




Langs Train-sources Type Train-size Architecture Params %Unk. Subw. Reference
ratio

LLM

DANISH-BERT-botxo DA web, wiki, subtitles
-D+L

10gb Bert-base 111M 0.15 1.28 github.com/certainlyio/nordicbert
RØBÆRTA-base-danish DA web ? Roberta-base 125M 0.00 1.58 hf.co/DDSC/roberta-base-danish
ÆLÆCTRA-danish-small-cased DA legal, social, web, wiki, news 1,045M words Electra-small 14M 0.04 1.39 github.com/MalteHB/-l-ctra

BERTWEET-Base EN social

+D-L

850M tweets Roberta-base 135M 0.10 1.65 Nguyen et al. (2020)
BERTWEET-Large EN social 850M tweets Roberta-large 355M 0.00 1.90 Nguyen et al. (2020)
TWITTER-ROBerta-base EN social 58M tweets Roberta-base 125M 0.00 1.90 Barbieri et al. (2020)

TWITTER-XLM -roberta-base 30+ social
+D-L

198M tweets XLM-r base 278M 0.01 1.45 Barbieri et al. (2022)
BERNICE 66 social 2.5B tweets Roberta-base 278M 0.00 1.44 DeLucia et al. (2022)
TWHIN-bert-large 100+ social 7.5B tweets new 561M 0.01 1.45 Zhang et al. (2022)

TREEBANK

LINES EN �ction, non�ction, spoken -D-L 57,372 words Ahrenberg (2015)
TWEEBANK2 EN social +D-L 24,753 words Liu et al. (2018)
DDT DA �ction, non�ction, spoken, news -D+L 80,378 words Johannsen et al. (2015)

Table 1: An overview of the used language models and POS �ne-tuning sets. %Unk. is the percentage of
unknown subwords in our development data; Subw. ratio is the average amount of subwords per word.
Capitalized name parts are handles.

COMMENTS TOKENS TYPES TTR

Dev 429 4,000 1,520 0.38
Test 430 4,028 1,519 0.38

Total 859 8,028 2,512 0.31

Table 2: DanTok dataset statistics.TTR is type-
token ratio.

Sanguinetti et al. (2020). We used the Danish dic-
tionary3 for cross-referencing, as many originally
English words are now considered Danish.

Certainty Following Bassignana and Plank
(2022), the annotator's certainty of a POS tag was
annotated as either 0 (certain) or 1 (uncertain).

2.3 DanTok Statistics

Our �nal dataset consists of 8,028 tokens and
2,512 unique types (Table 2). A comparative POS
tag distribution is given in Appendix C. In Dan-
Tok, we observe that 16.66% of the tokens re-
quired normalization, 5.03% were code-switched
(all to English), and 5.12% had annotation uncer-
tainty. Overall, these annotation layers allow us to
investigate how Danish is used on contemporary
internet platforms with respect to syntax, and how
sociolinguistic factors such as code-switching can
impact downstream performance.

3 Experiments

3.1 Setup

For a highly specialized dataset such as DanTok,
transfer learning is key, as there is no training data

3https://dsn.dk/ordboeger/
retskrivningsordbogen/

matching the domain and language. We therefore
investigated 36 combinations of in/out-of-domain
(+D/-D)4 and in/out-of-language (+L/-L)5 training
data and large language models (LLMs). We se-
lected English as the -L transfer language due to
dataset and language model availability. All ex-
periments were replicated on the normalized ver-
sion of DanTok. The Danish LLMs are trained on
web data, including some forum data, but none
are explicitly optimized for social media. The
LLMs and training sets used in our experiments
are given in Table 1. All the models consist of an
LLM encoder plus a linear layer for POS label-
ing (both fully �netuned) and are implemented in
MaChAmp v0.4 (van der Goot et al., 2021b) us-
ing default hyperparameters with the development
data for model selection. To avoid over�tting on
DanTok, we use the transfer data's development
set for model selection (Artetxe et al., 2020).

3.2 Results

Our main results are given in Table 3. Unsurpris-
ingly, the combination of in-domain, in-language
(+D+L) training data and LLMs results in the
best overall performance. In general, having in-
language data is more bene�cial than in-domain
data; however, when training on a single dataset,
the in-domain English dataset (+D-L) leads to sur-
prisingly high performance with the multilingual
language models, even outperforming all scores
obtained with the Danish training data (-D+L).
One reason for this could be the relatively high
frequency of code-switched tokens (5%). Inter-

4+D: social media data, -D: data from other domains.
5+L: trained on Danish, -L: trained on other languages.

273

https://github.com/certainlyio/nordic_bert
https://hf.co/DDSC/roberta-base-danish
https://github.com/MalteHB/-l-ctra
https://dsn.dk/ordboeger/retskrivningsordbogen/
https://dsn.dk/ordboeger/retskrivningsordbogen/


M ODEL

DATA -D-L +D-L -D+L +D-L + -D+L
L INES TWB DDT TWB+DDT

-D
+

L DANISH-BERT 44.02 49.60 77.98 84.08
RØBÆRTA 58.43 60.82 70.17 78.72

ÆLÆCTRA 49.50 63.30 74.20 84.95

+
D

-L

BERTWEET-B 27.80 38.00 67.90 79.47
BERTWEET-L 25.92 36.55 67.40 81.50

TWITTER-ROB 25.02 37.30 64.05 79.40

+
D

+
L TWITTER-XLM 67.58 77.15 72.15 83.28

BERNICE 70.45 78.22 72.95 83.28
TWHIN 69.30 81.38 72.65 85.92

Table 3: POS tagging accuracy on the DanTok
development set using combinations of in/out-of-
domain (+D/-D) and in/out-of-language (+L/-L)
models and training data, plus a concatenation
covering +D and +L.

M ODEL

DATA -D-L +D-L -D+L +D-L + -D+L
L INES TWB DDT TWB+DDT

-D
+

L DANISH-BERT 42.69 48.12 80.19 85.75
RØBÆRTA 60.79 63.48 73.80 82.36

ÆLÆCTRA 50.87 61.69 78.48 88.45

+
D

-L

BERTWEET-B 28.24 38.48 70.88 82.83
BERTWEET-L 27.46 37.48 70.98 85.35

TWITTER-ROB 25.75 38.13 68.76 84.19

+
D

+
L TWITTER-XLM 69.85 80.12 75.16 86.26

BERNICE 72.01 80.27 75.61 85.15
TWHIN 70.95 83.09 75.33 88.80

Table 4: POS tagging accuracy on the normalized
DanTok development set using combinations of
in/out-of-domain (+D/-D) and in/out-of-language
(+L/-L) models and training data.

estingly, model size (see Table 1) is not a good
predictor of performance: Although the largest
model,TWHIN, obtains the highest score overall,
it requires large amounts of pre-training data and
a specialized pre-training objective based on rich
social engagements (Zhang et al., 2022). Mean-
while, ÆLÆCTRA's performance is very close, de-
spite being 41 times smaller. Given these results,
we conclude that the best strategy for obtaining
a high-quality tagger would be to use domain-
speci�c models when available (even if multilin-
gual) and use in-domain �ne-tuning data even if in
another language (+ in-language if available).

Table 4 shows that using normalized data gives
a consistent boost of 2–5 % points across all se-
tups, with only a few exceptions. Furthermore,
performance varies less compared to the non-
normalized data (Table 3).

LLM - NORM +NORM

TWHIN 86.05 88.18
ÆLÆCTRA 85.80 88.55

Table 5: Results on the DanTok test set of our two
best models trained on TWEEBANK and DDT.

On Test Data TWHIN performs similarly on the
development and test data. After normalization,
the smaller ÆLÆCTRA model outperformsTWHIN

slightly (Table 5).

4 Analysis

4.1 Subword Analysis

The Subword ratio (Table 1) does not show a
clear correlation with performance, so we quali-
tatively evaluate the subword segmentation of the
two best-performing models,TWHIN and ÆLÆC-
TRA. Surprisingly, we �nd that the multilin-
gual model (TWHIN) seems more capable of inter-
preting in�ection suf�xes than the Danish model.
It correctly splits morphemes indicating de�nite-
ness, plurality, or adverbial status, which the Dan-
ish model sometimes fails to do. Examples of
this arebatterier (“batteries”) split intobatteri-
er (“batteri-es”) andd	arligt (“badly”) split into
d	arlig-t (“bad-ly”) only by the multilingual model,
whereas the Danish model does not split these to-
kens at all.

4.2 Strati�ed Analysis

We explore the accuracy on different subsets of the
development set according to our additional anno-
tation layers (Table 6). We observe that the mod-
els, perhaps unsurprisingly, struggle more with
tokens that were normalized, as well as tokens
that annotators were also uncertain of. For code-
switched tokens, we observe a large performance
drop for the in-language LLM (ÆLÆCTRA) de-
spite �ne-tuning on English in-domain data. Sur-
prisingly, the multilingual model, likewise �ne-
tuned on Danish and English in-domain data, also
struggles with code-switched tokens.

4.3 Qualitative Error Analysis

The most frequent tag confusions for the best
ÆLÆCTRA model are given in Figure 2.TWHIN

follows a similar pattern. Over half of the er-
rors made by each tagger on the original data are
shared with the other tagger. Some of the errors
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LLM POS CERTAINTY NORMALIZED IN FINE-TUNE VOCAB CODE-SWITCHED
n - + n - + n - + n - +

TWHIN 203 62.1 87.2 3,338 88.9 70.8 1,234 83.3 87.1 3,808 86.3 78.1
ÆLÆCTRA 58.6 86.4 88.6 66.8 83.1 85.8 86.1 62.5

Table 6: Strati�ed accuracy on the 4,000-token dev set of the two best models trained on TWEEBANK

and DDT.n is the number of tokens in the - category, e.g., 1,234 words were not seen during �ne-tuning.

0 5 10 15 20 25 30
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PRON-DET
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original n=602
normalized n=459

Figure 2: The 11 most frequent tag confusions for
the ÆLÆCTRA model.

are caused by erroneous annotations in DanTok.
The most frequent error types can be categorized
as follows:

VERB vs. AUX In DanTok, the present tense of
the copula verbvære(“to be”) has been labeled
VERBwhen it is the only verb in the sentence.
However, the models prefer the tagAUXin 91.6%
and 85.0% of cases, respectively. This seems to
be in line with the UPOS guidelines and is likely
a result of the annotation ofer in theDDT training
set; here, 78.85% ofer tokens have been tagged as
AUX(the remaining being tagged asVERB).

Pronoun Confusions Tokens that may be multi-
ple parts of speech confuse the taggers. The most
frequent issue isPRONandDETconfusion, which
is arguably non-trivial in Danish6. PRONandADV
confusion is also prevalent; e.g., the tokender can
be either a relativePRON, the preliminary subject
“there”, or anADVof place. In the erroneous pre-
dictions,der is generally tagged asADV.

Proper Noun Inconsistencies Orthographic
variations in social media language throw off the
models. For example, names written in lowercase
are often tagged asNOUNrather thanPROPN.
On the normalized data,PROPN(gold) ! NOUN
errors decreased by 75% for ÆLÆCTRA and 62%

6Consider, e.g.,den/PRON bog/NOUN vs. den/DET
gamle/ADJ bog/NOUN(“ that book” vs. “the old book”).

for TWHIN. Likewise, when capitalized names
are used in context, the models labeled them as
PROPN, whereas we annotated the syntactical use
of the token, e.g.,�lming a TikTok/NOUN.

ADV vs. ADP These are errors made on tokens
like af (“of, off”) and for (“for, too”) which may
function as both prepositions and adverbs7. In a
few cases, the models do not recognize whenfor
is used as an adverb of degree.

ADJ vs. ADV For adjectives that end in-t, the
models seem to prefer theADVtag. While-t can
indicate an adverb, it may also indicate the gender
of an adjective. The tokenher (“here”), an ad-
verb, also poses a challenge when it occurs before
a noun, e.g.den her bog(“this book”). In such
cases, the models seem to prefer the erroneous tag
sequenceden/DET her/ADJ bog/NOUN.

Interjection Confusions Tokens that are meant
to imitate pronunciation have been labeled as
INTJ in DanTok, but the models seem to pre-
fer a more concrete labeling8. The models also
preferINTJ for tokens with character repetition,
whereas we tagged these tokens according to their
presumed intended function.

5 Conclusion

We presented DanTok, the �rst linguistically an-
notated TikTok dataset and the �rst Danish social
media dataset with POS annotation. We conducted
an extensive analysis of how to best transfer to a
highly specialized domain in a mid-resource lan-
guage, and we demonstrated that LLMs bene�t
from common approaches such as normalization,
while struggling with the same cases as the human
annotators. Simultaneously, our results show that
although in-language data and models form the
basis for high performance, in-domain data, even
from another language, should not be neglected in
order to achieve state-of-the-art results.

7For may also be used as a conjunction.
8E.g., “It's nuclear, notnucular,” should be tagged as if it

saidnucleartwice.
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Appendix

A Data Statement

The following dataset characteristics are outlined
following Bender and Friedman (2018):

A. CURATION RATIONALE This dataset
aims to provide high-quality, linguistically
annotated data from contemporary Danish
social media, in order to allow for analyses
of how language use is evolving in these spe-
cialized domains, and how NLP methods can
best be adapted to these changes.

B. LANGUAGE VARIETY The data con-
sists of comments from TikTok videos col-
lected in January 2023. The language cov-
ered is manually veri�ed Danish (da-DK)
with code-switching to English (en), and or-
thographic variations speci�c to the social
media domain.

C. SPEAKER DEMOGRAPHIC Nothing
speci�c is known about speaker demograph-
ics, as the data was scraped from 75 videos
spanning different topics.

D. ANNOTATOR DEMOGRAPHIC Three
Master's students, all native Danish speakers,
one with previous experience in dataset cre-
ation for POS tagging. The annotators were
paid for their efforts.

E. SPEECH SITUATION Comments un-
der TikTok videos represent informal, writ-
ten language produced largely spontaneously
with the intent to address the video creator or
express an opinion to other viewers.

F. TEXT CHARACTERISTICS The text
contains domain-speci�c terms and abbrevi-
ations, some degree of typographical and or-
thographic errors as well as occasional el-
lipsis of sentence subject. Code-switching
to English makes up 5% of tokens in the
full dataset (development + test), though the
dataset contains several additional tokens that
exist with the same meaning in both English
and Danish, e.g.,shit andlike.

G. RECORDING QUALITY N/A

H. OTHER N/A

I. PROVENANCE APPENDIX N/A

B Data Collection Details

B.1 Hashtags

Videos from the following 15 hashtags were
scraped during data collection:

• #børn (“children”)

• #danskememes (“Danish memes”)

• #danskhumor (“Danish humor”)

• #glædeligjul (“merry Christmas”)

• #godtnyt	ar (“happy new year”)

• #gørdetselv (“do it yourself”)

• #landsholdet (“the national team”)

• #madlavning (“cooking”)

• #mitarbejde (“my job”)

• #morgenrutine (“morning routine”)

• #parforhold (“relationships”)

• #selvtak (“you're welcome”)

• #sommerprojekt (“summer project”)

• #tobiasrahim (“Tobias Rahim”)

• #træning (“workout”)

B.2 Deduplication Details

Figure 3 plots the number of tokens and their
token-type ratios (TTR) after applying merge
deduplication (Section 2.1) with thresholdt.
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Figure 3: Deduplication using varying merge
thresholds. A lowt merges all comments into one,
a hight contains more tokens and less token-type
diversity.

C POS Tag Distribution

Figure 4 presents an overview of the POS tag
distribution in DanTok compared to the English
L INES, TWEEBANK2 and DDT.
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Figure 4: POS tag distribution in DanTok compared to the treebanks used for �ne-tuning in Section 3.
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