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Abstract

Knowledge graphs have shown promise
for several cybersecurity tasks, such as
vulnerability assessment and threat analy-
sis. In this work, we present a new method
for constructing a vulnerability knowledge
graph from information in the National
Vulnerability Database (NVD). Our ap-
proach combines named entity recognition
(NER), relation extraction (RE), and en-
tity prediction using a combination of neu-
ral models, heuristic rules, and knowledge
graph embeddings. We demonstrate how
our method helps to fix missing entities in
knowledge graphs used for cybersecurity
and evaluate the performance.

1 Introduction

An increasing number of services are moving to
digital platforms. The software used on these dig-
ital platforms is, unfortunately, not without flaws.
Some of these flaws can be categorized as security
vulnerabilities that an attacker can exploit, poten-
tially leading to financial damage or loss of sensi-
tive data for the affected victims. The National
Vulnerability Database (NVD)1 is a database of
known vulnerabilities which, as of January 2023,
contains more than 200 000 vulnerability records.
The Common Vulnerability and Exposures (CVE)
program2 catalogs publicly disclosed vulnerabili-
ties with an ID number, vulnerability description,
and links to advisories. NVD fetches the data from
CVE and provides additional metadata such as
weakness type (CWE) and products (CPE). CWEs
are classes of vulnerabilities (CVEs), for exam-
ple, CWE-862: Missing Authorization contains all
CVEs related to users accessing resources with-
out proper authorization. A CPE is a URI string

1 https://nvd.nist.gov/
2 https://www.cve.org/

specifying the product and its version, for exam-
ple, cpe:2.3:a:limesurvey:limesurvey:5.4.15 is the
CPE for the survey app Limesurvey with version
5.4.15. Keeping the information in the database
up to date is important to patch vulnerabilities in a
timely manner. Unfortunately, patching becomes
increasingly difficult as the yearly number of pub-
lished vulnerabilities increases.3

To automatically extract relevant information
from vulnerability descriptions, named entity
recognition (NER) and relation extraction (RE)
can be applied as shown in Fig. 1. The extracted
information can be stored as triples in a knowledge
graph (KG). As the extracted triples might be in-
correct or missing, knowledge graph embeddings
(KGE) can be used to learn the latent structures of
the graph and predict missing entities or relations.

The work described in this paper is based on
the master thesis by the first author. We inves-
tigate how NLP and KGs can be applied to vul-
nerability records to predict missing software en-
tities. More specifically, we address the following
research question: RQ: Can our knowledge graph
predict vulnerability weakness types and vulnera-
ble products? The contributions of this paper in-
clude: (1) An approach for extracting and assess-
ing vulnerability data from NVD; (2) A vulnera-
bility ontology for knowledge graph construction;
(3) A rule-based relation extraction model.

2 Related Work

We distinguish the ensuing areas of related work:
Labeling: Labeled data may not always be avail-
able to train supervised learning models for tasks
including NER and RE. To address this prob-
lem, distant supervision aims at proposing a set
of labeling functions for the automatic labeling
of data. Bridges et al. (2014) applied distant su-
pervision using a cybersecurity corpus. Their ap-

3 https://nvd.nist.gov/general/nvd-dashboard
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An arbitrary  file upload vulnerability in the plugin manager of

v5.4.15 VERSION execute arbitrary code RELEVANT TERM

LimeSurvey APPLICATION

allows attackers to via a crafted PHP file.

Has Has

Figure 1: Example of a CVE with labels

proach includes database matching using the CPE
vector, regular expressions to identify common
phrases related to versioning, for example, ”be-
fore 2.5”, and gazetteers, which are dictionaries
of vulnerability-relevant terms, such as ”execute
arbitrary code”.

After manual validation of the labeled entities,
Bridges et al. (2014) report a precision of 0.99 and
a recall of 0.78.
Named Entity Recognition: Training NER mod-
els on labeled data are useful as distant supervi-
sion depends on assumptions about the input data,
which does not always hold. For example, in the
case of NVD, if the new data is missing CPE in-
formation. Machine learning models are not de-
pendent on such metadata, and, as a consequence
can generalize better to new situations. Bridges
et al. (2014) propose NER based on the Averaged
Perceptron (AP). The conventional perceptron up-
dates its weights for every prediction, which can
over-weight the final example. The averaged per-
ception keeps a running weighted sum of the ob-
tained feature weights through all training exam-
ples and iterations. The final weights are obtained
by dividing the weighted sum by the number of
iterations.

Gasmi et al. (2019) propose another NER model
based on a long short-term memory (LSTM) ar-
chitecture. The authors argue that it can be more
useful when the data set has more variation, as
the LSTM model does not require time-consuming
feature engineering. However, their results show it
is not able to reach the same level of performance
as Bridges et al. (2014).

SecBERT4 is a pre-trained encoder trained on
a large corpus of cybersecurity texts. It is based
on the BERT architecture (Devlin et al., 2019) and
uses a vocabulary specialized for cybersecurity.
SecBERT can be fine-tuned for specific tasks such
as NER.

Another pre-trained encoder similar to
SecBERT is SecureBERT, proposed by Aghaei
et al. (2022). SecureBERT leverages a customized

4https://github.com/jackaduma/SecBERT

tokenizer and an approach to alter pre-trained
weights. By altering pre-trained weights, Secure-
BERT aims to increase understanding of cyber
security texts while reducing the emphasis on
general English.
Relation Extraction: Relations between named
entities can be discovered with RE. Gasmi et al.
(2019) propose three RE models for vulnerability
descriptions from NVD based on LSTMs. Their
best-performing model achieves a precision score
of 0.92. For labeling the relations, Gasmi et al.
(2019), applies distant supervision (Jones et al.,
2015). Gasmi et al. (2019) does not manually eval-
uate their labels before using them in the LSTM
models; however, the approach is based on Jones
et al. (2015), which indicates 0.82 in precision
score after manual validation. Both NER and RE
are important components for constructing knowl-
edge graphs from textual descriptions. We explore
several knowledge graphs related to cybersecurity
in the next section.
Knowledge Graphs in Cybersecurity:

CTI-KG proposed by Rastogi et al. (2023), is a
cybersecurity knowledge graph for Cyber Threat
Intelligence (CTI). CTI-KG is constructed primar-
ily from threat reports provided by security or-
ganizations, describing how threat actors operate,
who they target, and the tools they apply. Rastogi
et al. (2023) manually labels a data set of approx-
imately 3000 triples with named entities and rela-
tions. This labeled data is then used for training
models for NER and RE for constructing the KG.
CTI-KG also uses KGE to learn latent structures
of the graph and predict incomplete information.

Here, Rastogi et al. (2023) applies TuckER,
a tensor decomposition approach proposed by
Balažević et al. (2019), which can be employed for
knowledge graph completion. TuckER can repre-
sent all relationship types (Balažević et al., 2019),
as opposed to earlier models. For example, TransE
proposed by Bordes et al. (2013) has issues model-
ing 1-to-n, n-to-1, and n-to-n relations (Lin et al.,
2015). An example of a 1-to-n relationship in a
cybersecurity context is the relationship between
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CVEs and CPEs. Whereas a CVE can have multi-
ple CPEs, a CPE can only have one CVE.

As CTI-KG focuses on threats, another KG,
VulKG (Qin and Chow, 2019), is constructed from
vulnerability descriptions from NVD. VulKG con-
sists of three components, a vulnerability ontol-
ogy, NER for extracting entities from the vulner-
ability descriptions, and reasoning for discovering
new weakness (CWE) chains. After extracting en-
tities, relations between these can be found using
the VulKG ontology (Qin and Chow, 2019). The
final step of the framework presented by Qin and
Chow (2019) is the reasoning component which is
based on chain confidence for finding hidden rela-
tions in the graph.

Similarly to VulKG, we construct our KG
from vulnerability descriptions in NVD. However,
VulKG depends on training NER models from
scratch, while we instead depend on a pre-trained
model fine-tuned to our data. Contrary to train-
ing the model from scratch, the pre-training ap-
proach utilizes an existing model already trained
on a large dataset. Consequently, fine-tuned mod-
els can learn patterns in the new data set more
quickly.

3 Methods

Our approach is shown in Fig. 2 and gives an
overview of the construction of the vulnerability
knowledge graph from CVE records. We discuss
the different steps below. For replication, we share
details about the hyperparameter tuning of various
models in the appendices.
Data: Our dataset is downloaded in JSON for-
mat from NVD, and the pipeline consists of mul-
tiple steps before predicting missing or incorrect
labels as the final step. The data set consists of all
CVE records from 2003 to 2022, which contains
approximately 175 000 CVEs. The CVE records
are labeled using the distant supervision approach
proposed by Bridges et al. (2014).
Named Entity Recognition: We train two archi-
tectures: Averaged Perceptron and SecBERT.
Averaged Perceptron (AP): AP is a feature-
engineered model, and we use the same features
as Bridges et al. (2014) Due to computational con-
straints in the AP model, we restricted our training
data to 4000 CVEs.

We first replicate their approach and separately
trained and evaluated two AP models, one for
IOB-labeling and one for domain-labeling, using

the distant supervision-generated labels. In prac-
tice, when a new CVE is published, we only have
access to the textual description. Since the IOB la-
bels are input features to the domain model, those
must be predicted first. Thus, in our second exper-
iment, we again train two AP models, but use the
predicted IOB labels as input to the domain label-
ing, instead of the generated labels.
SecBERT: In addition to AP, we use the pre-
trained SecBERT model for NER. A significant
difference from AP is that SecBERT jointly ex-
tracts IOB and domain labels. Moreover, as
SecBERT is significantly faster than AP, there is
no need to restrict the dataset. We split our data
into 60/20/20 for training, evaluation, and testing.
Relation Extraction: For relation extracting, we
use an ontology illustrated in Fig. 3, to guide their
creation: When two entities of type A and B are
detected in a CVE, a relation between the two is
created if the ontology has an edge between types
A and B.

Note that entities are connected to their corre-
sponding CVE-ID and CWE-ID, and we concate-
nate multi-word entities based on their IOB labels.

The vulnerability descriptions are generally
written so that vendors are followed by their prod-
ucts which are then followed by their versions.
Thus, we can derive relations between vendor,
product, and version by looking at the word or-
der. We also make relations from relevant terms to
the corresponding CVE ID entity, and through the
CVE-ID the relevant terms are connected to the
corresponding vendors, products, and versions.
Entity Prediction: To answer the RQ, our KG
should predict weakness types (CWEs) and prod-
ucts (CPEs). Given a head entity and a relation as
input, the task of entity prediction is to find the tail
entity, which is the final step of our KG. Hits@n
and mean reciprocal rank (MRR) are standard
metrics used for entity prediction. For each input
example, the embedding algorithm assigns a confi-
dence score to all possible triples. These triples are
then ranked by confidence scores, where the triple
with the highest confidence is the most plausible to
be true according to the model. The Hits@n met-
ric measures the number of times the true triple is
ranked among the top n triples. We use the pro-
cessed triples from the RE model as input to our
entity prediction model, where TuckER is the cho-
sen architecture. The triples from our RE model
are considered ground truth. TuckER removes the
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Figure 2: The figure illustrates the steps in our approach. We start by downloading our data from NVD,
pre-processing the data, and adding labels to the entities. With our labeled data, we perform NER and
RE to construct the KG. Because missing entities might occur in the KG, we predict these in the last
step.
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Figure 3: Ontology for relation extraction. The
edges should be interpreted as, for example, “a
vendor has a product”, “a product has a version”,
“a CVE vulnerability has a CWE type”

tail entities from the ground truth before predict-
ing these based on entity and relation embeddings.
We perform data augmentation by reversing all the
relational triples. The data set is split in 80/10/10
percent for training, validation, and testing. We
select the best model by refining the four combi-
nations proposed by Balažević et al. (2019) with
an additional grid search.

4 Results and discussion

Our empirical evaluation uses the CVE dataset dis-
cussed in Section 3. For replication, the parame-
ters of the best-performing models are in the ap-
pendices.
NER: NER results are presented in Table 1. We
see that SecBERT outperforms AP on all metrics.

We compare our reproduction results with the
results reported by Bridges et al. (2014) in Ta-

Table 1: NER evaluation results for the averaged
perception and the fine-tuned SecBERT model.

NER Model Precision Recall F1

Averaged perceptron 0.925 0.84 0.88
Fine-tuned SecBERT 0.93 0.93 0.93

Table 2: Our reproduction results compared to
those reported by Bridges et al. (2014)

Author Labeling Precision Recall F1

Høst et al. IOB 0.93 0.93 0.93
Domain 0.94 0.94 0.94

Bridges IOB 0.97 0.97 0.96
Domain 0.99 0.99 0.99

ble. 2. Where Table 1 shows the performance
with all labels in place, individual IOB and do-
main labeling performance are reported in Ta-
ble 2. The AP model was based on Bridges et al.
(2014), which implemented their experiments in
OpenNLP and Python. We reused their Python
code for our reproduction. Note that the results
on our data are below the reports by Bridges
et al.. The authors indicated that they experi-
enced slightly better performance using OpenNLP,
which could be the reason for the difference in
score. Unfortunately, they do not provide any ex-
planation of this difference or why it occurs. Con-
trary to Bridges et al. (2014), we are not interested
in the performance of IOB and domain labeling
measured individually. In our approach, the NER
model should be used to extract entities from new
data that can form triples in our KG. When a new
CVE is published, we can access the textual de-
scription without any labels. Using Bridges’ ap-
proach, we first need to use the IOB model, and
then the predicted IOB labels can be used as input
features to the domain model responsible for the
final prediction.

To the best of our knowledge, we can not analyt-
ically combine the IOB model and domain model
results reported by Bridges et al.. As such, we rely
on our own experimental results, which show that
the performance of the fine-tuned SecBERT model
outperforms the AP model.
Relation Extraction: We did not have any
ground truth data when evaluating our RE ap-
proach, as a consequence, we manually validated
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Table 3: Performance metrics for our entity pre-
diction model compared to Rastogi et al. (2023).

Model Hits@10 Hits@3 Hits@1 MRR

Høst et al. 0.760 0.728 0.682 0.710
Rastogi 0.804 0.759 0.739 0.75

a sample of 100 extracted triples. From this sam-
ple, we measured a precision score of 0.77. While
Jones et al. (2015) has proposed a semi-supervised
approach for labeling relations, they focus on a
broader data set than we do. We, therefore, choose
to identify relations based on our proposed ontol-
ogy in Fig. 3. Our RE approach could not reach
the level of Jones et al. (2015), which reported
0.82 in precision score. For future work, one idea
to improve RE is to utilize CPE vectors for re-
lation labeling in addition to our proposed rules.
Then we can train machine learning models on top
of our labeled data using pre-trained variations of
BERT models.
Entity Prediction: During the relation extraction,
we extracted approximately two million triples.
As we further reversed all triples, four million
triples were used as input to the model.

In Table. 3, we compare our best-performing
model with the results presented in Rastogi et al.
(2023), which uses the same model architecture,
TuckER, on threat reports. The input data are as-
sumed to be true, and evaluation performance is
not manually validated.

We choose TuckER as our embedding algo-
rithm for entity prediction as it is the current state-
of-the-art model measured on standard data sets
(Balažević et al., 2019). The idea is that TuckER
captures latent structures of our KG. TuckER en-
codes the input triples as vector embeddings based
on encoded characteristics and can use these em-
beddings to predict missing entities. For ex-
ample, if two CVEs share important characteris-
tics such as vulnerability-relevant terms and af-
fected products, then according to the theory, they
should belong to the same neighborhood in a vec-
tor space. Consequently, TuckER could predict
that the CVEs belong to the same CWE.
Hits@n and mean reciprocal rank (MRR) are

standard metrics used for entity prediction. Given
a head entity and a relation, the task is to predict
the tail entity. For each example, the embedding
algorithm assigns a confidence score to all possi-
ble triples. These triples are then ranked by con-

fidence scores, where the triple with the highest
confidence is the most plausible to be true accord-
ing to the model. The Hits@n metric measures
the number of times the true triple is ranked among
the top n triples.

As a benchmark to measure our performance,
we use the results presented in Rastogi et al.
(2023), which also uses TuckER for entity predic-
tion. Rastogi et al. (2023) has reported a Hits@10
metric of 0.804, which is better than our reported
results seen in Table 3. We believe that more pre-
cise and consistent input labels can be the reason
for this, where a limitation of our approach is that
we aim at predicting CVE-IDs which are unique
for each vulnerability description. We consider
the task of predicting CVE-IDs as less important
for our model as these will always be attached to
the CVE description from our raw data. Balažević
et al. (2019) addresses that future work might in-
corporate background knowledge on relationship
types. Avoiding predicting CVE-IDs is one exam-
ple of such background knowledge.

Another reason for the difference could be that
some CWEs overlap and share many of the same
entities making it more difficult for our model to
discriminate between CWEs.

5 Conclusion

This paper proposes a vulnerability knowledge
graph constructed from textual CVE records from
the National Vulnerability Database (NVD). The
graph construction relies on a pipeline including
NER, relation extraction, and an entity prediction
model based on the TuckER framework.

As future improvements, we are interested in
better labeling of relations through distant supervi-
sion approaches and the integration of BERT mod-
els for relation extraction.
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Appendices

A SecBERT NER Tuning

We first perform a grid search (four epochs) over
the 20 parameter combinations recommended by
the BERT authors.5 The grid consisted of batch
sizes: {8, 16, 32, 64, 128}, and learning rates:
{3e-4, 1e-4, 5e-5, 3e-5}. The most promising can-
didates were then trained for ten epochs.

5 https://github.com/google-research/bert

B Entity Prediction Tuning

For tuning hyperparameters, we follow two strate-
gies: First, we train the same four combinations
as was done by (Balažević et al., 2019). These
four models were run for 100 epochs and based
on the intermediate results, the most promising
model was run for additional 200 epochs such
that this model was trained for 300 epochs in
total. We select the best-performing model and
based on its characteristics set up an additional
grid search covering 36 hyperparameter combina-
tions on smaller subsets of the data. To avoid over-
fitting, two models were trained and evaluated for
each of the hyperparameter combinations on dif-
ferent subsets. Our grid consisted of values of hid-
den dropouts: {0, 0.1, 0.2}, learning rates: {0.001,
0.01, 0.1} and dimensions: {10, 30, 200}. The pa-
rameters from the most promising candidate were
used for training another model for 300 epochs on
the full dataset.

C Best Model for NER

The best SecBERT model for NER was trained
with a learning rate of 5e-5 and a batch size of 8.

D Best Model for Entity Prediction

The following are the hyperparameters of the best-
performing TuckER model:

Model TuckER

num iterations 300
edim 200
rdim 30
lr 0.001
input dropout 0.2
hidden dropout1 0.1
hidden dropout2 0
batch size 128
label smoothing 0.1
dr 1
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