train a custom TTS model.

1 Introduction

Speech synthesis systems are widely used in ap-
plications like voice assistants and customer ser-
vice voice bots (Joshi and Kannan, 2021; Joshi and
Singh, 2022). They are used commonly along with
automatic speech recognition (ASR) (Joshi and Ku-
mar, 2022) systems to provide an end-to-end voice
interface. Recently, text-to-speech (TTS) systems
have been trained using end-to-end deep learning
approaches (Shen et al., 2018). The TTS models
are based on an independent acoustic model con-
verting text to spectrogram and a vocoder convert-
ing spectrogram to speech. More recently, these

Nikesh Garera
Flipkart, Bengaluru
nikesh.garera@flipkart.com

[ s ez et sz | W..,W
J i

Figure 1: Overall flow of the TTS system

two models have been integrated into the model di-
rectly converting text to target speech (Weiss et al.,
2021). However, the single end-to-end model re-
quires large amounts of transcribed data. The dual
model approach can be trained on comparatively
less data as training a vocoder only requires audio
data without its text transcripts. In general, training
an end-to-end TTS requires a large amount of high-
quality studio recordings to build a production-
quality model.

The popular text to spectrogram models include
Tacotron2 (Shen et al., 2018), Transformer-TTS (Li
et al., 2019), FastSpeech2 (Ren et al., 2020), Fast-
Pitch (Lancucki, 2021), and Glow-TTS (Kim et al.,
2020). In terms of voice quality the Tacotron2
model is still competitive with other models and
less prone to over-fitting in low resource settings
(Favaro et al., 2021; Abdelali et al., 2022; Garcia
et al., 2022; Finkelstein et al., 2022). There are
multiple options for the vocoder as well like Clar-
inet (Ping et al., 2018), Waveglow (Prenger et al.,
2019), MelGAN (Kumar et al., 2019), HiFiGAN
(Kong et al., 2020), StyleMelGAN (Mustafa et al.,
2021), and ParallelWaveGAN (Yamamoto et al.,
2020). We choose Waveglow since it is competitive
with other vocoders and is easy to train (Abdelali
et al., 2022; Garcia et al., 2022; Shih et al., 2021).
There is other single model end-to-end architec-
tures like VITS (Kim et al., 2021), Wave-Tacotron
(Weiss et al., 2021) and JETS (Lim et al., 2022)
for spectrogram-free TTS approaches. Although
such models are more desirable since they remove



the vocoder spectrogram features mismatch dur-
ing training and inference but do not work well in
low-resource settings.

In this work, we explore the Tacotron2-based
acoustic model and Waveglow-based vocoder to
build a production-quality TTS system in low-
resource, low-budget settings. The high-level flow
is shown in Figure 1. In general, these models
require 10 to 20 hours of quality data to train high-
quality TTS systems. We aim to reduce the data re-
quirements using simple strategies. Previous works
in literature have proposed approaches to adapt to
a new speaker with a few hours to a few minutes of
data (Prakash and Murthy, 2020). However, these
approaches have only been tested on some 10-30 ut-
terances and might not be suitable for high-quality
applications. Recently, a TTS system Vall-E (Wang
et al., 2023) has shown extraordinary zero-shot ca-
pabilities. However, this system uses a complex
architecture and requires 60K hours of pre-training
data making it infeasible in low-resource scenarios.

In order to build low-resource TTS, we explore
transfer learning from English data and synthetic
audio corpus from the existing TTS model. We
show the effectiveness of our approach in the con-
text of the low-resource Indian language Hindi.
While transfer learning from English is a common
approach, we propose the usage of existing out-
of-the-box TTS to further augment the data. Us-
ing an out-of-the-box TTS system has multiple
advantages. It allows us to get a large amount of
(real-text, synthetic-audio) pairs in the domain of
our choice. It is a low-cost solution as compared
to obtaining studio recordings for an equivalent
amount of data. With high-quality out-of-the-box
single-speaker text-to-speech systems available in
the majority of languages, we leverage it to build
a TTS in the speaker of our choice. We use an in-
house single-speaker Hindi TTS system to generate
synthetic corpus, however, the approach is applica-
ble to any out-of-the-box TTS system. While we
could have directly used the original training data
of the initial TTS system, we utilized the model
as a black box so that we can generate data in the
domain of our choice.

We propose a three-step approach to build a low-
cost TTS system. This approach is depicted in
Figure 2.

* We initially pre-train the Tacotron2 acoustic
model with public English LJSpeech data.

* We then ignore the initial character embedding
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Figure 2: The training strategy for low resource TTS
using less amount of Target-Hindi Data

layer based on English (Roman script) and re-
train the entire model using a synthetic Hindi
corpus (Devanagari script). This synthetic
data pre-training step is important as it adapts
the Tacotron2 encoder to the target domain
text in the Devanagari script.

* Finally, we adapt the model to the target
speaker using 3 hours of target speaker Hindi
data. In the second step, although the audios
are synthetic and from a different speaker, a
large amount of real target domain text en-
sures high-quality pretraining of the text en-
coder. Therefore, during the final step, we
freeze the encoder and only fine-tune the
decoder of the Tacotron2 encoder-decoder
model.

We show that using this three-step strategy allows
us to rapidly build a TTS system in the speaker of
our choice. Although we can further reduce the
data requirements overall stability of the model is
impacted thus hindering its deployment in high-
quality applications. We perform a subjective eval-
uation of our approach on an unseen domain with
a larger test set and show its effectiveness.

2 Related Work

In this section, we describe the previous attempts to
train a low-resource TTS system. A generic Indic
TTS system using multiple languages and voices
was built in (Prakash and Murthy, 2020). They
used the tacotron2 + waveglow setup, along with a
common linguistic representation multi-language
character map (MLCM) to map all languages to a
common script. They also utilize speaker embed-
dings based on x-vectors to train a multi-speaker
model. Their observations indicate that such a sys-
tem does not scale to the unseen speakers. So
they propose a new speaker adaptation using only
7 minutes of data. However, the adapted system
was tested only on 10 utterances which might not
scale well to a larger set in high-quality settings.



In this work, we focus on the original script of the
language as mapping it to a common script could
result in information loss for some languages. Pre-
viously, a multi-lingual TTS system using MLCM
character representation was introduced in (Prakash
etal., 2019).

Cross-lingual transfer learning and data augmen-
tation approach for low resource TTS were pro-
posed in (Byambadorj et al., 2021). The spectro-
gram prediction network was trained using cross-
lingual transfer learning (TL) from high resource
language, data augmentation by varying parameters
like pitch and speed, and a combination of two ap-
proaches. In the TL approach models were sequen-
tially trained on high resource language (English)
followed by a low-resource language (Mongolian).
The input script was first converted into IPA pho-
netic format to enable the transfer of knowledge.
We followed a similar approach in our first two
steps but without using the common IPA phones
instead of relying on the original script. This work
also indicates a minimum of 3 hours of data is
needed to cover all the phones. However, this ap-
proach is based on a multi-speaker TTS system as
opposed to our single-speaker model. Similarly,
data augmentation using a voice conversion mod-
ule was explored in (Cai et al., 2023) and (Ribeiro
et al., 2022).

Another approach for data augmentation using
the parent TTS system was proposed in (Hwang
et al., 2021). An auto-regressive TTS was first
trained and used to generate large-scale synthetic
corpora. This synthetic corpus along with real cor-
pus is then used to train a non-auto-regressive TTS
system. A similar approach utilizing synthetic cor-
pus from existing TTS is explored in (Finkelstein
et al., 2022; Song et al., 2022). Our work is similar
to these approaches where the common aspect is to
generate synthetic audio from another TTS system.
However, these works train different TTS archi-
tectures for the same speaker and propose compli-
cated training approaches. We instead focus on
any-speaker out-of-the-box TTS system and pro-
pose a simple fine-tuning strategy.

Multi-speaker models leveraging external
speaker embedding are commonly used to address
speaker adaptation in low-resource settings.
Transfer learning from external speaker verifi-
cation models to Tacotron2 TTS was initially
explored in (Jia et al., 2018). Further, zero-shot
un-seen speaker adaptation using a similar speaker

embedding approach was explored in (Cooper
et al., 2020). Other approaches have been proposed
over to time to combine speaker embedding and
style embedding in Tacotron2 setup (Chung and
Mak, 2021). In this work, we are only concerned
about single-speaker models in this work and
directly use the input script to preserve the original
representation.

3 Model Architecture

We use a Tacotron2-based spectrogram prediction
network followed by a Waveglow-based speech
synthesis model. The two pass models are pre-
ferred in low resource settings as compared to fully
end-to-end models. We observe that the vanilla
Tacotron2 model is less prone to over-fitting in low-
resource scenarios as compared to the vanilla Trans-
former based Tacotron model. Moreover, these
models are competitive with more recent models in
terms of audio quality and hence used to evaluate
our transfer learning approaches (Tan et al., 2021).
The approaches presented in this work are data-
oriented and can be easily extended to any other
model architecture.

3.1 Tacotron2

The Tacotron2 (Shen et al., 2018) model uses an
auto-regressive spectrogram prediction network fol-
lowed by a wavenet vocoder (van den Oord et al.).
We describe the details of the spectrogram predic-
tion network from Tacotron2 used in this work. The
text-to-Mel spectrogram prediction is done using
a sequence-to-sequence network. The input char-
acters are converted into 512-dimensional embed-
dings and passed to the encoder-decoder network.
The encoder consists of 3 stacked convolution lay-
ers with 512 filters and a filter size of 5 x 1. Each
convolution layer is followed by batch normaliza-
tion and relu activation. The convolution block
is followed by a single Bi-LSTM layer with 512
units. The decoder is an auto-regressive network
conditioned on encoder hidden representation. It
uses location-sensitive attention (Chorowski et al.,
2015) to compute the context vector during each
time step. The decoder uses pre-net, containing 2
feed-forward layers (256 units) followed by relu
units. The output of the pre-net is concatenated
with the context vector and passed through two
uni-LSTM layers with 1024 units. The output of
Istm is again concatenated with the context vector
and passed through a dense layer to predict the



spectrogram frame. At this step, another parallel
projection predicts the stop token. The predicted
frame is passed through a post-net comprising of 5
conv layers (512 filters, 5 x 1 filter size) each fol-
lowed by batch norm and tanh non-linearity. The
post-net predicts the residual to be added to spectro-
gram prediction to enhance the output. The mean
squared error (MSE) is used as a loss function. The
loss is computed on both output of LSTM projec-
tion and post-net projection.

The ground truth mel spectrogram is computed
with STFT using 50 ms frame length and 12 ms
hop. The STFT magnitude is transformed into a
Mel scale using an 80-channel Mel filter bank. This
is followed by log compression to get ground truth
log-Mel spectrogram. Other hyperparameters are
the same as those described in the original work.

3.2 Waveglow

Waveglow (Prenger et al., 2019) is a flow-based net-
work that converts Mel-spectrogram to speech. It
is a generative model that generates audio by sam-
pling from a distribution. The samples are taken
from zero mean, spherical Gaussian distribution,
and transformed into audio distribution by pass-
ing it through a series of invertible transformations.
It essentially models the audio distribution condi-
tioned on a Mel-spectrogram. The model is trained
by minimizing the log-likelihood of the data.

4 Dataset Details

We use three different datasets in this work. These
datasets are single-speaker labeled audio-text pairs.
One dataset is synthetically generated while the
other two are real data. These are described below.

* LJSpeech-English (24 hrs): It is a public
domain single-speaker audio dataset consist-
ing of 13,100 audio clips (Ito and Johnson,
2017). The text of the audio is taken from 7
non-fiction English books. The total length of
the dataset is approximately 24 hours.

» Syntethic-Hindi (15 hrs): A synthetic data
set is created using an in-house TTS system.
The output of the system was a single speaker
and a female voice. Around 16k short ut-
terances in Devanagari script majorly from
the grocery voice assistant domain were con-
verted to speech. The size of this dataset is
around 15 hrs.

* Real-Hindi (3 hrs): This is the target low-
resource speaker data. A subset of utter-
ances (2.5k) from the voice assistant domain
were recorded in the voice of an external fe-
male speaker. These were high-quality stu-
dio recordings and the size of the dataset was
around 3 hrs. We also evaluate the full 15
hrs of studio recordings of the above voice
assistant utterances for comparative analysis.

All the audio data is re-sampled at 16kHz and en-
coded in 16-bit PCM wav format for training and
inference.

S Experimental Setup

We evaluate different variations of the pre-training
strategy and try to come up with the best training
strategy. We use English data and synthetic data for
pre-training. First, the model is trained on English
data followed by Hindi synthetic data. Finally, the
model is trained on the target real Hindi corpus.
The third corpus is the smallest in size and depicts
the low-resource speaker. The final fine-tuning is
done in two different ways. One approach is to
perform full-finetuning and the second approach
is to perform partial fine-tuning by freezing the
encoder. The frozen encoder approach yields the
best results and the corresponding flow is shown
in Figure 2. The frozen text encoder is desirable
since it is pre-trained on a large amount of target
domain text as opposed to a small amount of data
in the third step. Overall we consider the following
pre-training strategies:

* Direct target speaker (Hindi) training -
With just 3 hours of data and the results were
mostly noisy and the training did not converge
to a decent model. So the results of this model
training are not discussed in the next sections.

* LJSpeech English pre-training + Target-
Hindi finetuning - In this setup, since the
input symbols of English and Hindi are com-
pletely different we discard the embedding
layer weights and retain all other weights of
the pre-trained English model. Post this we
perform target Hindi data fine-tuning. Also,
full fine-tuning is performed using target data
since the embedding layer is part of the en-
coder and needs to be re-trained.

* LJSpeech English pre-training + Synthetic
Hindi pre-training + Target-Hindi full fine-
tuning - In this strategy, the model is initially



Training Strategy MOS
Ground Truth Audios (Real) 4.65 +0.62
LJSpeech + Real (3 hrs) 4.27 +0.95
LJSpeech + Synthetic + Real (3 hrs) 4.54 £ 0.58
LJSpeech + Synthetic + Real (frozen encoder, 3 hrs)  4.59 + 0.68

LJSpeech + Synthetic + Real (frozen encoder, 15 hrs) 4.65 4= 0.58

Table 1: MOS scores for different training strategies

Input text : R iz 7 g ()

Figure 3: The Mel-spectrogram and attention alignment
plot for a sample sentence using config (a) LISpeech
+ Real (3 hrs) and (b) LJSpeech + Synthetic + Real
(frozen encoder, 3 hrs). The difference in the resolution
can be clearly seen at the end of the two spectrograms.

trained on English corpus, followed by full
training on synthetic Hindi corpus. Finally,
target Hindi speaker data is used to again fully
fine-tune the models.

LJSpeech English pre-training + Synthetic
Hindi pre-training + Target-Hindi decoder
only finetuning - This strategy is similar to
the last strategy. The only difference is in
the final fine-tuning only decoder weights are
updated and the encoder is completely frozen.
With this, we try to retain learnings from a
much larger Hindi corpus.

6 Results and Discussion

We evaluate different pre-training strategies ex-
plored in this work using subjective mean opinion
score (MOS) evaluation. A test set was created
using 200 consumer experience (CX) voice bot in-
teraction utterances. The domain of the test data
(CX) is different from the domain of training utter-
ances (voice assistant). This allows us to perform
more rigorous testing of the model to unseen do-
mains. These utterances were evaluated on (1-5)
MOS scale by 10 specialized listeners with each au-

dio evaluated by at least 3 listeners. The evaluators
were explicitly trained for the evaluation activity
and were part of the internal operations team thus
ensuring high quality of evaluation. The audio were
rated based on intelligibility and naturalness of the
audios.

The results of the evaluation are shown in Ta-
ble 1. The results indicate that LISpeech English
pre-training is helpful to create usable TTS mod-
els. Without this cross-lingual transfer learning,
the model fails to produce intelligible output. Fur-
ther training the model on synthetic Hindi data
improves the output even further. Synthetic data
pre-training is evaluated in two configurations. The
full model is fine-tuned in the first config and the
encoder is frozen in the second config. In both
configurations, we perform LISpeech pre-training.
We observe that the frozen encoder approach yields
superior performance in low-resource settings. All
these experiments used 3 hrs of real Hindi data,
15 hours of synthetic Hindi data, and 24 hours of
real English corpus. We also evaluate the three-
step approach using full 15 hrs real data and see
minimal improvements in performance. This in-
dicates that 3 hrs of data is sufficient to build a
production-ready TTS system with transfer learn-
ing from cross-lingual data and synthetic corpus.
The plot of spectrogram and attention alignment
weights for a sample sentence with and without
using synthetic Hindi data is shown in Figure 3.

7 Conclusion

We present our transfer learning strategy to build
low resource TTS system. We explore trans-
fer learning from cross-lingual data and same-
language synthetic data. The synthetic data is cre-
ated using existing out of the box TTS system. The
three-step approach involves pre-training with En-
glish data followed by synthetic Hindi data and low-
resource real Hindi data. We evaluate these pre-
training approaches using a strong out-of-domain
test set using subjective MOS evaluation. In the



final step, we observe that the decoder only fine-
tuning works better than full tuning. The high-level
text representations (encoder output) of text trained
on the large real text and synthetic audio pairs are
better than just using the low-resource data.
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