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Abstract

This paper reports on efforts to improve
the Oslo-Bergen Tagger for Norwegian
morphological tagging. We train two
deep neural network-based taggers using
the recently introduced Norwegian pre-
trained encoder (a BERT model for Nor-
wegian). The first network is a sequence-
to-sequence encoder-decoder and the sec-
ond is a sequence classifier. We test
both these configurations in a hybrid sys-
tem where they combine with the ex-
isting rule-based system, and on their
own. The sequence-to-sequence system
performs better in the hybrid configura-
tion, but the classifier system performs so
well that combining it with the rules is ac-
tually slightly detrimental to performance.

1 Introduction

The Oslo-Bergen Tagger (OBT, Hagen and Johan-
nessen 2003; Johannessen et al. 2012) is a widely
used tool for morphological tagging of Norwe-
gian text. It has existed in various incarnations
for around 25 years, first as a purely rule-based
system and later coupled with a statistical mod-
ule for disambiguation. In this paper, we report
on our recent efforts to bring the system into the
age of neural networks. The question that arises
is whether combining the neural system with the
existing rules will boost accuracy over a purely
neural system. We build two kinds of neural net
configurations, one encoder-decoder transformer
framework (sequence-to-sequence, seq2seq) and
one sequence classification (seqClass) approach.
We show that there are challenges in combining
rules and neural nets due to divergent tokenisa-
tions when the seq2seq approach is employed. In
the seqClass approach, on the other hand, the neu-
ral net performs so well that combining it with

the rule-based approach is actually detrimental to
performance, showing that rule-based methods are
not required in the morphological tagging of a
language like Norwegian, where a large language
model is available (NbAiLab, 2021) and there is
sufficient labeled data for fine-tuning. However,
we still believe that the rule-based system can be
useful for lemmatisation and compound analysis,
which we do not consider here.

The structure of the paper is as follows: In sec-
tion 2 we give some historical background on OBT
and in section 3 we describe the current status of
its rule-based component. Section 4 describes the
training and evaluation data that we have used in
developing the new systems. Section 5 then pro-
vides the details of how our neural systems were
trained. Section 6 describes how they were com-
bined with the rule system. Section 7 evaluates
the performance of each of the neural systems on
their own as well as in combination with the rules.
Section 8 concludes.

2 History of the Oslo-Bergen Tagger

The Oslo-Bergen Tagger was originally developed
between 1996 and 1998 by the Tagger Project at
the University of Oslo. Rules for morphologi-
cal and syntactic disambiguation were written in
the first version of the Constraint Grammar frame-
work (Karlsson et al., 1995), retrospectively called
CG1. The input to CG disambiguation rules is
multitagged text, i.e., text where each token has
been annotated with all possible lexical analyses.
Hence, the project also developed a lexicon with
lemmas and inflected forms (later known as Norsk
ordbank1) and a combined tokeniser/multitagger.
The tagger was developed for both Bokmål and
Nynorsk, the two written varieties of Norwegian.
In this article, we will only focus on the Bokmål

1https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-5/
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version of the tagger, and only on the tokeniser and
the morphological disambiguation.

On an unseen evaluation corpus with a wide va-
riety of text genres, OBT achieved an F1-score of
97.2 (Hagen and Johannessen, 2003, 90), with a
precision of 95.4 and a recall of 99.0. At the time,
this was considered acceptable as the tagger was
mostly used to annotate written corpora for lin-
guistic research, where a high recall was consid-
ered more important than a high precision.

Since 1998, both the tokeniser and the CG rule
interpreter have been changed or modernised sev-
eral times by different projects (Johannessen et al.,
2012). The latest version has an updated lexicon
and a tokeniser written in Python which in most
cases mirrors the original tokeniser, with the ma-
jor exception that multiword expressions like blant
annet (‘among other things’ - adverb) have been
removed from the lexicon and are now dealt with
in the CG module. The CG1 rules have been trans-
lated to the more efficient and expressive CG3
format and are used with a rule interpreter made
by the VISL project at the University of Southern
Denmark. Remaining morphological ambiguities
and lemma disambiguation are dealt with by a sta-
tistical module, implemented as a Hidden Markov
Model. This OBT+Stat system achieved an accu-
racy of around 96% (Johannessen et al., 2012).

3 The rule-based tokeniser and tagger

In this section, we first present some of the main
tasks for the tokeniser and multitagger before we
give a short description of the constraint gram-
mar module. The multitagger uses a lexicon with
all possible lexical readings, where a reading is a
combination of a lemma and a morphosyntactic
tag chosen from a set of 149 possible analyses.2

The main principle for tokenisation is to split to-
kens on blank space or a sentence delimiter like a
full stop or a question mark. For each token iden-
tified, the original word form is looked up in the
lexicon. Non-sentence initial capitalised words are
identified as proper nouns, while other words that
exist in the lexicon are assigned all readings found
there. If the word is not found in the lexicon and is
not identified as a proper noun, the word is sent to
a compound analyser. Most unknown words will
get an analysis here, as many of them are produc-
tively created compounds. Some words will still

2The complete list is available at http://tekstlab.
uio.no/obt-ny/morfosyn.html.

get the tag ukjent (‘unknown’) from the tokeniser.
These words are often dialect words not standard-
ised in the lexicon or foreign words. Figure A in
the Appendix shows how the tokeniser and mul-
titagger deals with the sentence TV-programmet
"Ut i naturen" begynner kl. 21.15. (‘The TV pro-
gram "Ut i naturen" starts at 21.15.’), which has
quotation marks, abbreviations, and a time expres-
sion.

The tokeniser also identifies sentence bound-
aries using sentence delimiters, a list of known
abbreviations and linguistic rules. Headlines are
identified by rules as well and get their own tag.

The constraint grammar module takes tokenised
and multitagged text as input and its main task is
to reduce the number of readings to ideally one per
word. The number of readings left by the multitag-
ger varies a lot. In the test corpus used in this arti-
cle (which will be further described in Section 4)
there are on average 2,04 readings per word. After
the CG rules are applied, there are on average 1,09
readings left per word.

Figure B in the Appendix shows the output from
the CG module in debug mode for the sentence
Rosa cupcakes hører kanskje med når man skal
ha bloggtreff? (‘Pink cupcakes might be part of
a blog meeting?’). Readings that have been re-
moved start with “;” and the ID numbers of the
rules applied are appended to each reading. Note
that the English loan word cupcakes is not iden-
tified in the lexicon or in the compound analyser
and has got the tag ukjent ‘unknown’. The com-
pound bloggtreff ‘blog meeting’ was not in the
lexicon but has got two readings from the com-
pound analyser. As the examples show, there are
both REMOVE rules (remove a reading) and SE-
LECT rules (select a reading). A rule can be very
simple, like rule 2430 in Figure 1 that says “select
the verb infinitive reading if the verb to the left is
a modal auxiliary and not in the set of dangerous
infinitives (= not likely infinitives)”.

#:2430
SELECT:2430 (verb inf) IF
(NOT 0 farlige-inf)
(-1 m-hj-verb)
;

Figure 1: Simple SELECT rule

Figure 2 shows an example of a more complex
rule with linked context conditions somewhere to
the right in the sentence. The rule says: “choose
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the subjunction reading – if somewhere to the right
there is a safe noun or pronoun (stop looking if a
word on the way has a reading that is not an ad-
verb, adjective or determinative) – and – if there
is a word in the present or past tense after the
noun/pronoun (adverbs between are fine).”

#:2579
SELECT:2579 (sbu) IF
(...)
(**1C subst/pron BARRIER

ikke-adv-adj-det)
(**1C subst/pron LINK *1

ikke-adv LINK 0 pres/pret)
;

Figure 2: More complex SELECT rule

The CG grammar for Bokmål has more than
2300 rules. 1995 of them are SELECT rules.
Some rules apply to all possible words, while
some are rules for specific word forms. REMOVE
rules look the same as SELECT rules but remove
a reading instead of selecting it. During devel-
opment, we checked the impact of each rule on
the recall and precision on a training corpus of
100 000 words from novels, newspapers and mag-
azines before it was added to the rule set.

4 Training and evaluation data

The training and evaluation corpora that were used
in earlier stages of development of the OBT sys-
tem are no longer suitable because the tagset and
the tokenisation principles have evolved. Instead
of bringing this corpus up to date, we chose to
use the Norwegian Dependency Treebank (NDT,
Solberg et al. 2014) in the development of the
latest version of OBT. The Bokmål part of NDT
is around 300 000 tokens and consists of blog
text, news text, parliament proceedings and gov-
ernment white papers. A problem that we only
later became aware of is that most of the raw
text contained in the NDT probably went into
the Norwegian BERT encoder that we use in our
machine learning experiment, which may have
caused some data leakage, even if the model did
not see the tagged text.

While the principles for annotation in NDT and
OBT are close, there are still differences in detail.
To ensure that the annotations were as aligned as
possible, we ran OBT without statistical disam-
biguation on the pure text of the NDT and com-
pared the output to the NDT annotations. If the
NDT analysis was not among the analyses pro-

duced by OBT, we either corrected the NDT an-
notation if that was the source of the error, or
changed the rules of the OBT system if that could
easily be done. This process was iterated a few
times. The goal was to improve the quality of the
training data for the neural component and to align
the output of the OBT with the NDT as the an-
notation guidelines were slightly different. Also,
since the plan was to combine OBT with a neu-
ral system, ambiguity reduction by OBT was not
a goal in itself if we thought the ambiguity could
be resolved by the neural component. Notice that
during this period, the whole data set was used
for development, which inflates the performance
of the rules (and hence the hybrid system we dis-
cuss later on) somewhat. But in practice, relatively
few changes were made and we did not achieve a
full alignment of the annotation guidelines.

The performance of the rule-based system by
the end of this phase is shown in Table 1. We
see that OBT produces a correct and unambigu-
ous analysis for 90.7% of the tokens and only (one
or more) incorrect analyses for 1.8% of the tokens.
For 7.5% of the tokens, OBT produces an ambigu-
ous analysis containing the correct tag as one pos-
sibility, and the role of the statistical system in a
hybrid setup is to pick the correct analysis in these
cases. The results are noticeably different from
those reported during testing in the nineties (see
Section 2), probably because we were not able to
fully align the annotation principles of OBT and
NDT, and because the precision was calculated
differently back then (for example, both the mas-
culine and the feminine reading were regarded as
one correct reading for ambiguous feminine and
masculine nouns in unmarked contexts).

result freq
unambiguous correct 280650 (90.7%)
ambiguous incl. correct 23219 (7.5%)
wrong 5413 (1.8%)

Table 1: Performance of the rule-based system

Finally, for the neural systems, we split the cor-
pus into train-dev-test sets. While doing this, we
applied a simple process for making sure the out-
put tags in the training set covered all output tags
in the dev and test sets. The aim is to ensure that
the model was trained with samples from all tags.
We do this by, first, initializing the Python random
seed as 0, then, splitting the data and checking if
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the training set covers all tags. If it does not, we
increase the random seed by one and do the same
until we find a training set that covers all the tags
in the other sets. This way, we randomly split the
dataset into 80-10-10 percent partitions to obtain
train-dev-test datasets respectively.

5 The neural systems

Recently, a BERT (Devlin et al., 2018) pre-trained
encoder (nb-bert-base) was published by the Nor-
wegian National Digital Library (Kummervold
et al., 2021). This pre-trained encoder for Norwe-
gian provides a rich feature set that was previously
lacking for the language. Furthermore, since the
tagged corpus is very small in comparison to the
corpus the pre-trained model was trained on, it is
important to use the pre-trained model to be able
to generalise to unseen data. We use two different
neural system configurations that incorporate this
encoder.

5.1 The seq2seq configuration

With this configuration, we follow an approach
similar to that of Omelianchuk et al. (2020) to
tag the sentences using the pre-trained model.
Seq2seq models have two main components: an
encoder and a decoder. The encoder side is set
as the encoder nb-bert-base (NbAiLab, 2021). For
the decoder, we randomly initialise 6 layers of size
768 with 12 attention heads. The decoder also has
cross-attention layers as it was shown to be effec-
tive in seq2seq training (Gheini et al., 2021). We
freeze the encoder weights throughout the train-
ing since using the encoder as a feature extraction
mechanism in this way was shown to be benefi-
cial (Zoph et al., 2016) and is a common prac-
tice (Gheini et al., 2021). We use the EncoderDe-
coderModel provided by the HuggingFace trans-
formers library (Wolf et al., 2020) to configure and
train a model.

The encoder-decoder model gets as its input the
identifiers of the tokens (token numbers) in the in-
put vocabulary and outputs the token numbers in
the output vocabulary. Thus, the input and output
are tokenised using these vocabularies. Since the
encoder model had already been trained (nb-bert-
base) using the widely-utilised sub-word tokeniser
Wordpiece (Wu et al., 2016), we use that tokeniser
as provided by the Huggingface Tokenizers li-
brary. For the decoder side, since our vocabulary
size is very small and obvious (82 tags and 5 extra

special tokens such as [CLS] and [SEP]), we do
not need to train a special tokeniser. We define the
vocabulary manually with these output tokens for
use by the Wordpiece tokeniser.

The data were formatted to train the seq2seq
network. Figure 3 shows an example of input and
output for a sentence. The input is the tokenised
form of the sentence. The output is the sequence
of serialised tags for each token in the input. The
token <next_token> is an indicator that all tags of
the corresponding input token have finished and
tags of the next input token start afterward.

INPUT: Men det er bare noe jeg tror .

OUTPUT:
:konj: clb <next_token>
:pron: 3 ent nøyt pers <next_token>
:verb: pres <next_token>
:adv: <next_token>
:pron: 3 ent nøyt pers <next_token>
:pron: 1 ent hum nom pers <next_token>
:verb: pres <next_token>
$punc$ :clb: <punkt>

Figure 3: A sample of sentence input and output
for seq2seq training.

The training configuration is as follows: We use
the Adam optimiser (Kingma and Ba, 2015) with
a learning rate of 0.0001. We set the batch size
to 16 sentences as this is the amount the graphic
cards could handle. We use the negative log-
likelihood loss (Yao et al., 2020) to compute the
loss in each batch between the model output and
the expected output. For any other parameter not
mentioned in this section, we use the default value
defined by version 4.17.0 of the Transformers li-
brary in the objects of the following types: Bert-
Config, EncoderDecoderModel, EncoderDecoder-
Config, and BertModel.

We evaluate the model using the dev set dur-
ing the training. We do this by using the BLEU
score (Papineni et al., 2002) that is widely uti-
lized to evaluate seq2seq models. We compute
the BLEU score between the expected output and
the model output for each sentence. We get the
average of these scores for the whole dev set.
We run the training for 300 epochs and keep the
model that results in the maximum average BLEU
score for the dev set. To combine the model out-
put with the rules, we use the model’s .gener-
ate() function (HuggingFace, 2023a) implemented
by the library. We set the early_stopping, re-
turn_dict_in_generate, and output_scores param-
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eters to True. We set num_return_sequences and
num_beams to 10 to get the 10 most probable
readings given a sentence.

5.2 The seqClass configuration

Sequence classification – also referred to as to-
ken classification – is a method used to classify
a sequence (one or more tokens) into one or more
classes such as the type (person, organisation) or
sentiment (positive, negative). BERT models have
multiple layers that are pre-trained on the lan-
guage. The Norwegian pre-trained BERT outputs
12 layers (also called hidden states) where each is
a 768-dimension vector for each token. Thus, this
output is input to a classifier to classify each to-
ken. The HuggingFace transformers library (Hug-
gingFace, 2023b) provides a token classification
framework that can be used for this purpose. It
adds a linear layer on top of the hidden states to
make sequence classification possible using the
pre-trained encoder.

The dataset has 82 different tags which are used
together in different combinations. We observe
that the training set has 327 different uses of these
combinations.3 Thus, we treat each combination
as a class for this computation. We classify each
token into one of these classes which indicates a
tagset for that token. We do this by labeling each
class as a sequence of zeros and ones where each
digit corresponds to one tag. Figure 4 shows an ex-
ample of tokens and classes of those tokens, where
the length of the class names (0’s and 1’s), which
is really 82, is shortened to fit into the figure. The
position of 1’s in the string indicates the tag as-
signed to the token. For example, for the first
token “Men” the first two columns are assigned
which indicate the “:konj:” and “clb” tags (see
also Figure 3 for tags of this sentence).

Men 1100000000000000000000000000000000
det 0011111000000000000000000000000000
er 0000000110000000000000000000000000
bare 0000000001000000000000000000000000
noe 0011111000000000000000000000000000
jeg 0000100000111000000000000000000000
tror 0000000110000000000000000000000000
. 0000000000000111000000000000000000

Figure 4: A sample of a sentence’s tokens and
their classes used in sequence classification.

3In addition to the 149 morphosyntactic analyses (see
footnote 2), this includes combinations with various tags that
do not convey morphosyntactic information and are ignored
during evaluation.

Throughout the training, we use the default pa-
rameters defined in the library. We use the Adam
optimiser (Kingma and Ba, 2015) with an adaptive
learning rate starting from 0.00005. The library
uses Cross Entropy Loss (Zhang and Sabuncu,
2018) and picks the model that performs best on
the dev set by computing an F1 score. We check
the dev set performance for each epoch and run
the training for 30 epochs. When combining the
model output with the rules, we use the unnor-
malized final scores of the model (logits) and use
torch.topk() to get the topmost 10 probable read-
ings given a sentence.

6 Combining neural nets and rules

To combine the output of a neural tagger with the
CG tagger, we need to find the intersection of the
tag assignments produced by the two taggers. Ide-
ally, we would be able to find such intersections
for each individual token separately. However,
since the probability of a reading for a particu-
lar token depends on the selected readings for all
other tokens in the sentence, the only viable op-
tion is to consider readings for entire sentences.
Thus, for each input sentence, we extract the ten
most probable tag assignments produced by the
network. Then, for each reading in this list, or-
dered by decreasing probability, we go through
each token and check whether the tag assigned by
the network is also found among those left by the
CG disambiguation rules. If it is not found, we
skip to the next reading in the list. If it is found,
we go on to check the next token, and so on until
we reach the end of the sentence, at which point
the reading is picked as the selected one for the
sentence. When the tokenisations are different, it
is not clear what to do. But if the tokens are the
same, but the intersection of the sets of possible
tags left by the CG system and the neural net is
empty, we can default to the most probable read-
ing in the neural net output.

Figure 5 shows a case where the tokenisation
of the seq2seq neural system does not match with
that of OBT. The neural system has split the ini-
tial, unknown proper name at a hyphen, whereas
the CG tagger keeps it as one token. Since tokeni-
sation is part of a preprocessing step and misalign-
ments in tokenisation is a problem to be solved
separately from tag assignment, we simply disre-
gard such sentences in the evaluation. However, it
should be noted that this problem is only acute for
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the seq2seq system, which produced mismatching
tokenisation in 205 out of 2003 sentences (10.2%).
For the seqClass system, the problem is smaller:
57 out of 2003 sentences (2.8%).

Neural net: Garosu - gil , som betyr [...]

CG: Garosu-gil , som betyr [...]

Figure 5: Mismatching tokenisation

Figure 6 shows the problem of mismatching
tags. For the first word, the CG tagger has left
five possible analyses, and the neural net has cor-
rectly disambiguated to the plural adjective read-
ing. However, OBT did not recognise the sec-
ond word, cupcakes, and has therefore left an uk-
jent (‘unknown’) tag while the neural system has
no analysis with that tag. Notice that the figure
only shows the neural system’s most probable as-
signment of tags to the whole sentence. The ac-
tual output is a probability distribution over tag
assignments, but in this case, no probability was
assigned to any tag assignment containing the uk-
jent tag for cupcakes, which is the only analysis
produced by the rule system.

Neural net:
Rosa adj fl pos
cupcakes subst appell fl mask ub <---
hører verb pres
kanskje adv
med prep
når sbu
man pron ent hum nom pers
skal verb pres
ha verb inf
bloggtreff subst appell ent nøyt ub
? clb <spm>

CG:
Rosa adj fl pos

adj nøyt ub ent pos
adj ub m/f ent pos
subst appell ubøy
subst appell fem be ent

cupcakes ukjent <---
hører verb pres
kanskje adv
med prep
når sbu
man pron ent hum nom pers
skal verb pres
ha verb inf
bloggtreff subst appell ent nøyt ub

subst appell fl nøyt ub
? clb <spm>

Figure 6: Non-intersecting tags

For such cases, we default to the most proba-
ble analysis generated by the neural net. This is
not necessarily the best option: as we will see in

system accuracy
pure seq2seq 92.71

seq2seq + OBT 94.15
pure seqClass 100.0

seqClass + OBT 99.99

Table 2: Accuracy of different systems

Section 7, the seq2seq system is often incorrect in
cases where the tag assignments do not intersect.
Moreover, the problem of mismatching tag assign-
ments is quite common, happening in 386 out of
the 2003 sentences (19.3%).

In the seqClass system, non-intersecting tag as-
signments are even more frequent, at 466 sen-
tences (23.3%). However, as we will see in the
next section, the neural net in this configuration is
more precise than the rules, so that defaulting to
its output yields the correct reading.

7 Evaluation and error analysis

We evaluate both the seq2seq system and the seq-
Class system on their own and as combined with
the rule-based system in the way described in Sec-
tion 6. This yields four different systems. The per-
formance of the four systems is shown in Table 2.

These numbers are only computed over sen-
tences where the tokenisation matches. This
means that the seq2seq system, in both its pure
and hybrid form, is tested only on sentences where
the seq2seq system, the OBT tagger and the gold
agree on the tokenisation. As we saw in section 6,
this means that 10.2% of the test data are left
out. It would have been possible to test the pure
seq2seq system on the sentences where its tokeni-
sation agrees with the gold, without considering
what OBT does, but since we want to compare the
pure neural system to the hybrid system, we held
the evaluation set constant between these two se-
tups. Similarly, for the seqClass system, we left
out the 2.8% of sentences where either OBT or
the neural system had tokenisation that does not
match the gold for both the pure and the hybrid
system. Notice that this means the seqClass sys-
tem is tested on a larger set of sentences than the
seq2seq system.

Overall, we see that the seqClass system per-
forms best and in fact achieves a perfect score.
This is of course a rather debatable result, which
we will look into in section 7.2. But notice that
the 2.8% of sentences with diverging tokenisations
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are incomparable and therefore not evaluated here,
though they could obviously be considered errors
of the system.

7.1 The seq2seq system

The seq2seq system performs reasonably well on
its own, but clearly benefits from being intersected
with the rules, yielding a 1.3% accuracy boost to
94.1%. By contrast, the widely used Spacy tagger
reports an accuracy of 95.0% for morphological
tagging of Norwegian UD.4

Most of the errors in this setup comes from
the fact that we default to the best neural analy-
sis when there is no intersection. As it turns out,
the neural system is wrong in most of these cases.
If we restrict attention to only sentences where the
tags intersect (70.5% of the total), accuracy is at
99.0%. Put another way, when we reduce the test
set in this way, its size decreases by 8036 tokens
from 26648 to 18612, but the number of errors de-
creases from 1940 to 565. This indicates an error
rate of 17.1% on the tokens in sentences where the
intersection of the tag assignments from the neural
system and the CG tagger is empty.

Turning now to the kind of errors the seq2seq
system makes, we show the twelve most common
error types of the pure and the hybrid system in
Table 3 and Table 4 respectively. We see that the
most common error is mixing up the distinction
between neuter and common gender adjectives,
which in many cases is not expressed morpholog-
ically. Other than that, most errors involve either
over- or underpredicting the tag :prep: (preposi-
tion). This error source is somewhat reined when
the system is interfaced with the rules. But many
errors of this kind remain, either because this anal-
ysis is also suggested by the rules and so picked as
the most probable tag, or more likely because there
is no intersection between the tag assigments, i.e.
neither :prep: nor any other tag suggested by the
neural system is among the tags left by the rule-
based system.

Overall, this confusion around the :prep: tag
seems a distinct deficit of the seq2seq model.
Other errors, such as those involving gender, or the
number of indefinite neuter nouns (which make
no morphological singular/plural distinction), or
the identification of perfect participles which of-

4See https://spacy.io/models/nb. As the Nor-
wegian UD corpus (Øvrelid and Hohle, 2016) is an automatic
conversion of the NDT corpus, the complexity of the tasks
should be comparable, although the test split is not identical.

ten co-exist with homonymous adjectives in Nor-
wegian (as in other Germanic languages, cf. En-
glish ‘bored’) are more as one would expect from
any system because there might not be enough
signal in the training data to pick up the distinc-
tions, which often depend on subtle properties of
the context. However, what we observe here is that
intersecting with the rules actually worsens the ac-
curacy. The hybrid system overapplies the adjec-
tive analysis in two different varieties for a total
of 17+13 errors. By contrast, in the pure seq2seq
setup, this error is not frequent enough to figure
in the table. It does occur in 21 cases, but that is
still notably less than in the hybrid system. This
shows that the CG rules wrongly disambiguate
these cases, which is not surprising since the dis-
tinction as made according to the NDT guidelines
relies on semantic distinctions. It would be hard to
tune the CG rules to those distinctions, and we did
not make any attempt at that, but there seems to be
enough signal in the data for the seq2seq system
to pick it up to some extent.

7.2 The seqClass system

The seqClass system achieves a suspicious, per-
fect score on our test set when used alone, and
makes one error when combined with the rules.
This error is instructive in itself: it concerns
a single-word "sentence", namely the heading
"Justisdepartementet" (‘The Department of Jus-
tice’). The CG tagger considers this a common
noun. This is only the fifth most probable tag ac-
cording to the neural net, but it is among the pos-
sibilities and so it is chosen by the hybrid system,
although the gold considers it a proper noun.

This is the only instance of such an error. In
other words, the seqClass system not only assigns
the highest probability to the correct tag in ev-
ery case, but also performs well enough as to not
rank any incorrect suggestions by the CG system
among the top 10 readings that we consider for in-
tersection, except in this one case.

The looming question is of course how the sys-
tem manages to perform so well. Some degree of
overfitting must have taken place, but can hardly
explain everything. Moreover, as we noted in Sec-
tion 4, it is likely that all or at least most of the
raw text of NDT went into the Norwegian BERT
model, which may have caused some data leakage.
More worryingly, we cannot completely exclude
the possibility that the language model has been
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Gold tag Predicted tag Freq
[’:adj:’, ’ent’, ’nøyt’, ’pos’, ’ub’] [’:adj:’, ’ent’, ’m/f’, ’pos’, ’ub’] 24
[’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] [’:prep:’] 24
[’:prep:’] [’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] 19
[’:verb:’, ’pres’] [’:prep:’] 18
[’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] [’:subst:’, ’appell’, ’ent’, ’fem’, ’ub’] 18
[’:prep:’] [’:subst:’, ’prop’] 17
[’:subst:’, ’appell’, ’ent’, ’fem’, ’ub’] [’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] 16
[’:prep:’] [’$punc$’, ’:<komma >:’] 15
[’:prep:’] [’:verb:’, ’pres’] 14
[’:subst:’, ’appell’, ’fl’, ’mask’, ’ub’] [’:subst:’, ’appell’, ’fem’, ’fl’, ’ub’] 14
[’:subst:’, ’mask’, ’prop’] [’:subst:’, ’prop’] 14
[’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] [’:subst:’, ’appell’, ’ent’, ’nøyt’, ’ub’] 14

Table 3: Most frequent errors, pure seq2seq system

Gold tag Predicted tag Freq
[’:adj:’, ’ent’, ’nøyt’, ’pos’, ’ub’] [’:adj:’, ’ent’, ’m/f’, ’pos’, ’ub’] 22
[’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] [’:subst:’, ’appell’, ’ent’, ’fem’, ’ub’] 18
[’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] [’:prep:’] 18
[’:prep:’] [’:subst:’, ’appell’, ’ent’, ’mask’, ’ub’] 17
[’:verb:’, ’pres’] [’:prep:’] 17
[’:verb:’, ’perf-part’] [’:adj:’, ’<perf-part>’, ’ent’, ’m/f’, ’ub’] 17
[’:prep:’] [’:subst:’, ’prop’] 16
[’:verb:’, ’perf-part’] [’:adj:’, ’<perf-part>’, ’ent’, ’nøyt’, ’ub’] 13
[’:subst:’, ’appell’, ’fl’, ’mask’, ’ub’] [’:subst:’, ’appell’, ’fem’, ’fl’, ’ub’] 13
[’:prep:’] [’:verb:’, ’pres’] 12
[’:subst:’, ’appell’, ’ent’, ’nøyt’, ’ub’] [’:subst:’, ’appell’, ’fl’, ’nøyt’, ’ub’] 12
[’:verb:’, ’perf-part’] [’:prep:’] 11

Table 4: Most frequent errors, hybrid seq2seq system

exposed to the CONLL file (and hence the manu-
ally corrected tags), although it seems unlikely. In
any case, we would have expected some errors in
the tokens where we changed the analysis. More-
over, none of these factors would explain why the
model is also able to assign a very low probability
to the incorrect suggestions from the CG.

We plan to conduct a more thorough test of the
system on recent text which the BERT model can-
not have been exposed to. So far we have only
been able to conduct a very preliminary test. We
downloaded web text from nrk.no (the Norwegian
national broadcaster) from 2023, i.e. after the Nor-
wegian BERT was published. This text was tagged
both with the original system of OBT + HMM-
based disambiguation, and with the new seqClass
system. For the first 2000 tokens, we inspected
all mismatches between the two systems, on the
(questionable) assumption that whenever the two
systems agree, the tag is likely correct. We found
144 discrepancies, and by manual judgement 137
were considered errors by the old system, and 7
were considered errors by the pure seqClass sys-
tem. This evaluation method is obviously not per-
fect, but it does suggest that the pure seqClass sys-

tem makes very few errors. Further proper evalua-
tion must follow, but the results are clear enough to
discourage future work on the rule-based system.5

8 Conclusion

We have presented our efforts to improve the Oslo-
Bergen tagger for Norwegian morphological tag-
ging. Two neural systems were trained, based on a
sequence-to-sequence setup and a sequence clas-
sifier setup, both built on top of the Norwegian
BERT model of Kummervold et al. (2021). Both
were tested on their own and in combination with
the rule-based OBT system. The sequence-to-
sequence system did not outperform earlier bench-
marks on its own, but improved when combined
the rules. However, the sequence classification
setup was much better and in fact achieved a sur-
prising perfect score on the test set. While we will
explore the causes of this, preliminary testing on
new data supports the conclusion that the new sys-
tem makes very few errors, and we will focus on
validating this in a more proper evaluation setting.

5The seqClass model is available for download at
https://github.com/textlab/norwegian_ml_
tagger.
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Appendix: sample multitagger and CG output

<word>Tv-programmet</word>
"<tv-programmet>"
"tv-program" subst appell nøyt be ent
samset-leks <*program> <+programmet>

<word>«</word>
"<«>"
"$«" <anf>
<word>Ut</word>
"<ut>"
"ut" prep
"ut" adv
<word>i</word>
"<i>"
"i" prep
"i" subst appell mask ub ent
<word>naturen</word>
"<naturen>"
"natur" subst appell mask be ent
<word>»</word>
"<»>"
"$»" <anf>
<word>begynner</word>
"<begynner>"
"begynne" verb pres
"begynner" subst appell mask ub ent
<word>kl.</word>
"<kl.>"
"kl." subst appell fork
<word>21.15</word>
"<21.15>"
"21.15" subst <klokke>
"21.15" det kvant
<word>.</word>
"<.>"
"$." clb <<< <punkt> <<<

Figure A: Tokenised and multitagged sentence

<word>Rosa</word>
"<rosa>"
"rosa" adj fl pos
"rosa" adj nøyt ub ent pos
"rosa" adj ub m/f ent pos
"rosa" subst appell ubøy
"rose" subst appell fem be ent
; "rosa" adj be ent pos REMOVE:2311
<word>cupcakes</word>
"<cupcakes>"
"cupcakes" ukjent
<word>hører</word>
"<hører>"
"høre" verb pres
<word>kanskje</word>
"<kanskje>"
"kanskje" adv
<word>med</word>
"<med>"
"med" prep
<word>når</word>
"<når>"
"når" sbu SELECT:2579
; "nå" verb pres SELECT:2579
; "når" adv REMOVE:3383
<word>man</word>
"<man>"
"man" pron ent pers hum nom
SELECT:3451

; "man" subst appell fem ub ent
SELECT:3451

; "man" subst appell mask ub ent
SELECT:3451

; "mane" verb imp SELECT:3451
<word>skal</word>
"<skal>"
"skulle" verb pres <aux1/perf_part>
<aux1/infinitiv>

<word>ha</word>
"<ha>"
"ha" verb inf <aux1/perf_part>
SELECT:2430

; "ha" interj SELECT:2430
; "ha" subst symb REMOVE:3574
; "ha" verb imp <aux1/perf_part>
SELECT:2430
<word>bloggtreff</word>
"<bloggtreff>"
"bloggtreff" subst appell nøyt ub ent
samset-analyse <+treff>

"bloggtreff" subst appell nøyt ub fl
samset-analyse <+treff>

<word>?</word>
"<?>"
"$?" clb <<< <spm> <<<

Figure B: Tokenised, multitagged and disam-
biguated sentence
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