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Abstract

Multilingual language models have pushed
state-of-the-art in cross-lingual NLP trans-
fer. The majority of zero-shot cross-lingual
transfer, however, use one and the same
massively multilingual transformer (e.g.,
mBERT or XLM-R) to transfer to all target
languages, irrespective of their typological,
etymological, and phylogenetic relations
to other languages. In particular, readily
available data and models of resource-rich
sibling languages are often ignored. In this
work, we empirically show, in a case study
for Faroese – a low-resource language from
a high-resource language family – that by
leveraging the phylogenetic information
and departing from the ‘one-size-fits-all’
paradigm, one can improve cross-lingual
transfer to low-resource languages. In par-
ticular, we leverage abundant resources of
other Scandinavian languages (i.e., Danish,
Norwegian, Swedish, and Icelandic) for the
benefit of Faroese. Our evaluation results
show that we can substantially improve
the transfer performance to Faroese by ex-
ploiting data and models of closely-related
high-resource languages. Further, we re-
lease a new web corpus of Faroese and
Faroese datasets for named entity recogni-
tion (NER), semantic text similarity (STS),
and new language models trained on all
Scandinavian languages.

1 Introduction

Massively multilingual Transformer-based lan-
guage models (MMTs) such as mBERT (Devlin
et al., 2019), XLM-RoBERTa (Conneau et al.,
2020a) and mT5 (Xue et al., 2021) have been
the driving force of modern multilingual NLP, al-
lowing for rapid bootstrapping of language tech-

nology for a wide range of low(er)-resource lan-
guages by means of (zero-shot or few-shot) cross-
lingual transfer from high(er)-resource languages
(Lauscher et al., 2020; Hu et al., 2020; Xu and Mur-
ray, 2022; Schmidt et al., 2022). Cross-lingual
transfer with MMTs is not without drawbacks.
MMTs’ representation spaces are heavily skewed
in favor of high-resource languages, for which they
have been exposed to much more data in pretrain-
ing (Joshi et al., 2020; Wu and Dredze, 2020); com-
bined with the ‘curse of multilinguality’ – i.e., lim-
ited per-language representation quality stemming
from a limited capacity of the model (Conneau
et al., 2020a; Pfeiffer et al., 2022) – this leads to
lower representational quality for languages under-
represented in MMTs’ pretraining. Cross-lingual
transfer with MMTs thus fails exactly in settings
in which it is needed the most: for low-resource
languages with small digital footprint (Zhao et al.,
2021). Despite these proven practical limitations,
the vast majority of work on cross-lingual transfer
still relies on MMTs due to their appealing concep-
tual generality: in theory, they support transfer be-
tween any two languages seen in their pretraining.
Such strict reliance on MMTs effectively ignores
the linguistic phylogenetics and fails to directly
leverage resources of resource-rich languages that
are closely related to a target language of interest.

In this work, we attempt to mitigate the above
limitations for a particular group of languages, de-
parting from the ‘one-size-fits-all’ paradigm based
on MMTs. We focus on a frequent and realis-
tic setup in which the target language is a low-
resource language but from a high-resource lan-
guage family, i.e., with closely related resource-
rich languages. A recent comprehensive evaluation
of the languages used in Europe1 scores languages

1The Digital Language Equality in Europe by 2030:
Strategic Agenda and Roadmap published by the Eu-
ropean Language Equality Programme (ELE), https://
european-language-equality.eu/agenda/.
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based on the available resources. Languages such
as German and Spanish score at around 0.5 of
the English scores, and more than half of the lan-
guages are scored below 0.02 of the English score.
Many, including almost all regional and minority
languages such as Faroese, Scottish Gaelic, Oc-
citan, Luxembourgish, Romani languages, Sicil-
ian and Meänkieli have the score of (almost) 0.
However, what differentiates these languages from
low-resource languages from Africa (e.g., Niger-
Congo family) or indigenous languages of Latin
America (e.g., Tupian family) is the fact that they
typically have closely related high-resource lan-
guages as ‘language siblings’. In this case, we
believe, language models (LMs) of closely related
high-resource languages promise more effective
transfer compared to using MMTs, plagued by the
‘curse of multilinguality’, as the vehicle of transfer.

In this proof-of-concept case study, we focus on
Faroese as the target language and demonstrate the
benefits of linguistically informed transfer. We take
advantage of available data and resources from the
closely related but much more ‘NLP-developed’
other Scandinavian languages.2 We show that us-
ing “Scandinavian” LMs brings substantial gains in
downstream transfer to Faroese compared to using
XLM-R as a widely used off-the-shelf MMT. The
gains are particularly pronounced for the task of
semantic text similarity (STS), the only high-level
semantic task in our evaluation. We further show
that adding a limited-size target-language corpus
to LM’s pretraining corpora brings further gains
in downstream transfer. As another contribution
of this work, we collect and release: (1) a corpus
of web-scraped monolingual Faroese, (2) multiple
LMs suitable for Faroese, including those trained
on all five Scandinavian languages, and (3) two
new task-specific datasets for Faroese labeled by
native speakers: for NER and STS.

2 Background and Related Work

Cross-Lingual Transfer Learning with MMTs
and Beyond. A common approach to cross-lingual
transfer learning involves pretrained MMTs (De-
vlin et al., 2019; Conneau et al., 2020a; Xue et al.,

2The Scandinavian languages are a family of Indo-
European languages that form the North Germanic branch
of the Germanic languages. The largest languages of the fam-
ily are: (1) Danish (population 5.8M), Norwegian (5.4M) and
Swedish (10.4M) – the Mainland Scandinavian languages,
and (2) Icelandic (373K) and Faroese (54K) – the Insular
Scandinavian languages.

2021). These models can be further pretrained for
specific languages or directly adapted for down-
stream tasks. A major downside of the MMTs has
been dubbed the curse of multilinguality (Conneau
et al., 2020a), where the model becomes saturated
and performance can not be improved further for
one language without a sacrifice elsewhere, some-
thing which continued pretraining for a given lan-
guage alleviates (Pfeiffer et al., 2020). Adapter
training, such as in (Pfeiffer et al., 2020; Üstün
et al., 2022), where small adapter modules are
added to pretrained models, has also enabled cost-
efficient adaptation of these models. The adapters
can then be used to fine-tune for specific languages
and tasks without incurring catastrophic forgetting.

Other methods involve translation-based trans-
fer (Hu et al., 2020; Ponti et al., 2021), and trans-
fer from monolingual language models (Artetxe
et al., 2020; Gogoulou et al., 2022; Minixhofer
et al., 2022). Bilingual lexical induction (BLI) is
the method of mapping properties, in particular em-
beddings, from one language to another via some
means such as supervised embedding alignment,
unsupervised distribution matching or using an or-
thogonality constraint (Lample et al., 2018; Sø-
gaard et al., 2018; Patra et al., 2019), and has also
been used to build language tools in low-resource
languages (Wang et al., 2022).

Attempts to alleviate the abovementioned issues
have been made, such as vocabulary extension
methods (Pfeiffer et al., 2021), which add miss-
ing tokens and their configurations to the embed-
ding matrix. Phylogeny-inspired methods have also
been used where adapters have been trained for
multiple languages and stacked to align with the
language family of the language of interest (Faisal
and Anastasopoulos, 2022). Some analysis on the
effects of using pretrained MMTs has been done:
Fujinuma et al. (2022) conclude that using pre-
trained MMTs that share script and overlap in the
family with the target language is beneficial. How-
ever, when adapting the model for a new language,
they claim that using as many languages as possible
(up to 100) generally yields the best performance.

Inspired by this line of research, in this work,
we focus on improving MMT-based cross-lingual
transfer for a particular group of languages, those
that have sibling languages with more abundant
data and resources.

NLP Resources in Scandinavian Languages. A
fair amount of language resources have been devel-
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oped for the Scandinavian languages, particularly if
aggregated across all languages of the family. It is
also worth mentioning that Danish, Icelandic, Nor-
wegian and Swedish are represented in raw mul-
tilingual corpora such as CC100 (Conneau et al.,
2020b) or mC4 (Xue et al., 2021) as well as in paral-
lel datasets such as (Schwenk et al., 2021; Agić and
Vulić, 2019). Large multilingual language models
have been trained on these datasets (Devlin et al.,
2019; Liu et al., 2020; Xue et al., 2021) but have
been shown to have limited capacity for languages
with smaller relative representation in pretraining
corpora. Faroese is not included (at least not cor-
rectly labelled) in these crawled corpora.This may
be in part due to the limited amount of Faroese that
can be found online, and in part due to its close
relatedness to the other languages of the Scandina-
vian family (Haas and Derczynski, 2021). A brief
overview of prior work in cross-lingual transfer to
Faroese is given in Appendix D.

In this work, we use the following open language
resources for the Scandinavian languages.

Danish: The Danish Gigaword Corpus (Strømberg-
Derczynski et al., 2021) is a billion-word corpus
containing a wide variety of text.We also use a
NER resource, the DaNE corpus (Hvingelby et al.,
2020).

Icelandic: With Icelandic as the most closely re-
lated language to Faroese, we experiment with an
Icelandic language model, IceBERT (Snæbjarnar-
son et al., 2022). For the NER experiment, we
make use of the MIM-GOLD-NER corpus (Ingólfs-
dóttir et al., 2020).

Norwegian: The Norwegian Colossal Corpus
(NCC) (Kummervold et al., 2022) contains 49GB
of clean Norwegian data from a variety of sources,
making it the largest such public collection in the
Nordics. We also make use of the NorNE (Jør-
gensen et al., 2020) NER corpus (both for Bokmål
and Nynorsk).

Swedish: The Swedish Gigaword Corpus (Eide
et al., 2016) contains text from between 1950 and
2015. The latest NER corpus for Swedish is Swe-
NERC (Ahrenberg et al., 2020), where the authors
include more modern texts than in earlier corpora.

Faroese: A POS corpus, the Sosiualurin corpus is
an annotated Newspaper corpus with 102k words
(Hansen et al., 2004). The Faroese Wikipedia
has also been used to create a tree bank (Tyers
et al., 2018), which has a Universal Dependencies

(UD) mapping. We use this corpus along with the
FarPaHc (Ingason et al., 2012), which also has a
UD mapping.

3 New Faroese Datasets

3.1 Faroese Common Crawl Corpus (FC3)
Faroese monolingual data is scarce, mainly because
of the limited size of the Faroese-speaking popula-
tion. Despite this, we manage to extract a decent
amount of varied Faroese text from the Common
Crawl corpus (FC3). To this effect, we adopted
the approach of Snæbjarnarson et al. (2022) for
Icelandic, i.e., we targeted the websites with the
Faroese top-level domain (.fo). After clean-up and
deduplication, the obtained Faroese corpus consists
of 98k paragraphs containing in total 9M word-
level tokens. Albeit relatively small compared to
corpora from other Scandinavian languages, this
Faroese corpus still drives significant downstream
performance gains (see §5).

3.2 Named Entity Recognition (FoNE)
We annotate the Sosialurin corpus (6,286 lines,
102k words) with named entities following the
CoNLL schema using an Icelandic NER-tagger
trained using the ScandiBERT model, see §4. The
annotation was then manually reviewed. Out of the
118,533 tokens (including punctuation), 9,001 are
annotated using the Date (546), Location (1,774),
Miscellaneous (332), Money (514), Organization
(2,585), Percent (115), Person (2,947) and Time
(188) tags. We refer to this new dataset as FoNE.

3.3 Semantic Similarity (Fo-STS)
The STS Benchmark (Cer et al., 2017) measures
semantic text similarity (STS) between pairs of sen-
tences. For each pair of sentences, the annotators
assigned the score (on a Likert 1-5 scale) that in-
dicates the extent to which the two sentences are
semantically aligned. We manually translated from
English to Faroese 729 sentence pairs from the test
portion of the STS Benchmark; the translation was
carried out by a native speaker of Faroese fluent in
English, who was instructed to preserve in the trans-
lation the extent of semantic alignment between the
original English sentences.

4 Model Training

We train the following new language models: (i)
ScandiBERT is trained on concatenated corpora of
all Scandinavian languages, (ii) ScandiBERT-no-fo
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is trained on concatenated corpora of all Scandi-
navian languages except Faroese (i.e., without any
Faroese data, that is, no FC3, Bible or Sosialurin),
and (iii) DanskBERT which is trained only on the
Danish data; we train DanskBERT for the purposes
of comparison with IceBERT, in the setup in which
we carry out downstream transfer to Faroese by
means of a monolingual model of a closely re-
lated language (with Danish being more distant
to Faroese than Icelandic). We additionally eval-
uate transfer with models that have been further
pretrained on the FC3 corpus (indicated with the
-fc suffix). We provide an overview of all training
datasets and hyperparameter configurations used in
our experiments in Appendix A.

5 Experiments

5.1 Downstream Performance for Faroese

Experimental Setup. In addition to the models
presented in §4, we make use of the monolin-
gual Icelandic model IceBERT and the massively
multilingual XLM-on-RoBERTa (XLM-R).3 We
evaluate the performance of this set of pretrained
models in several downstream tasks in Faroese:
Part-of-Speech tagging (POS), Dependency Pars-
ing (DP) (UD datasets introduced in §2), Named
Entity Recognition (NER), and Semantic Text Sim-
ilarity (i.e., the new NER and STS datasets intro-
duced in §3). For all downstream tasks the task-
specific training and evaluation data span mono-
lingual Faroese data points only: we carry out the
experimentation via ten-fold cross-validation on
the respective Faroese datasets.4 For each model
and downstream task, we carry out ten runs with
different random seeds (each run trains the model
for 5 epochs with batches of 16 instances) and re-
port the average performance across runs. The
exception is the STS training in which the models
were fine-tuned for 3 epochs (with training batches
of size 8).5

Results and Discussion. Table 1 summarizes the
3We use the base-sized XLM-R: https://huggingface.

co/xlm-roberta-base.
4Note that our study aims to establish how different pre-

training strategies – and in particular languages included in
pretraining – affect the models’ downstream Faroese perfor-
mance, rather than to investigate the downstream cross-lingual
transfer. One could, naturally, additionally incorporate task-
specific data in other Scandinavian languages (and also in
English and other languages) in downstream training (i.e.,
perform cross-lingual transfer for the downstream task).

5Due to the limited size of the Faroese dataset, longer
training with larger batch size consistently led to overfitting.

results across the four downstream tasks. The best-
performing model for POS, as evaluated on the
Sosialurin POS corpus, is ScandiBERT-fc3, out-
performing ScandiBERT by more than 1 point in
terms of F1. However, the ScandiBERT-no-fo-fc3
model, without any Faroese data at pretraining, ob-
tains fully on-par performance with the variant that
does include Faroese data.

The best-performing model for NER, and STS
is the ScandiBERT-no-fo-fc3 model. Somewhat
surprisingly, we get the best performance for the
model that does not include any Faroese data in
the initial pretraining, that is, it does not adjust
the tokenizer/vocabulary to Faroese. Put simply,
we observe slight gains over the ScandiBERT-fc3
model. We hypothesize that this might be due to
the fact that including Faroese in the vocabulary
results in a lower subword overlap with the other
Scandinavian languages, which in consequence,
slightly reduces the potential for transfer. While
there is only a difference of 95 tokens between the
two vocabularies, the difference yields 6% of the
words in FC3 being tokenized differently.

Finally, the results also demonstrate the impor-
tance of focusing on a smaller set of related lan-
guages rather than relying on a broader set of lan-
guages from the MMTs. Unlike the results from
Fujinuma et al. (2022), our results suggest that for
languages with higher-resource ‘siblings’ such as
Faroese, a higher-performing LM is a less general
ScandiBERT model rather than an MMT such as
XLM-R or mBERT. Different variants of ScandiB-
ERT outperform XLM-R without any Faroese data
across the board in all evaluation tasks. Another
interesting finding is that additionally fine-tuning
on Faroese data (the -fc3 variants) has a much
stronger positive impact on XLM-R as the underly-
ing model than on ScandiBERT. Put simply, the im-
portance of in-target language data decreases with
the availability of more focused pretained LMs cov-
ering only languages related to the target language.

5.2 Additional Experiments

Transfer with Wechsel. To put our work in further
context, beyond comparison to MMTs, we consider
an alternative transfer learning approach, the Wech-
sel method (Minixhofer et al., 2022), a recent well-
performing method for transferring monolingual
Transformers to a new language. Further details
and results are presented in Appendix B: they all
show far worse performance than those presented
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POS NER UD FP UD oft STS
Model F1 Acc. F1 Acc. F1 Acc. F1 Acc. Acc.

IceBERT 85.5 ± 0.19 85.2 ± 0.16 87.9 ± 0.54 96.4 ± 0.09 93.6 ± 0.06 94.6 ± 0.03 92.7 ± 0.32 94.2 ± 0.25 70.6 ± 1.9
IceBERT-fc3 90.9 ± 0.06 90.4 ± 0.06 90.9 ± 0.41 98.9 ± 0.03 96.6 ± 0.06 97.1 ± 0.06 95.3 ± 0.38 96.1 ± 0.32 72.9 ± 1.8
DanskBERT 73.4 ± 0.19 74.3 ± 0.16 85.6 ± 0.44 98.4 ± 0.06 86.2 ± 0.16 87.7 ± 0.09 84.8 ± 0.57 88.7 ± 0.44 73.2 ± 1.3
DanskBERT-fc3 87.1 ± 0.13 86.4 ± 0.13 89.7 ± 0.54 98.8 ± 0.06 96.0 ± 0.06 96.6 ± 0.03 94.2 ± 0.28 95.7 ± 0.19 75.3 ± 1.1
XLM-R 84.6 ± 0.28 85.0 ± 0.28 87.8 ± 0.47 96.3 ± 0.06 93.5 ± 0.06 94.3 ± 0.03 91.5 ± 0.44 93.6 ± 0.35 69.5 ± 2.1
XLM-R-fc3 91.2 ± 0.09 91.2 ± 0.09 90.9 ± 0.41 98.9 ± 0.06 97.3 ± 0.06 97.7 ± 0.03 95.7 ± 0.22 96.8 ± 0.19 69.2 ± 2.1
ScandiBERT-no-fo 88.4 ± 0.09 88.1 ± 0.09 89.9 ± 0.25 96.7 ± 0.16 95.9 ± 0.06 96.4 ± 0.06 93.8 ± 0.35 95.0 ± 0.32 75.3 ± 1.5
ScandiBERT-no-fo-fc3 91.5 ± 0.09 91.2 ± 0.09 91.4 ± 0.35 98.8 ± 0.06 97.4 ± 0.03 97.8 ± 0.03 96.3 ± 0.22 96.8 ± 0.19 76.5 ± 1.3
ScandiBERT 90.3 ± 0.09 90.0 ± 0.13 90.2 ± 0.28 99.0 ± 0.06 96.5 ± 0.06 97.1 ± 0.03 95.2 ± 0.32 96.2 ± 0.25 46.3 ± 6.3
ScandiBERT-fc3 91.6 ± 0.06 91.3 ± 0.09 91.0 ± 0.35 99.0 ± 0.03 97.3 ± 0.06 97.7 ± 0.06 95.9 ± 0.25 96.7 ± 0.22 63.8 ± 6.2

Table 1: Results for all downstream tasks in Faroese using the different base language models, with and
without continued Faroese pre-training. The -fc3 postfix indicates models that were further pretrained on
FC3. Standard error intervals are also reported.

in Table 1. We hypothesize this is due to how
closely related the languages we consider are, as
opposed to the distant languages considered in the
original Wechsel work.

Task-Specific Transfer. To explore the potential
for task-specific transfer between closely related
languages, we consider if labelled Scandinavian
datasets can be combined to benefit Faroese. In
particular, we look at NER as there is an easy way
to map between labels of the different languages.
See Appendix C for more details. The best result is
achieved when training directly from the IceBERT
model, which has been trained on the large MIM-
GOLD-NER dataset, showing that given enough
resources and a close enough language model, such
a direct approach can be the most effective.

Further Discussion. Some of the results in Table 1
are as expected. Starting from the closest language
relative, the Icelandic model, IceBERT, results in
better performance for all downstream tasks than
starting with the Danish model DanskBERT. The
ScandiBERT model performs better than the mas-
sively multilingual XLM-R on all tasks, bar the
more semantic FO-STS task.

What is more interesting is that the ScandiBERT-
no-fo model that is not trained on Faroese outper-
forms the model that has Faroese included, when
fine-tuned further on the FC3 dataset. In particular,
for the higher level Fo-STS task. We hypothesize
that this forces the Faroese adaptation to use the
word segmentations from the related languages for
a higher transfer benefit, as the tokenizing vocabu-
lary was trained without Faroese. This is something
we hope to investigate more in future work.

6 Conclusion and Future Work

We have shown that leveraging phylogenetic in-
formation and departing from the ‘one-size-fits-all’

paradigm can improve cross-lingual transfer to low-
resource languages. Our evaluation results show
that we can substantially improve the transfer per-
formance to Faroese by exploiting data and models
of closely-related high-resource languages instead
of relying on MMTs. In future work, we hope to
extend the investigations and methodology beyond
Faroese, to other low-resource languages for which
higher-resource language relatives exist.

In order to boost and guide future research on
Scandinavian languages in general and Faroese
in particular, we make the models ScandiBERT6,
ScandiBERT-no-fo7, DanskBERT8 and FoBERT
(ScandiBERT-no-fo-fc3)9 available. As well as the
new datasets FC310, FoNE11, and Fo-STS12.
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A Training of language models

We train new BPE vocabularies for all the new mod-
els we train, ScandiBERT, ScandiBERT-no-fo, and
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DanskBERT. All models use the same vocabulary
size of 50k. The ScandiBERT vocabulary is trained
using all the languages, the ScandiBERT-no-fo vo-
cabulary is trained without the Faroese data, and
the DanskBERT vocabulary is only trained on the
Danish text. Vocabularies are trained using the Sen-
tencePiece software (Kudo and Richardson, 2018),
and character coverage is set to 99.995 %.

Pre-training of the new language models is
done using fairseq (Ott et al., 2019) using the
RoBERTa-base (Liu et al., 2019) configuration,
fine-tuning is done using the transformers (Wolf
et al., 2020) library. ScandiBERT and ScandiBERT-
no-fo were trained for 72 epochs, using a batch
size of 8.8k sequences on 24 NVIDIA V100 cards
for approximately 14 days each. Initial testing
showed that the larger batch size showed better
performance than going for around 2k sequences,
possibly due to the mixture of differing languages.
DanskBERT, on the other hand, similar to IceBERT
and RoBERTa showed better performance at the
smaller batch size. DanskBERT was trained to con-
vergence for 500k steps using 16 V100 cards for
approximately 14 days.

All -fc models are further trained for 50 epochs,
with an effective batch size of 100k tokens for 12k
updates, over the FC3 dataset for Faroese adapta-
tion.

An overview of the data used to train the lan-
guage models is shown in Table 2. For details on
the Icelandic data, we refer to (Snæbjarnarson et al.,
2022). For the other datasets, we refer to §2.

B Wechsel results

We compare our method to another transfer
learning approach presented by Minixhofer
et al. (2022). The FC3 dataset is used to train
fastText embeddings for Faroese, and the Icelandic
datasets are used to train fastText embeddings for
Icelandic. These embeddings are then used to
convert the multilingual models to Faroese using

Language Datasets Size

Icelandic IGC / IC3 / Skemman / Hirslan 16 GB
Danish Danish Gigaword Corpus (incl.

Twitter)
4,7 GB

Norwegian NCC corpus 42 GB
Swedish Swedish Gigaword Corpus 3,4 GB
Faroese FC3 + Sosialurinn + Bible 69 MB

Table 2: Datasets used to train ScandiBERT,
ScandiBERT-no-fo and DanskBERT

the Wechsel approach. We confirm the quality of
the Icelandic embeddings by running an Icelandic
semantic evaluation suite adapted from https:
//github.com/stofnun-arna-magnussonar/
ordgreypingar_embeddings, showing our
embeddings are comparable or of higher quality
than those released by Meta (Grave et al., 2018).

The experiments in Table 3 all show sub-par per-
formance compared to the results in non-Wechsel
results in Table 1. The Wechsel work considers
transfer from English-dominant models, GPT2 and
RoBERTa to French, German, Chinese, Swahili,
Sundanese, Scottish Gaelic, Uyghur and Malagasy.
None of which are closely related to English. One
reason for the discrepancy in the results could
be that the shuffling of the embedding matrix to
convert it is more catastrophic when considering
close languages. Another reason could be that both
Faroese and Icelandic are morphologically rich and
that all variants of the words were not properly
mapped during the conversion of the embedding
matrix.

C Mapping NER datasets

The datasets used to create a Scandinavian NER-
corpus are DaNE (Danish), FoNE (Faroese), MIM-
GOLD-NER (Icelandic), NorNE (Norwegian), and
SWE-Nerc (Swedish), presented in §2. The results
in Table 4 show that the best result is obtained when
training directly from the IceBERT model. The
ScandiBERT model has a higher variance when
pre-fine-tuned on the combined NER corpora. This
approach could also be made directly for the UD
corpus, POS (in particular, using the Icelandic POS
data), and other corpora as they become available
for training or evaluation in Faroese. This demon-
strates how resources from a related language can
substantially benefit a low-resource language.

To combine the NER datasets, we map the tags
to the CoNLL schema used by the Icelandic MIM-
GOLD-NER and the Faroese FoNE datasets. The
Danish DaNE dataset uses a subset of the tags used
for Icelandic and Faroese, so the mapping is purely
nominal. The mapping for Norwegian (NorNE)
and Swedish (SweNERC) datasets is shown in Ta-
ble 5.

D Prior Work on Transfer learning for
Faroese

We know of three works that consider transfer learn-
ing for Faroese from the Scandinavian languages.
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POS NER UD FP UD oft STS
Model F1 Acc. F1 Acc. F1 Acc. F1 Acc. Acc.

W
ec

hs
el

IceBERT 74.4 ± 0.16 75.7 ± 0.16 67.7 ± 1.2 98.7 ± 0.06 83.6 ± 0.35 84.6 ± 0.38 66.6 ± 9.01 75.7 ± 5.88 27.3 ± 3.9
IceBERT-fc3 89.0 ± 0.06 89.4 ± 0.09 88.5 ± 0.47 96.4 ± 0.09 96.3 ± 0.03 96.5 ± 0.03 95.6 ± 0.28 96.2 ± 0.25 67.7 ± 2.8
XLM-R 68.9 ± 0.16 73.5 ± 0.13 59.7 ± 0.92 99.0 ± 0.06 81.0 ± 0.19 84.5 ± 0.13 71.8 ± 0.73 79.7 ± 0.44 11.4 ± 4.6
XLM-R-fc3 86.8 ± 0.09 88.7 ± 0.09 88.8 ± 0.41 98.4 ± 0.06 96.3 ± 0.03 96.7 ± 0.03 95.6 ± 0.25 96.5 ± 0.19 65.7 ± 2.8
ScandiBERT-no-fo 71.3 ± 0.16 72.5 ± 0.16 65.1 ± 0.54 98.8 ± 0.03 82.0 ± 0.19 83.4 ± 0.19 75.0 ± 0.66 81.0 ± 0.57 29.4 ± 4.8
ScandiBERT-n.f.-fc3 89.2 ± 0.06 89.6 ± 0.06 89.2 ± 0.54 99.0 ± 0.03 96.8 ± 0.06 97.1 ± 0.06 96.1 ± 0.28 96.8 ± 0.22 74.7 ± 1.0
ScandiBERT 72.6 ± 0.28 73.8 ± 0.28 65.7 ± 0.54 98.8 ± 0.03 83.0 ± 0.38 84.0 ± 0.28 76.8 ± 0.51 82.5 ± 0.35 8.7 ± 5.3
ScandiBERT-fc3 89.3 ± 0.09 89.7 ± 0.09 88.8 ± 0.54 98.7 ± 0.06 96.8 ± 0.03 97.1 ± 0.03 96.0 ± 0.25 96.7 ± 0.25 53.6 ± 6.0

Table 3: Results for all downstream tasks using different base language models after Wechsel adaptation,
with and without continued Faroese pre-training. The results are significantly worse than without Wechsel
adaptations.

Model Pre-ft. Ft. F1 Acc.

SB-no-fo-fc3 None Yes 91.4 ± 0.35 98.8 ± 0.06
ScandiBERT Icel. Yes 92.0 ± 0.32 98.8 ± 0.06
ScandiBERT All No 91.5 ± 0.51 98.9 ± 0.06
ScandiBERT All Yes 91.8 ± 0.51 99.0 ± 0.06
XLM-R All No 90.6 ± 0.19 99.0 ± 0.03
XLM-R All Yes 90.8 ± 0.47 99.0 ± 0.06

Table 4: NER performance when models are pre-
finetuned on all Scandinavian datasets and then
fine-tuned on FoNER.

Language Original Mapped

Norwegian O O
Norwegian PER Person
Norwegian ORG Organization
Norwegian GPE_LOC Location
Norwegian PROD Miscellaneous
Norwegian LOC Location
Norwegian GPE_ORG Organization
Norwegian DRV O
Norwegian EVT Miscellaneous
Norwegian MISC Miscellaneous

Swedish O O
Swedish EVN Miscellaneous
Swedish GRO Organization
Swedish LOC Location
Swedish MNT Miscellaneous
Swedish PRS Person
Swedish TME Time
Swedish WRK Miscellaneous
Swedish SMP Miscellaneous

Table 5: Mapping of tags to create a unified NER
dataset for the Scandinavian languages.

In (Tyers et al., 2018), a rule-based translation sys-
tem (Apertium (Forcada and Tyers, 2016)) is used
to translate the Faroese Wikipedia into Swedish,
Norwegian Bokmål, and Norwegian Nynorsk. The
translations are then aligned, and the translations
dependency-parsed. The resulting trees are then
mapped to the original Faroese sentences and used
for POS-tagging and annotating morphological fea-
tures. The second work is a mapping between
Faroese and Icelandic POS-tags (Hafsteinsson and
Ingason, 2021); while not a direct application,
the authors suggest the mapping may be of use
for transfer learning between the languages. Fi-
nally, (Barry et al., 2019) use machine translation
and dependency parsing for cross-lingual syntactic
knowledge transfer from Danish, Norwegian, and
Swedish to Faroese.
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