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Abstract

This work studies the plausibility of
sequence-to-sequence neural networks as
models of morphological acquisition by
humans. We replicate the findings of
Kirov and Cotterell (2018) on the well-
known challenge of the English past tense
and examine their generalizability to two
related but morphologically richer lan-
guages, namely Dutch and German. Using
a new dataset of English/Dutch/German
(ir)regular verb forms, we show that the
major findings of Kirov and Cotterell
(2018) hold for all three languages, includ-
ing the observation of over-regularization
errors and micro U-shape learning trajec-
tories. At the same time, we observe trou-
blesome cases of non human-like errors
similar to those reported by recent follow-
up studies with different languages or neu-
ral architectures. Finally, we study the
possibility of switching to orthographic in-
put in the absence of pronunciation in-
formation and show this can have a non-
negligible impact on the simulation re-
sults, with possibly misleading findings.

1 Introduction

The plausibility of neural network-based or con-
nectionist models in simulating psycholinguistic
behaviours has been attracting considerable at-
tention since Rumelhart and McClelland (1986)
first modeled the past-tense acquisition with an
early example of sequence-to-sequence network.
Their experiment received harsh criticism (e.g.,
Pinker and Prince, 1988) but also inspired cog-
nitive scientists with alternatives (e.g., Kirov and
Cotterell, 2018; Plunkett and Juola, 1999; Taat-
gen and Anderson, 2002). Much more recently,
Kirov and Cotterell (2018) replicated Rumelhart

and McClelland (1986)’s simulations using a mod-
ern encoder-decoder neural architecture developed
for the task of morphological paradigm comple-
tion. Their improved results resolved much of the
original criticisms by Pinker and Prince (1988).

The main purpose of this paper is to study the
generalizability of Kirov and Cotterell (2018)’s
findings beyond the case of English. Specifically,
we consider two languages that are genetically
related to English, but morphologically richer –
namely, Dutch and German. In these languages
too, past tense inflection is divided into regular and
irregular verbs, but with different proportions and
different inflectional patterns than English. More-
over, German and Dutch are characterized by a
much more transparent orthography than English
(Van den Bosch et al., 1994; Marjou, 2021), which
allows us to study the usability of grapheme-based
input for simulating past tense acquisition patterns
when pronunciation information may not avail-
able. Concretely, we aim to answer the following
research questions:

1. Can the model applied by Kirov and Cot-
terell (2018) to English also simulate the past
tense acquisition process in languages with
more complex morphological inflection, such
as Dutch and German?

2. Given the more predictable grapheme-to-
phoneme correspondence, i.e., orthographic
transparency (Marjou, 2021), in these two
languages, will the model perform similarly
if the written forms of verbs are used for
training instead of the phonetic ones?

To answer these two questions, we build and
release a new past-tense inflection dataset of
English, Dutch, and German, covering both
grapheme and phoneme features (Section 3).1 We

1All code and data are available at https://github.
com/JingyanChen22/IK-NLP-Project-4.git

92

https://github.com/JingyanChen22/IK-NLP-Project-4.git
https://github.com/JingyanChen22/IK-NLP-Project-4.git


then replicate the single-task learning experiments
of Kirov and Cotterell (2018) (Section 4) and ex-
tend them to our multilingual dataset, using both
phoneme- and grapheme-based input for compari-
son (Section 5).

Our findings reconfirm the potential and limita-
tions of using neural networks for the simulation
of human language learning patterns. Our model
shows human-like behavior in learning past tenses
of verbs, such as the micro U-shape coined by
Plunkett et al. (1991) and over-regularization er-
rors in all the examined languages; however non
human-like errors are also reported. We also find
that learning irregular past tense forms is consider-
ably easier in Dutch and German than in English.
Finally, we observe that higher orthographic trans-
parency indeed leads to more consistent learning
results when a model is trained with grapheme vs.
phoneme input.

2 Background

Past tense debate The acquisition of ver-
bal past tense in English, particularly the over-
regularization of the irregular verbs in the process
of learning (Marcus et al., 1992), has been serv-
ing as a testing ground for different hypotheses in
language modelling for decades. A much debated
question is whether the past tense of (ir)regular
verbs is learnt by rules and memories (e.g., Plaut
and Gonnerman, 2000; Seidenberg and Gonner-
man, 2000; Marcus et al., 1995; Albright and
Hayes, 2003; Pinker and Ullman, 2002), by anal-
ogy (e.g., Ramscar, 2002; Albright and Hayes,
2003) or by a dual mechanism (Pinker and Prince,
1988; Taatgen and Anderson, 2002).

Marcus et al. (1995) posited the necessity of
mental rules in learning German irregular verbs.
By contrast, Ernestus and Baayen’s (2004) and
Hahn and Nakisa’s (2000) studies on Dutch and
German respectively provided evidence in favour
of connectionist and analogical approaches: they
showed that humans tend to choose wrong past
tense suffixes for regular verbs whose phonolog-
ical structure is similar to that of irregular ones.

Recent connectionist revival The recent devel-
opment of deep learning methods in computa-
tional linguistics has led to a renewed interest in
connectionist approaches to modelling language
acquisition and processing by humans (e.g., Bly-
thing et al., 2018; Kádár et al., 2017; Pater, 2019;
Corkery et al., 2019; McCurdy et al., 2020). Last

year, modelling morphological acquisition trajec-
tories was adopted as one of the shared tasks
of SIGMORPHON-UniMorph (Kodner and Khal-
ifa, 2022). The three submitted neural systems
(Pimentel et al., 2021; Kakolu Ramarao et al.,
2022; Elsner and Court, 2022) exhibited over-
regularization and developmental regression, but
non-human-like behaviours were also observed.

Some recent studies have revealed a poor
alignment between the way humans and neural
encoder-decoder models generalize to new words
(wug test) in the case of English verb past tense
(Corkery et al., 2019) and German plural nouns
(McCurdy et al., 2020). Dankers et al. (2021)
observed cognitively plausible representations in
a recurrent neural network (RNN) trained to in-
flect German plural nouns but also found evidence
of problematic ‘shortcut’ learning. Wiemerslage
et al. (2022) observed that Transformers resemble
humans in learning the morphological inflection of
English and German in the wug tests but they also
pointed out the divergence of the model in Ger-
man production. However, computational simula-
tions have succeeded in replicating the U-shaped
learning curve during the acquisition of past tense
(Kirov and Cotterell, 2018; Plunkett and March-
man, 2020). Additionally, further probing experi-
ments have suggested that neural models do learn
linguistic representations (Goodwin et al., 2020;
Hupkes et al., 2018; Ravichander et al., 2020).
Our research continues on exploring the cognitive
plausibility of neural networks in modeling lan-
guage inflection learning.

Recurrent encoder-decoder inflection model
In this work, we adopt the model of Kirov and
Cotterell (2018), henceforth referred to as K&C.
This model is based on the encoder-decoder archi-
tecture proposed by Bahdanau et al. (2014), with
input representation and hyper-parameters taken
from Kann and Schütze (2016). The architec-
ture consists of a bidirectional LSTM (BiLSTM)
encoder augmented with an attention mechanism
and a unidirectional LSTM decoder. The task of
the encoder is to map each phonetic (or ortho-
graphic) symbol from the input string to a unique
embedding and then process that embedding to get
a context-sensitive representation of that symbol.
The decoder reads the context vector from the fi-
nal cell of the encoder and generates an output
of phoneme/grapheme sequences through training
a BiLSTM model with two hidden layers. For
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more details on the model, see Bahdanau et al.
(2014); Kann and Schütze (2016); Kirov and Cot-
terell (2018).

3 Datasets

To replicate the results published by K&C, we em-
ploy their dataset based on CELEX (Baayen et al.,
1993).2 To extend the experiments to Dutch and
German and compare the results to English, we
build a new dataset containing past tense forms in
all three languages.

3.1 K&C English Dataset
K&C’s CELEX-based dataset contains 4,039 En-
glish verb types including 3,871 regular verbs and
168 irregular verbs. Each verb is associated with
an infinitive form and past tense form, both in
International Phonetic Alphabet (IPA). Moreover,
each verb is marked as regular or irregular (Al-
bright and Hayes, 2003).

Note that there are label errors in their dataset.
For example, dive-dived, dream-dreamed,
light-lighted are marked as irregular. This
is possibly because those verbs have two past tense
forms and the other form does not follow the regu-
lar inflection (dive-dove, dream-dreamt,
light-light). However, as the past tense of
those verbs in the original dataset aligns with the
regular inflection rule of English, we take those
verbs as regular ones and manually correct their
labels.

3.2 Multilingual Unimorph-based Dataset
We use the morphological annotation dataset Uni-
morph (McCarthy et al., 2020) as a source of En-
glish, Dutch, and German word forms to enable a
fair comparison in our multilingual experiments.
In this lexicon, each entry consists of the infinitive
of the verb, the conjugation, and the tag contain-
ing the Part-Of-Speech and inflectional informa-
tion. Our use of the Unimorph dataset allowed for
a wider range of past tense inflection cases com-
pared to the CELEX-based dataset. Unlike the lat-
ter, we included more present-past pairs instead
of exclusively using infinitive-past pairs. An im-
portant adjustment has to be made here because
English has only two forms for the present tense
(I/you/we/they) and only one for the past. By con-
trast, Dutch and German distinguish more persons

2Dataset, code and other experimental details are
taken from https://github.com/ckirov/
RevisitPinkerAndPrince

(a) English

(b) Dutch

(c) German

Figure 1: Excerpt of the newly introduced dataset
of English, Dutch and German past tense. Dutch
verbs: slapen (to sleep); behoeven (to need).
German: berechnen (to calculate); fliehen
(to fleed).

in both present and past tense. To address this, we
include for each lemma the first/second/third sin-
gular present form and plural form together with
their respective past form, each as a separate entry
(see examples in Figure 1).

Specifically, we start by extracting from Uni-
morph a list of verb lemmas and their correspond-
ing present and past tense forms. A different ex-
traction script is used in each language because of
the different number of forms and slightly differ-
ent POS tags:

• English only has two present tense forms:
one for the third person singular and one for
the rest. Mostly, there is only one past tense.

• Most verbs in Dutch have three present tense
forms and two past tense forms.

• Most verbs in German have five present tense
forms and four past tense forms.

Next, we tag each form as regular or irregular,
based on a simple rule-based strategy:

• English: if the past tense ends with ‘ed’ then
it is considered a regular verb.

• Dutch: if the singular past tense ends with
‘-de’ or ‘-te’, it is considered regular.
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Number of verbs
Language Type train dev test Total verbs

Count (%) Count (%) Count (%) Count (%)

English
all 4,879 79.9 611 10.0 614 10.1 6,104 100.0

regular 4,601 75.4 529 8.7 520 8.5 5,650 92.6
irregular 278 4.6 82 1.3 94 1.5 454 7.4

Dutch
all 4,896 80.1 612 10.0 607 9.9 6,115 100.0

regular 4,383 71.7 550 9.0 542 8.9 5,475 89.6
irregular 513 8.4 62 1.0 65 1.0 640 10.4

German
all 4,865 79.7 616 10.1 620 10.2 6,101 100.0

regular 4,299 70.5 535 8.8 578 9.5 5,412 88.8
irregular 566 9.2 81 1.3 42 0.7 689 11.2

Table 1: Dataset distributed into train, dev and test sets in each of the three languages. The number of
regular and irregular verbs is also reported. The percentage is calculated over the total number of verbs
per language.

• German: if the singular past tense of the first
or third person ends with ‘-te’, it is consid-
ered regular.

Finally, the IPA transcriptions of all word forms
are retrieved from CELEX for all languages and
added to the final dataset. As shown in Fig-
ure 1, the resulting dataset is in the same format
as K&C’s CELEX-based dataset.

Data selection The generated Dutch data only
contains 6106 verb forms versus 11489 and 6975
in English and German respectively. Therefore,
to enable a fair comparison among languages, we
need to downsample the larger datasets. However,
randomly choosing 6K verb forms from the En-
glish and German lists may lead to a poor selec-
tion given the long tail of infrequent words. As
a solution, we use word form frequencies as pro-
vided in the CELEX data and choose all words
with a frequency of more than 1 in a million, and
complement with a random selection of less fre-
quent words in order to get approximately 6106
verb forms.

To make sure the model can generalize to un-
seen verbs, we follow Goldman et al. (2022) and
split the data by lemma into a train set (80%), a
development (dev) set (10%) and a test set (10%).
Therefore, the verb forms from the same lemma
can only appear in one of the splits. The data dis-
tribution into three sets and regular/irregular verbs
for each language is reported in Table 1.

3.3 Remarkable problems
A few problems occurred during data prepara-
tion. First, rule-based tagging of lemma’s is not

as trivial as it seems at first sights. For example,
in English, not all past tenses ending with ‘-ed’
are regular. Using the data of K&C, we added a
few exceptions that are all irregular words ending
with ‘-ed’: bled, bred, led, misled, fled,
and forms of fed (including breast-fed,
force-fed and bottle-fed).

Also, in the original K&C experiment, the
model should be able to predict past tense based
on what it learned from other verbs, not from other
word forms. In morphologically richer languages,
a lemma has more word forms and data splitting
becomes problematic. For instance, a model might
have learned that work → worked and walks
→ walked, then it might predict that works →
worked. In such a case, it is not possible to
know whether the model made the right prediction
based on similarities to other lemmas (walks) or
to other forms of the same verb (work). To be
as comparable as possible to the original setup of
K&C, we put all forms of the same verb in the
same data split (that is, either training, dev or test).
As a result, if the model scores well, we know for
sure that it cannot make predictions based on other
forms of the same verb.

Another issue is that one present tense form nor-
mally corresponds to one past tense form. How-
ever, German poses two notable exceptions to this:

• The second person singular verb form ends
with ‘-st’ and the third person singular ends
with ‘-t’. Those forms coincide if a verb al-
ready ends with an ‘s’, but there is still a dif-
ference between those forms in the past tense.
For example, bremst is the present conju-
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gation form of verb bremsen (to brake) for
pronoun du you, er he and even ihr you.

• Verbs ending in ‘-t’ can be the third person
singular or the second person plural informal.
For example, wundert is the present conju-
gation of the verb wundern (to wonder) for
the pronoun ihr you and er he.

In the former case, the model should be able to
output multiple solutions, since only context can
make clear whether it is the second person or the
third person. However, this complicates the eval-
uation. As a solution, we exclude the third person
form if it collides with the second person. As for
the latter issue, we choose to remove all second
person plural informal forms, since those are far
less frequent than the third person singular forms.

4 Replication of K&C

Before moving to the main multilingual experi-
ments, we replicate the original K&C experiments
(single-task only).

4.1 Experimental Setup
For the replication, we employ K&C’s CELEX-
based dataset and keep the model architecture
and hyper-parameters unchanged using Open-
NMT (Klein et al., 2017)3. Also, as reported by
K&C, we train the neural model for 100 epochs
to make sure the examples in the training data are
properly learned. See more details in Appendix A.
Following K&C, the model is trained on the IPA
transcription.

We use word form-level accuracy to evaluate
model performance. An important remark con-
cerns data splitting: K&C did not release their spe-
cific data split, which makes it impossible to repli-
cate the exact same results. We, therefore, cre-
ate our own splits following K&C’s proportions
(80/10/10% for training/dev/test). To obtain more
reliable results, we train the model three times us-
ing different random seeds for different initializa-
tion and report the averaged resulting accuracies.

To study the micro U-shape learning curve of ir-
regular verbs, we save the model at each 10 epochs
and use those partially-trained models to predict
the test set and compare their prediction results.

3However, as the epoch has been deprecated in the latest
version of OpenNMT, we converted it to train steps based on
its relationship with steps.

4.2 Results
As shown in Table 2, the results on the training
set are almost the same as reported in the original
paper, which means our replication is largely suc-
cessful.4 We note that the accuracy for irregular
verbs in the dev and test set is considerably dif-
ferent from that of K&C (dev: 21.1% vs. 53.3%;
test: 35.3% vs. 28.6%). Since K&C did not re-
lease their specific data split, replicating their ex-
act results on the small portion of irregular verbs
is not possible. Given that our results are averaged
over three random seeds and on all three split sets,
we consider them more reliable, which means the
model might perform worse at learning the past
tense of irregular verbs than K&C’s report.

all regular irregular

train dev test train dev test train dev test

K&C 99.8 97.4 95.1 99.9 99.2 98.9 97.6 53.3 28.6

Ours 99.9 95.3 96.5 99.9 98.4 99.2 98.4 21.1 35.3

Table 2: Mean accuracy of our replication of K&C
with three random seeds based on English data
from CELEX-based dataset.

4.3 Discussion
The reason we assume for the gap between our
results and K&C’s is twofold: (i) the number
of irregular verbs is much lower than regular
ones, which makes the accuracy change dramat-
ically even if only few more or few less verbs
are predicted correctly than the original experi-
ments; (ii) we corrected the label errors mentioned
above, thus the number of irregular verbs becom-
ing smaller than before. This small difference
could cause a large impact on the accuracy calcu-
lation given that these two sets only contain about
20 irregular verbs. To test this hypothesis, we con-
duct 9-fold cross-validation5 and find that the ac-
curacy for irregular verbs varied in different dev
splits, ranging widely between 9% and 42%.

4Our results are also very close to those of Corkery et al.
(2019), who did a similar replication and reported the aver-
aged accuracy over ten runs initialized with different random
seeds, but only on the training set.

5We keep the test set unchanged and validated across the
train and dev sets. To make sure the dev set has a comparable
number of verbs as the original set, we adopt 9 fold instead
of 10 fold cross-validation.
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5 Multilingual Experiments

This section presents the results of our main ex-
periments aimed at comparing Dutch and German
past learning patterns to the English ones. It also
presents the results of grapheme vs phoneme se-
quence learning in all three languages. Because
Dutch and German pronunciation is more pre-
dictable than the English one, we expect that the
difference between grapheme and phoneme learn-
ing will be smaller in these languages.

For comparability, all experiments in this sec-
tion use the newly introduced Unimorph-based
dataset, which includes a similar amount of train-
ing forms in all languages (cf. Table 1). The model
architecture and the hyperparameter settings are
the same as in previous experiments. We also run
each experiments three times with different ran-
dom seeds and report the averaged results.

We use our newly-created data for multilingual
experiments without resampling tokens by their
frequency. This decision is informed by research
suggesting that human learners generalize over
type frequency, rather than token frequency (By-
bee, 1995; Bybee and Thompson, 1997) and is
consistent with the experimental design of K&C.
Other studies have suggested that word frequency
is important for children’s past tense acquisition
(Plunkett and Marchman, 1991; Bybee and Slobin,
1982; Ellis, 2002), but we do not examine this hy-
pothesis in this work.

Result overview For the forms seen in training,
the model is able to learn both regular and irregu-
lar past tense inflection with more than 95% accu-
racy (Table 3a), and with similar learning curves
(Figure 2), which confirms and strengthens the
main findings of K&C on two other languages.

Comparing Table 3a to 3b, we find that the over-
all trends are maintained when the model is trained
on graphemes instead of phonemes (the original
setup of K&C). However, a notable exception is
observed: grapheme learning results in a much
lower accuracy of English irregular verbs.

In the following sections, we discuss these re-
sults in more detail.

5.1 Past Tense Learning Results in English,
Dutch, and German

Accuracy Looking closer at the results across
languages (Table 3a), we notice that inflecting un-
seen Dutch regular verbs is slightly harder than in

(a) Phoneme Input

(b) Grapheme Input

Figure 2: Learning curves of the model on the Ger-
man, English, and Dutch training set (with random
seed 123).

German and English. This might be explained by
the fact that in Dutch all voiced consonants be-
come unvoiced at the end of a word, but to pre-
dict if the past tense becomes ‘-de’ (for voiced
consonants) or ‘-te’ (for unvoiced consonants), we
still need the end consonant of the stem, which
can be found within the lemma and most of the
times in the spelling of the word form. Unfortu-
nately, this information is absent in the pronun-
ciation. For example, in the pair lAnt-lAndd@,
one will not know whether the past tense should be
lAnd@ or lAnt@ before seeing the orthographic
form land. We find that such errors account for
about 50% (18/38) of all Dutch regular verb er-
rors. This difference in voiced/unvoiced regular
past tense endings only occurs in Dutch.

As for irregular verbs, we find a large difference
across languages in the ability to generalize to new
forms. Especially in English, while the model has
almost perfectly learned to inflect seen verbs, it
has a hard time predicting the form of new irreg-

97



all regular irregular

train dev test train dev test train dev test

EN 99.5 93.1 92.1 99.8 96.1 95.0 98.1 27.8 40.5

NL 98.9 88.4 88.4 99.2 91.4 92.2 96.5 62.4 57.9

DE 98.9 85.0 92.5 99.4 92.0 95.1 96.7 38.7 57.9

(a) Phoneme input

all regular irregular

train dev test train dev test train dev test

EN 99.1 93.6 93.8 99.8 98.2 98.1 89.0 11.1 28.1

NL 99.4 88.0 89.6 99.8 91.2 93.0 97.9 58.6 61.0

DE 98.4 86.4 93.6 99.1 93.5 95.7 93.9 39.5 65.9

(b) Grapheme input

Table 3: Past tense inflection accuracy in English, Dutch, and German; all averaged over 3 random seeds.

epoch English Dutch German
hits bestijgt (mounts) gilt (applies)

10 hItId hitted b@stKGd@ besteeg gIlt@ galte
20 hItst hit b@stex besteeg gIlt@ galt
30 hItId hitted b@stKGd@ besteeg g&lt galt
40 hItId hitted b@stKGd@ besteeg g&lt galt
50 hIt hitted b@stKGd@ besteeg g&lt galt
60 hItst hit b@stex besteeg gIlt@ gilte
70 hIt hit b@stex bestijgde g&lt galt
80 hItId hitted b@stex besteeg g&lt galt
90 hItId hitted b@stex besteeg g&lt galt

100 hIt hit b@stex besteeg g&lt galt

Table 4: The oscillating development (micro U-shape) of single verbs in three languages: with phoneme
or grapheme inputs, the respectively predicted past phonetic (left) or orthographic (right) forms are
changing with the training proceeding, but their final predictions are correct when reaching the last
epoch. The changing points are boldfaced.

ular verbs (dev: 27.8%, test: 40.5%). This effect
is smaller in Dutch and German, suggesting the ir-
regular inflection patterns in these languages are
more predictable. Surprisingly, the model made
more mistakes when predicting the inflections of
the irregular verbs in the German dev set than the
test set (dev: 38.7%, test: 57.9%). By inspecting
the mistakes, we found that the model incorrectly
took many irregular verbs as regular ones because
of their resemblance (high character overlap). For
instance, reitest-*reitetest/rittest
(ride) is influenced by the regular conjugation
of bereitest-bereitetest (prepare). We
found 23/81 irregular verbs in the dev set are very
similar to regular verbs in the training set. Out
of these, 8 irregular verbs are identical to regular
ones except for a prefix (e.g., reitet (rides) vs.
bereitet (prepares) and reitest (ride) vs.
verbreitest (spread), which could be highly
confusing for a model that is only based on form
regardless of meaning. By contrast, such overlap
is not found between the irregular verbs in the test
set and regular ones in the training set. This distri-
butional discrepancy might explain the lower ac-
curacy in the dev set. It echoes with our other

finding discussed in the next section that irregu-
lar verbs might be misled by regular verbs if they
share representation similarity.

Errors and learning trajectories Going be-
yond overall accuracy, we inspect the learning tra-
jectories of individual verbs in our dataset. We
find human-like overregularization patterns simi-
lar to those observed by K&C in English also oc-
cur in Dutch and German. For example, in Dutch,
after 40 epochs of training, the model change
verscheent to verscheen as the past tense
of verschijnt (appears). However, after 50
epochs, the model again generate the wrong form
verscheent. After 70 epochs, the correct result
is again obtained. Similar patterns are observed
for sink in English and streitet (argues) in
German. Interestingly, Plunkett and Marchman
(1991); Bybee and Slobin (1982); Kuczaj II (1977)
reported that children do sometimes vacillate, even
within one utterance, between the correct and in-
correct past tense form of the same irregular stem.
All wrongly predicted irregular verbs are caused
by over-regularization. In other words, no patterns
like ated in English or lookte in Dutch are
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found, which is consistent with humans’ learning
behaviour (Pinker and Prince, 1988). More exam-
ples from English, Dutch and German are listed in
Table 4.

Additionally, we find cases where the model
generates an irregular form for a regular verb,
because of the resemblance with other (irregular)
verbs. In Dutch, for example, the regular verb
versier-versierde (decorate-decorated)
gets incorrectly inflected as *versoor by
resemblance to verbs like verlies-verloor
(lose-lost). Similar errors also occur in Ger-
man. For instance, the wrong prediction
of verfehle-*verfahl/verfehlte
(miss-missed) might be misled by the pair
befehlen-befahlen (order-ordered), and
schweben-*schwoben/schwebten (float-
floated) is possibly due to its resemblance to
schieben-schoben (push-pushed). Inter-
estingly, this type of errors aligns with Ernestus
and Baayen (2004)’s experiments with Dutch
speakers: phonological similarity, rather than
rule-based regularity, influences participants’
judgments toward the inflection of verbs.

That said, the model also displays error pat-
terns that are not human-like, such as copying the
present form or randomly removing phonemes (or
letters) from it. Similar cases of non-plausible
predictions were also observed at the Sigmor-
phon Shared Task (Kodner and Khalifa, 2022),
for instance forgive-*forgaved/forgave
or seek-*sougk/sought. As also observed
by Wiemerslage et al. (2022), this kind of model
predictions contrasts with the behavior of human
speakers, who mostly resort to generating a regu-
lar past tense when a verb is unknown.

5.2 Phoneme vs. Grapheme Input
Undoubtedly, using phoneme input is more prin-
cipled than grapheme input when simulating hu-
man acquisition patterns. However, pronunciation
information is not always available and makes it
harder to extend this kind of simulations beyond a
small set of widely studied languages. Here, we
investigate the usability of grapheme-based input
for modeling past tense inflection. We expect Ger-
man and Dutch to be a good use case for this, given
their more transparent orthography compared to
English (Marjou, 2021).

The results in Table 3 clearly show that
switching to grapheme input for the English

simulations is not principled as this results in
a slight increase of regular inflection accu-
racy (from 99.8/96.1/95.0% to 99.8/98.2/98.1%
train/dev/test) as opposed to a large decrease of ir-
regular inflection accuracy (from 98.1/27.8/40.5%
to 89.0/11.1/28.1%). The latter effect is particu-
larly marked, suggesting non-transparent orthog-
raphy may not be a uniform property of the lan-
guage but may be correlating with less regular
word forms within a language. We leave this in-
vestigation to future work.

Using grapheme input in Dutch and German
seems much safer (differences are overall small,
with only a slight increase in almost all cases). Our
observations seem to reflect the figures of Mar-
jou (2021), who give a much higher transparency
score to Dutch and German than to English.

In sum, using graphemes to simulate human
patterns of morphological acquisition is possible
but should be done with caution and only in some
languages. A good practice could be to first verify
that the orthographic transparency of a language
is high (Marjou (2021) present results for 17 lan-
guages). When that is not possible, grapheme-
based results should be at least validated against
a small-scale pronunciation dataset.

6 Conclusions

In this work, we study the plausibility of using
sequence-to-sequence neural networks for simu-
lating human patterns of past tense acquisition.
More specifically, we replicate findings by Kirov
and Cotterell (2018) and examine their generaliz-
ability beyond the specific case of English, using a
new dataset of English/Dutch/German (ir)regular
verb forms based on Unimorph (McCarthy et al.,
2020).

We show that the main findings of K&C also
largely hold for Dutch and German, including
over-regularization errors and the oscillating (or
micro U-shape) learning trajectory of individual
verb forms across training epochs. At the same
time, we also observe cases of non human-like
errors, for instance when the model just keeps
the present form unchanged or randomly removes
phonemes from it. A notable difference among
our studied languages concern unseen English ir-
regular verbs, which appear to be much harder
to inflect than the Dutch and German ones. We
also observe that the orthographic transparency of
a language influences and possibly confounds the
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model’s learning performance: higher transparent
orthography contributes to more reliable and con-
sistent simulation results, but in general this as-
pect should be seriously considered when setting
up new benchmarks of morphological acquisition.

Future work could include the construction of
a nonce word benchmark in Dutch and German
to enable a multi-lingual evaluation of this task
(Corkery et al., 2019), as well as an in-depth in-
vestigation of the different level of irregular past
inflection difficulty in our three languages.

Kirov and Cotterell (2018) provided very
promising evidence for the use of modern neural
networks to model the human language acquisi-
tion patterns. Our work confirms the potential of
this research direction, but also raises important
issues and joins recent follow-up studies (Cork-
ery et al., 2019; Dankers et al., 2021; Kodner and
Khalifa, 2022; Wiemerslage et al., 2022) that have
warned against over-optimistic conclusions.
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A Appendix

Parameter Value

seed 123
feat vec size 300
feat merge concat
rnn type LSTM

encoder type brnn
encoder layers 2

encoder rnn size 100
decoder type rnn

decoder layers 2
decoder rnn size 100

dropout 0.3
learning rate decay 1.0

learning rate 1.0
batch size 20

train steps
(training sample size/
batch size)∗the number of
epochs

beam size 12
optim adadelta

verbose True
tensorboard True

tensorboard log dir logs
report every steps / 100

log file directory of the log file
log file level 20

A displays hyperparameter settings of the repli-
cating experiments and the extension experiments.
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