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Abstract

Contradictory results about the encod-
ing of the semantic impact of negation
in pretrained language models (PLMs)
have been drawn recently (e.g. Kass-
ner and Schiitze (2020); Gubelmann and
Handschuh (2022)). In this paper we
focus rather on the way PLMs encode
negation and its formal impact, through
the phenomenon of the Negative Po-
larity Item (NPI) licensing in English.
More precisely, we use probes to identify
which contextual representations best en-
code 1) the presence of negation in a sen-
tence, and 2) the polarity of a neighbor-
ing masked polarity item. We find that
contextual representations of tokens inside
the negation scope do allow for (i) a bet-
ter prediction of the presence of not com-
pared to those outside the scope and (ii) a
better prediction of the right polarity of
a masked polarity item licensed by not,
although the magnitude of the difference
varies from PLM to PLM. Importantly, in
both cases the trend holds even when con-
trolling for distance to not. This tends to
indicate that the embeddings of these mod-
els do reflect the notion of negation scope,
and do encode the impact of negation on
NPI licensing. Yet, further control experi-
ments reveal that the presence of other lex-
ical items is also better captured when us-
ing the contextual representation of a to-
ken within the same syntactic clause than
outside from it, suggesting that PLMs sim-
ply capture the more general notion of syn-
tactic clause.

1 Introduction

Negation has recently been the focus of various
works aiming at determining the abilities of Pre-

541

trained Language Models (PLMs) to capture lin-
guistic knowledge.

Some works investigate the ‘semantic impact’
of negation, namely its impact in terms of truth
values, by interpreting how the presence of nega-
tion impacts the probability distribution at a
masked position. The rationale is that negating a
verb reverses the truth value of its clause, which
should be reflected in the probability distribution
at certain positions. Ettinger (2020); Kassner and
Schiitze (2020) use factual statements such as (1),
and report that models output similar distributions
for the positive and negative variants of (1), and
conclude that models largely ignore negation.

(1) A robin is (not) a [MASK]

Gubelmann and Handschuh (2022) chose to
avoid factual statements and to focus rather on
multi-sentence self-contained examples, such that,
given the context provided by the first sentence,
one particular word is either likely (in positive
items) or ruled out (in negative items) at a masked
position in the second sentence. Because this par-
ticular word is substantially less often the top-1
prediction in the negative items than in the posi-
tive items, the authors draw the opposite conclu-
sion that PLMs do show sensitivity to negation.

A different line of works focused on finding out
to what extent negation is encoded in PLM embed-
dings. Celikkanat et al. (2020) train classifiers tak-
ing as input the contextual embedding of a verb or
its subject or direct object, and predicting whether
the verb is negated or not. The resulting high ac-
curacy allows them to conclude that these tokens’
embeddings do contain “traces” of not. More gen-
erally, several authors have investigated whether
the contextual representation of a token encodes
information about surrounding tokens. To ease
further reading, we will talk of a classifier taking
as input an input embedding, i.e. the contextual
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representation of an input token, and predicting
some target information about another token in
the sentence. For instance, Klafka and Ettinger
(2020) study how input embeddings encode ani-
macy, gender, and number of surrounding words in
a specific SVO context. Li et al. (2022) target the
number feature of French participles in the context
of object-past participle agreement. They show
that the performance of the classifier depends on
the syntactic position of the input token in the sen-
tence. We will build on their idea to compare per-
formance at predicting target information depend-
ing on the syntactic zone the input token belongs
to. In this paper, one of the probed target infor-
mation will be the presence or absence of a given
word within the sentence, which we call the target
token.

More precisely, our aim is to study PLMs’ abil-
ity to capture and encode structural information
concerning negation (namely negation scope). To
do so we first probe whether input embeddings can
serve to accurately predict the presence or absence
of a target not.! Moreover, we wish to test PLMs’
ability to actually mobilize this encoding to cap-
ture phenomena that are direct consequences of
the presence of negation. To do so, we focus on
the licensing of Negative Polarity Items (NPI) by
not modifying a verb. Polarity Items (PI), either
positive (e.g. some), or negative (e.g. any), are
words or expressions that are constrained in their
distribution (Homer, 2020). A NPI will require
that a word or a construction, called the licensor,
be in the vicinity. More precisely, the licensor it-
self grammatically defines a zone of the sentence,
called the licensing scope, in which the NPI can
appear. The adverb not modifying a verb is one
such licensor. While any is licensed by negation
in (2-a) vs. (2-b), it is not licensed in (2-c), even
though the verb is negated, arguably because it is
not in the licensing scope?.

) a. Sam didn’t find any books.
b. *Sam found any books.
c. *Any book was not found by Sam.

Jumelet and Hupkes (2018) have shown that
LSTM embeddings do encode the notion of li-
censing scope (given an input embedding, a clas-

"We restrict our probing to not, which is by far the most
frequent negation clue (57% of the occurrences, while the
second most frequent, no, accounts for 21% of occurrences).

2We leave aside the uses of any and the like having free
choice interpretations, as for instance in ”Pick any card”.
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sifier can predict the structural zone the input
token belongs to), a finding later confirmed for
transformer-based PLMs (Warstadt et al., 2019).
Focusing on when the licensor is a verb-modifying
not, we rather investigate whether this encoding
of the zones go as far as enabling a better pre-
diction of a PI's polarity from inside the licensing
scope compared to outside the scope. So instead
of the question “Is this input embedding the em-
bedding of a token located within, before or after
the licensing scope?”, we rather ask the question
“Given a masked Pl position, and an input embed-
ding of a neighboring token, what is the polarity
of the PI?”, and we study whether this question is
better answered when the input embedding is in-
side or outside the licensing or negation scopes.
Note that our methodology differs from that of
Jumelet and Hupkes (2018), who, given an in-
put token, predict the zone this token belongs to.
We instead predict the polarity of a neighboring
masked polarity item and then compare accuracies
depending on the input token’s zone. Our moti-
vation is that the polarity, being a lexical infor-
mation, requires less linguistic preconception, and
hence our probing method is a more direct trans-
lation of the NPI licensing phenomenon: we study
whether and where the information of “which Pls
are licit where?” is encoded, in the context of sen-
tence negation. This method also allows us to bet-
ter control the confounding factor of distance be-
tween the input embedding and the licensor not.

In the following, we define the linguistic no-
tions of negation scope and NPI licensing scope
in section 2, and show how we actually identified
them in English sentences. In section 3, we de-
scribe our probing experiments and discuss their
results, both for the encoding of not (section 3.1),
and the encoding of NPI licensing (section 3.2).
We then study the more general ability of PLMs to
deal with clause boundaries (section 4), and con-
clude in section 5.

2 Defining and identifying scopes

2.1 Negation scope

From a linguistic point of view, the scope of a
negation cue is the area of the sentence whose
propositional content’s truth value is reversed by
the presence of the cue. While in many cases it is
sufficient to use the syntactic structure to recover
the scope, in some cases semantics or even prag-



matics come into play.> Nevertheless, annotation
guidelines usually offer syntactic approximations
of negation scope.

To identify the negation scope for not* mod-
ifying a verb, we followed the syntactic con-
straints that can be inferred from the guidelines
of Morante and Blanco (2012). Note though
that these guidelines restrict the annotation to fac-
tual eventualities, leaving aside e.g. negated future
verbs. We did not retain such a restriction, hence
our identification of the negation scope is indepen-
dent from verb tense or modality.

2.2 NPI licensing scope

Polarity items are a notoriously complex phe-
nomenon. To identify the NPI licensing scope,
we focus on specific syntactic patterns defined by
Jumelet and Hupkes (2018), retaining only those
involving not as licensor.’ Table 1 shows an ex-
ample for each retained pattern (hereafter the neg-
patterns), with the NPI licensing scope in blue.
Importantly, in the neg-patterns, the licensing
scope is strictly included in the negation scope:
within the clause of the negated verb, the tokens
to its left belong to the negation scope but not to
the licensing scope. E.g. in (3), anyone is not licit
as a subject of going, whether the location argu-
ment is itself a plain PP, a NPI or a PPI (3-b).

3)

a.
b.

I’m not going anywhere.
*Anyone is not going to the party/
somewhere/anywhere.

We thus defined 4 zones for the not+NPI sen-
tences, exemplified in Table 1: PRE (tokens be-
fore both scopes), PRE-IN (to the left of the li-
censing scope, but within the negation scope), IN
(in both scopes), and POST (after both scopes).

We note though that the restriction exempli-
fied in (3-b) only holds for non-embedded NPIs
(de Swart, 1998), so examples like (4), with an
embedded NPI in the subject of the negated verb
(hence belonging to our PRE-IN zone), are theo-
retically possible.

“)

Examples with any relevance to that issue
didn’t come up in the discussion.

3For instance in Kim did not go to the party because Bob
was there., negation may scope only over the matrix clause
or include the causal subordinate clause.

“In all this article, not stands for either not or n’t.

>We ignored pattern 4 (never instead of not as licensor),
and 6 (too few occurrences in our data). We merged patterns
1 and 2, and corrected an obvious minor error in pattern 5.
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Yet in practice, we found that they are ex-
tremely rare: using the Corpus of Contempo-
rary American English (COCA, Davies 2015)°,
we extracted sentences matching one of the neg-
patterns, and among these, sentences having any
or any-body/one/thing/time/where in the IN zone,
the PRE-IN zone or both. As shown in Table 2,
any* in the PRE-IN zone are way rarer than in the
classical licensing scope (IN zone)’. Hence we
sticked to the usual notion of direct NPI licensing
scope, as illustrated in Table 1.

2.3 Building the not+NPI test set

Having defined these structural zones, we could
use them to probe the traces they carry and com-
pare the magnitude of these traces across the four
zones. To do so, we built a test set of COCA sen-
tences containing not licensing a NPI (hereafter
the not+NPI test set), matching one of the neg-
patterns of Table 1, and having at least one any,
anybody, anyone, anything, anytime or anywhere
within the licensing scope.

The scope of negation has been implemented
through an approximation using dependency
parses (from the Stanza parser (Qi et al., 2020)),
which proved more convenient than phrase-
structure parses: we took the subtree of the
negated verb, excluding not itself, and excluding
dependents corresponding to sentential or verbal
conjuncts and to sentential parentheticals.

More precisely, we identified the token having
not as dependent (which, given our patterns, can
be either the negated verb or a predicative adjec-
tive in case of a negated copula). Then, we re-
trieved the children of this head, except those at-
tached to it with a “conj”, “parataxis”, “mark” or
“discourse” dependency. In the complete subtrees
of the selected dependents, all tokens were anno-
tated as being inside the negation scope.

We used a version with texts from 1990 to 2012. COCA
is distributed with some tokens in some sentences voluntarily
masked, varying across distributions. We ignored such sen-
tences.

"More precisely, the figures in Table 2 correspond to an
upper bound, because of (i) potential syntactic parsing errors
impacting the identification of the zones, (ii) cases in which
the NPI licensor is different from the not targeted by the pat-
terns, and (iii) cases in which any*is a free choice item rather
than a NPL.We inspected 250 examples of any* in the PRE-
IN zone, and 250 examples in the IN zone. In the former, we
found that almost all cases fall under (i), (ii) or (iii), less than
3% corresponding to examples such as (4)). In contrast, in
the IN zone the proportion of NPIs actually licensed by the
target not is 92%.



Id Pattern

Example and zones

1/2  (vp (vB#MD) ( RB not ) [Nl

T have my taxi and . ’m not _ but my brother will leave Spain because he has a degree.

3 e vB* (RBnot ) [NBIPBIADIE)

Since it is kind of this fairy-tale land, - aren’t _ 50 you can do anything, she says.

5% (s(RBnot ) [NBI)

I went in early, not _ and hoping for no line at the counter.

Table 1: The “neg-patterns”: patterns adapted from Jumelet and Hupkes (2018), which we used to iden-
tify some cases of not licensing a NPI and to build the nor+NPI test set. Coll: pattern id in Jumelet and
Hupkes (2018). Col2: syntactic pattern (defined as a phrase-structure subtree, using the Penn Treebank’s
annotation scheme), with the licensing scope appearing in blue. Col3: examples with colors for the four
zones: pink for tokens in the PRE zone (before both scopes), purple for PRE-IN (to the left of the licens-
ing scope, but within the negation scope), blue for IN (within both scopes) and green for POST (after
both scopes). The NPI licensor is not, and appears in yellow.

Total
45,157

IN  PRE-IN both
35,938 711 58

Table 2: Number of sentences from the COCA
corpus, matching the neg-patterns of Table 1:
Coll: total number, Col2-4: number having any*
in the IN zone, the PRE-IN zone, and in both zones
respectively.

with not 2,285,000
— with NP/ 143,000
— pattern 1 30,896

— pattern 3 2,529

— pattern 5 1,020

— pattern 6 < 100

Table 3: Statistics of the nor+NPI test set: number
of COCA sentences matching the neg-patterns (cf.
Table 1), and having at least one any* in the IN
zone (licensing scope).

For the licensing scope, we parsed the cor-
pus using the PTB-style parser “Supar Parser”®
of Zhang et al. (2020), and further retained only
the sentences (i) matching at least one of the neg-
pattern of Table 1 and (ii) having a NPI within the
licensing scope (IN zone, shown in blue in Table
1), resulting in the not+NPI test set, whose statis-
tics are provided in Table 3.

3 Probing for the scopes

Our objective is to study how a transformer-
based PLM (i) encodes the presence of a negation
(the traces” of negation) and (ii) models lexico-
syntactic constraints imposed by negation, such
as the modeling of a NPI licensing scope. Us-

8https: //parser.yzhang.site/en/latest/index.html
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ing the terminology introduced in section 1, we
probe whether input embeddings encode as target
information (i) the presence of not elsewhere in
the sentence, and (ii) the polarity of a masked PI.
The former focuses on a plain encoding of nega-
tion, whereas the latter focuses on whether the en-
coding of negation can be mobilized to reflect a
property (NPI licensing) that is directly imposed
by negation. To investigate whether such an en-
coding matches linguistic notions of scopes, we
contrast results depending on the zone the input
token belongs to (among the four zones defined
for not licensing a NPI, namely PRE, PRE-IN, IN,
POST) and its distance to not.

We studied four PLMs : BERT-base-case,
BERT-large-case (Devlin et al., 2019) and
ROBERTA-base and ROBERTA-large (Liu et al.,
2019). All our experiments were done with each
of these models, and for a given model, each ex-
periment was repeated three times. All the sen-
tences we used for training, tuning and testing
were extracted from the COCA corpus.

3.1 Probing for the negation scope

In preliminary experiments, we extended Ce-
likkanat et al. (2020)’s study by investigating the
traces of not in the contextual embedding of all the
tokens of a sentence containing not (instead of just
the verb, subject and object).

3.1.1 Training neg-classifiers

We trained binary classifiers (hereafter the m-neg-
classifiers, with m the name of the studied PLM)
taking an input contextual embedding, and pre-
dicting the presence or absence of at least one
not in the sentence. In all our experiments, the
PLMs parameters were frozen. We trained 3 clas-
sifiers for each of the 4 tested PLMs. To train and


https://parser.yzhang.site/en/latest/index.html

evaluate these classifiers, we randomly extracted
40,000 sentences containing exactly one not, and
40,000 sentences not containing any not. These
sentences were BERT- and ROBERTA-tokenized,
and for each model, we randomly selected one
token in each of these sentences to serve as in-
put token. Among these input tokens, we ig-
nored any token not, as well as all PLM tokens
associated to a contracted negation: for instance
don’t is BERT-tokenized into don + ’ + ¢, and
ROBERTA-tokenized into don’ + t. These tokens
were ignored since they are too obvious a clue for
the presence of a verbal negation. Furthermore,
in order to homogenize the handling of negation
whether contracted or not, we also set aside any
modal or auxiliary that can form a negated con-
tracted form. Hence, in She did leave, She did not
leave or She didn’t leave, the only candidate input
tokens are those for She and leave®. We used 64k
sentences for training (neg-train-sets), and the re-
maining 16k for testing (neg-test-set).

We provide the obtained accuracies on this neg-
test-set in Table 4, which shows that performance
is largely above chance. We provide a more de-
tailed analysis of the classifers performance in sec-
tion 3.2.

Model
Accur.

BERT,
74.3

BERT;,
73.1

ROB.,
72.1

ROB,;
76.6

Table 4: Accuracies of the neg-classifiers on the
neg-test-set for each PLM (averaged over 3 runs).

3.1.2 Studying results on the nof+NPI test set

To probe the negation scope, we then used the
not+NPI test set (cf. section 2), and compare ac-
curacies in PRE-IN vs. PRE, and in IN vs. POST.

Note though that distance to not is also likely to
impact the classifiers’ accuracy. Indeed, by defini-
tion the structural zones obviously correlate with
distance to not. For instance, a token at distance
3 to the right of not is more likely to be in the li-
censing scope than a token at distance 20. Hence,
to study the impact of the input token’s zone, we
needed to control for distance to the negation clue.

We thus broke down our classifiers’ accuracy on
the not+NPI test set, not only according to the in-
put token’s zone, but also according to its relative

“COCA sentences are tokenized and tagged. We detok-
enized them before BERT/ROBERTA tokenization, in order
to get closer to a standard input.
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position to the negation cue. Table 5 shows an
example of nor+NPI sentence, and the zone and
relative position to not of each token. The target
not has position 0, and so do all the PLMs’ sub-
word tokens involved in the negation complex, and
all preceding modal or auxiliary, to homogenize
across PLMs and across contracted/plain nega-
tion. By construction, the PRE and PRE-IN zones
correspond to negative positions, whereas IN and
POST correspond to positive ones.

The break-down by position for ROBERTA-
large is shown in Figure 1 (results for other mod-
els are in appendix figure 4). Two effects can be
observed, for all the 4 PLMs: firstly, there is a gen-
eral decrease of the accuracy as moving away from
not, for the four zones. This contrasts with the
findings of Klafka and Ettinger (2020), who did
not observe a distance effect in their experiments,
when probing whether the contextual representa-
tion of e.g. a direct object encodes e.g. the ani-
macy of the subject. The decrease is more rapid
before not than after it, which remains to be ex-
plained. It might come from the negation scope
being shorter before not than after it.

Secondly, when looking at fixed relative dis-
tances, there is a slight but consistent effect at al-
most all positions that the accuracy is higher when
the input token is in the negation scope (either
PRE-IN or IN), than when it is outside (PRE and
POST) (the differences are statistically significant
at p < 0.001, cf. Appendix B). This tendency is
more marked for the PRE vs. PRE-IN distinction
than for the POST vs. IN distinction.

This observation can be summarized by com-
puting the average accuracy gap, namely the ac-
curacy differences averaged across positions (the
average of the purple minus pink bars, and of blue
minus green bars in Figure 3), which provide an
average difference when a token is within or out-
side the negation scope. The average accuracy
gaps for the four tested models are given in Ta-
ble 6. It confirms that input embeddings of tokens
inside the negation scope do allow for a slightly
better prediction of the presence of not than those
outside the scope. Note that the average difference
is stable across models, whose size does not seem
to matter. It shows that the strength of the encod-
ing of not in contextual representations matches
the linguistic notion of negation scope.



BERT tokens

must leave

Zones

IN POST POST POST POST

Distance

ROBERTA tokens [I1 e [  dow [t

2

must leave

Zones PRE PRE PRE-IN not not

IN IN

IN IN POST POST POST POST

Distance 3 2 -1 0 0

1

2 3 4 5 6 7 8

Table 5: Example sentence from the nor+NPI test set: structural zones and relative positions to not.
Any auxiliary or modal preceding the target not has position 0 too, to homogenize contracted and plain
negation, and BERT versus ROBERTA'’s tokenization.

mm PRE-IN
PRE
901 ‘ I POST | 99
I B IN
| ‘ | |
> 801 | 80
©
g |
< 70 | 70
I
60 60
50 T T T T T T T T T 50
8 7 6 -5 4 3 =2 a1 0 1 2 3 4 5 6 71 8

Relative Positions to "NOT"

Figure 1: Accuracy of the ROBERTA-large-neg-classifier (average on 3 runs) on the not+NPI test set,
broken down by zone (colors of the bars) and by relative position to not (horizontal axis). Further
distances are omitted for clarity. No licensing scope contains less than 2 tokens, hence positions 1 and
2 are always in the IN zone. The bar differences at each position and run are statistically significant at
p < 0.001 (cf. Appendix B). Figures for the other 3 models are provided in appendix figure 4.

BERT,
3.0 (0.6)

BERT,
3.5(0.2)

ROB,
2.6 (0.2)

ROB,
2.6 (1.3)

Table 6: Accuracy gaps for the neg-classifiers on
the not+NPI test set, for each tested PLM, aver-
aged over 14 relative positions and 3 runs (stdev
within brackets).

We also observed that the biggest difference is
at position -1, which mostly corresponds to a con-
trast between a finite vs. non-finite negated verb
(neg-patterns 1/2/3 vs. neg-pattern 5 in Table 1),
which seems well reflected in PLMs’ embeddings.

3.2 Probing for the licensing scope

We then focused on whether this encoding of not
can actually be mobilized to capture the licens-
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ing of a NPI. We built classifiers (hereafter the m-
pol-classifiers'?, m referring to the PLM), taking
an input contextual embedding, and predicting as
target information the polarity of a masked posi-
tion, originally filled with a positive or negative
PI. Importantly, the input embedding in the train-
ing set is randomly chosen in the sentence, and can
correspond to a position with no a priori linguistic
knowledge about the polarity of the PI (Figure 2).

We train on sentences originally having either a
PPI or a NPI, which we mask before running each
studied PLM. More precisely, in each COCA sub-
corpus (each genre), and for each of the 6 NPI/PPI
pairs listed by Jumelet and Hupkes (2018)'!, we
randomly took at most 2,000 sentences containing

10Full details for all classifiers are provided in Appendix A.
Y (any/some)(D/where/one/body/thing/time)



Original . .
s gna . My cousin - did  not buy any books
entence < i -

Masked
Sentence

: My cousin did books

!

@ e e s 0

not buy

[MASK]

Polarity of

the mask? —>Negative

Figure 2: Illustration of the training of the pol-
classifiers.

the NPI, and the same amount of sentences con-
taining the corresponding PPI'?. In each of these,
we masked the PI, randomly selected one token
per sentence to serve as input token (excluding the
masked position) and split these into 63,529 ex-
amples for training (pol-train-set) and 15,883 for
testing (pol-test-set).

Model
Accur.

BERT,
64.2

BERT;
63.7

ROB.,
56.6

ROB,;
68.6

Table 7: Accuracies of the pol-classifiers on the
pol-test-set for each PLM (averaged over 3 runs).

Accuracies on the pol-test-set for each PLM are
shown in Table 7. While still above chance, we
observe that it doesn’t exceed 69%, which is quite
lower than the accuracies of the neg-classifiers
(Table 4). This is not surprising since the task
is more difficult. First, as stressed above, some
of the training input tokens are independent, from
the linguistic point of view, of the PI’s polarity.
Second, the cues for predicting the polarity are
diverse. And third, in numerous contexts, both
polarities are indeed possible, even though not
equally likely. We did not control the training for
this, on purpose not to introduce any additional
bias in the data. We can thus interpret the pol-
classifier’s scores as how likely a given polarity is.

Next, we applied these classifiers on the
not+NPI test set. The objective is to compare the
classifiers’ accuracy depending on the structural
zone the input token belongs to. If PLMs have a
notion of licensing scope, then the polarity predic-
tion should be higher when using an input token
from the IN zone.

2For any/some((/one/thing), we took 2 x 2000 occur-
rences. For any/some(body/time/where), less occurrences
were available in some of the subcorpora. We took as many
as possible, but keeping a strict balance between NPI and PPI
sentences (between 2 x 169 and 2 x 958 depending on the
corpus genre and on the NPI/PPI pair).
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3.2.1 Results

Once more, we controlled for distance of the
input embedding to not. The break-down by po-
sition and structural zone for ROBERTA-large is
provided in Figure 3 (results for other models are
in appendix figures 5).

Again, we observe a general accuracy decrease
as moving away from not, even faster than for the
previous experiment. The decrease is more rapid
in the PRE-IN zone than in the IN zone (e.g. at
distance -4 in PRE-IN, accuracy is less than 70%,
whereas it is still above it at distance 8 in the IN
zone), which could indicate that the traces of not
are more robust in the licensing scope.

Secondly, as for the previous experiment, for
each relative position, when the input token is in
the negation scope (either PRE-IN or IN), the
accuracy is higher than when it is outside (PRE
and POST). Even though we cannot exclude that
the relatively high overall accuracies may be ex-
plained by the classifier catching some regulari-
ties of the sentences containing a NPI rather than
a PPI (independently of the presence of nor), it
remains that for the nor+NPI sentences, accuracy
is higher when the input token is in the negation
scope than outside it. Moreover, this trend is much
more marked than for the previous experiment.

Thirdly, the amplitude of this observation de-
pends on the model. We provide the accuracy gaps
for each PLM in Table 8. We observe that the
trend is marked for ROBERTA-large and BERT-
base (gap of 8.7 and 7.4 accuracy points, actually
much higher than the accuracy gaps for predict-
ing the presence of not), but lower for ROBERTA-
base and BERT-large.

BERT,
7.4(0.5)

BERT;
3.1(0.4)

ROB,
1.4(0.2)

ROB,
8.7 (0.6)

Table 8: Accuracy gaps for the pol-classifiers on
the nor+NPI test set, averaged over 14 relative po-
sitions and 3 runs (stdev within brackets).

This leads us to conclude that (i) PLMs do en-
code structural constraints imposed by not (NPI li-
censing), but to varying degrees across the PLMs
we tested, and (ii) that this encoding is stronger in
the negation scope than outside it, independently
of the distance to not. This only partially matches
the linguistic expectation that the strongest zone
should be the licensing scope rather than the en-
tire negation scope.



90 1 I PRE-IN 90
PRE
POST
N
80 80
2 |
@
: |
8 70 I 70
i |
Wt |
60 1 ‘ ‘ ‘ | 60
50 I ! ! ! ! ! ] ! . 50
8 -7 6 -5 4 3 2 -1 0 1 2 3 4 5 6 7 8

Relative Positions to "NOT"

Figure 3: Accuracy of the ROBERTA-large-pol-classifier (average on 3 runs) on the nor+NPI test set,
broken down by zone (colors of the bars) and by relative position to not (horizontal axis). Further
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4 Probing clause boundaries

We have seen that PLMs are able to encode nega-
tion scope, however this notion of scope often sim-
ply corresponds to the notion of syntactic clause.
So it might be the case that PLMs are mainly sen-
sitive to clause boundaries and that this sensitivity
is the unique/main source of PLMs ability to en-
code negation scope. In this section we report a
number of experiments designed to assess PLMs
ability to encode clause boundaries in general.

We chose to use the same setting as the one we
used with the neg-classifiers (section 3.1.1). In-
stead of using not as a target token, we chose var-
ious tokens with a similar number of occurrences,
but other POSs: often, big, house, wrote. We
trained classifiers to predict whether the target to-
ken is in the neighborhood of the input token. This
time, the objective is to compare these classifiers’
accuracies depending on whether the input token
is or isn’t in the same clause as the target token
(instead of whether the input token is within or
outside the negation scope). And just as we did
for the neg-classifiers, we will control for distance
to the target token by breaking down the accura-
cies according to the distance between the target
and the input tokens.
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4.1 Training the classifiers with alternative
target tokens

To train such classifiers, we repeated the same pro-
tocol as for the neg-classifiers: for each target
word often, big, house, wrote, we randomly se-
lected a balanced number of sentences containing
and not containing it, and we randomly picked an
input token within each sentence, independently
of the presence of the target token, and in case of
presence, independently of the clause boundary of
the target token. We then split the examples into
training (25.5k) and test sets (6.5k). We restricted
ourselves to a single PLM, ROBERTA-large. The
performances on the training and test sets are pro-
vided at Table 9. We note that performance is com-
parable for all the four target tokens, and compara-
ble to that of the neg-classifiers (cf. Table 4, 76.6
for ROBERTA,): the negation clue not is not par-
ticularly better encoded in contextual embeddings
compared to other open-class target words.

wrote

81.2

house
79.1

Target token
Accur.

often
77.1

big
75.2

Table 9: Accuracy of the classifiers on test-sets,
for the four alternative target tokens, when using
ROBERTA-large embeddings (average on 3 runs).



Target | In  Out | Accuracy
token gap
house | 83.7 79.0 4.7
often | 82.0 76.5 5.5
big 80.5 794 1.1
wrote | 85.7 82.4 3.3

Table 10: Average accuracy when the input token
is within a window of 8 tokens before and 8 to-
kens after the target token, broken down according
to whether the input token is ({n) or isn’t (Out) in
the same clause as the target token, and accuracy
gap (In minus Out). The results are computed the
study-test-set of each target word, using the clas-
sifiers trained on ROBERTA-large embeddings.

4.2 Studying results when input tokens are
within or outside the same clause

In order to study whether PLMs do encode the
notion of syntactic clause, we compared the clas-
sifiers’ performance when the input token is or
isn’t within the same clause as the target token.
For each target word, we built a study-test-set of
40,000 COCA sentences containing it. We parsed
these sentences, and annotated each of their tokens
(1) according to their distance to the target token,
and (2) as belonging or not the the same clause as
the target token. !

As in section 3.1.2, we now define accuracy
gaps as the average difference between a classi-
fier accuracy on input tokens that are within the
same clause as the target token, minus the accu-
racy on input tokens from outside the clause. Ta-
ble 10 shows the average accuracy gaps, for input
tokens at distance at most 8 from the target token.

The results show that for the 4 tested target
words, predicting the presence of the target token
is better achieved using an input token from the
same clause than from outside the clause. Inter-
estingly, the gaps are higher when the target token
is a noun, verb or adverb, and less pronounced for
the adjectival target token. Strikingly, except for
the adjective big, the observed accuracy gaps are
even bigger than that obtained using not as target
token (cf. 2.6 for ROBERTA; in Table 6).!* This

3We identified the clause of the target token as the sub-
tree of the head verb of the target token, in the dependency
parse.

'4The gaps are not strictly comparable though, due for our
defining the negation scope as a subset of the clause, filter-
ing out sentential conjuncts and sentential parenthetical, cf.
section 2.3.
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tends to indicate that the encoding of the negation
scope observed in section 3.1 stems from a more
general encoding clause boundaries.

Moreover, breaking-down the results by relative
position to the target token (cf. figures 6 in Ap-
pendix), shows that the distance to the target token
remains by far the most impactful factor.

5 Conclusion

In this paper, we studied the way negation and its
scope are encoded in contextual representations of
PLMs and to what extent this encoding is used to
model NPI licensing.

We trained classifiers to predict the presence of
not in a sentence given the contextual represen-
tation of a random input token. We also trained
classifiers to predict the polarity of a masked polar
item given the contextual representation of a ran-
dom token. A test set of sentences was designed
with not licensing an NPI, inside which we identi-
fied the negation scope , and the licensing scope.

For these sentences, we found that the contex-
tual embeddings of tokens within the scope of a
negation allow a better prediction of the presence
of not. These embedding also allow a better pre-
diction of the (negative) polarity of a masked PIL.
These results hold even when controlling for the
distance to not. The amplitude of this trend though
varies across the four PLMs we tested.

While this tends to indicate that PLMs do en-
code the notion of negation scope in English, and
are able to further use it to capture a syntactic
phenomena that depends on the presence of not
(namely the licensing of a negative polarity item),
further experiments tend to show that what is cap-
tured is the more general notion of clause bound-
ary. Indeed, negation scope is closely related and
often amounts to negation scope. Using alterna-
tive target tokens with varied parts-of-speech, we
find that classifiers are better able to predict the
presence of such target tokens when the input to-
ken is within the same syntactic clause than when
it is outside from it. These results lead us to con-
clude that knowledge of the negation scope might
simply be a special case of knowledge of clause
boundaries. Moreover, distance to the target to-
ken is way stronger a factor than the ”being in the
same clause” factor. We leave for further work the
study of other factors, such as the POS of the in-
put token, as well as the study of the differences in
amplitudes observed between the PLMs we tested.
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A Hyperparameter tuning for the
neg-classifiers and the pol-classifiers

The PLMs’ contextual representations were ob-
tained using a GeForce RTX 2080 Ti GPU.

The neg-classifiers, the pol-classifiers and the
classifiers used to predict the presence of other
taget tokens were trained on a CPU, each train-
ing taking about 15 minutes. Then, testing them
on the not+NPI test set took about 5 minutes.

To tune these classifiers, we performed a grid
search with: a number of hidden layers included
in [1, 2], number of units in each layer in [20, 50,
100 450, 1000], and the learning rate in [1, 0.1,
0.01, 0.001].

We selected a learning rate of 0.001, 2 hidden
layers, with size 450 each, based on the accura-
cies on the neg-test-set and the pol-test-set. Except
when the learning rate equaled 1, all hyperparam-
eter combinations resulted in similar performance
(Iess than 1 point of accuracy, in the results of fig-
ure 3).

The code and methodology was developed first
using the BERT-base model, and then applied to
the other models. Including code and method-
ology development, we estimate that the experi-
ments reported in this paper correspond to a total
of 160 hours of GPU computing.

B Statistical significance test

In this section we detail the test performed to as-
sess the statistical significance of the accuracy dif-
ferences illustrated in Figures 3 and 5.

For each of the four tested PLMs, and for each
of 3 runs of classifier training,

» for each position from -8 to -1 relative to the
not,

— we compare the accuracy of the pol-
classifier in the PRE-IN zone versus in
the PRE zone (i.e. the difference be-
tween the purple bar with respect to the
pink one).

namely, we test the statistical signifi-
cance of the following positive differ-
ence : accuracy for tokens in PRE-IN
zone minus accuracy for tokens in the
PRE zone.
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* for each position from 3 to 8,

— we test the statistical significance of the
following positive difference : accuracy
for tokens in IN zone minus accuracy for
tokens in the POST zone (i.e. the differ-
ence between the blue bar with respect
to the green one)

Each test is an approximate Fisher-Pitman
permutation test (with 5000 random permu-
tations, performed using the script of Dror
et al. (2018), https://github.com/rtmdrr/
testSignificanceNLP.git), and all the differ-
ences listed above result as statistically significant
atp < 0.001.

C Supplementary figures

The break-downs by position for the three models
not presented in the main text (BERT-base, BERT-
large and ROBERTA-base) are provided in Fig-
ures 4 (neg-classifiers) and 5 (pol-classifiers).

The break-downs by position for other target to-
kens are provided in Figures 6
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