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Abstract

We develop a symbolic planning-based decoder
to improve the few-shot semantic parsing of in-
structional texts. The system takes long-form
instructional texts as input and produces se-
quences of actions in a formal language that
enable execution of the instructions. This task
poses unique challenges since input texts may
contain long context dependencies and ambigu-
ous and domain-specific language. Valid se-
mantic parses also require sequences of steps
that constitute an executable plan. We build on
recent progress in semantic parsing by lever-
aging large language models to learn parsers
from small amounts of training data. During
decoding, our method employs planning meth-
ods and domain information to rank and cor-
rect candidate parses. To validate our method,
we evaluate on four domains: two household
instruction-following domains and two cooking
recipe interpretation domains. We present re-
sults for few-shot semantic parsing using leave-
one-out cross-validation. We show that utiliz-
ing planning domain information improves the
quality of generated plans. Through ablations
we also explore the effects of our decoder de-
sign choices.

1 Introduction

Recent advancements in natural language process-
ing (NLP) have successfully combined large lan-
guage models with external symbolic reasoning
capabilities. Toolformer (Schick et al., 2023) en-
ables the use of external tools to perform tasks
such as arithmetic and factual lookup, which are
currently challenging for large language models.
Liu et al. (2023) created a system that performs
multi-step reasoning in planning tasks specified in
natural language. This is achieved by using an ex-
ternal symbolic planner for domain-specific reason-
ing, providing guarantees that plans are logical and
satisfy environmental constraints. By integrating
external symbolic reasoning capabilities, many of

the shortcomings of large language models can be
addressed while still capitalizing on their strengths.
Motivated by this line of work, we develop a novel
decoding procedure that uses symbolic planning
to improve the few-shot semantic parsing of long-
form instructional texts. We map instructional texts
to formal action sequences and validate our method
on two recipe semantic-parsing datasets (Bollini
et al., 2013; Tasse and Smith, 2008). Semantic pars-
ing of instructional texts with few-shot learning
poses several challenges to natural language pro-
cessing (NLP) techniques. Current NLP methods
are dominated by large language models. These
are based on Transformer (Vaswani et al., 2017)
architectures and leverage large scale pretraining
to enable high, few-shot and zero-shot task perfor-
mance (Brown et al., 2020).

Building on work from (Shin et al., 2021), we
investigate semantic parsing in the few-shot setting
using OpenAI’s Codex language and code LLM
(Chen et al., 2021; Shin and Van Durme, 2021).
Learning occurs in-context, by prompting the LLM
with a few input-output task examples. Pretrained
LLM representations allow for more sample effi-
cient learning than non-pretrained methods; but
data scarcity still introduces performance limita-
tions (Brown et al., 2020). Data efficiency is advan-
tageous when working with long-form instructional
texts. The datasets we consider are small and the
cost of annotating long texts with ground-truth se-
mantic parses is high.

In many semantic parsing tasks, context depen-
dencies, input natural language strings, and output
parses are relatively short. These tasks fit easily
within the available context size of LLM models
and consist of at most several input and output state-
ments. Modeling long input-output dependencies
poses a number of challenges for current models, as
shown by their degraded performance on tasks de-
signed to leverage long contexts (Tay et al., 2020).
Semantic parsing of long-form instructional texts,
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like the recipe datasets we evaluate, can require
learning representations for hundreds of words, and
outputting tens of steps, each with multiple argu-
ments and complex syntax.

Instructional texts also exist within an implicit
planning domain. These texts describe plans for
achieving a goal by manipulating objects that com-
prise a world-state. Executable semantic parse-
plans must consist of valid transitions within this
world-state. For example, to bake an item the oven
must be on and preheated. These requirements
constitute preconditions for the bake action. Long-
context dependencies pose challenges to generat-
ing executable sequences of actions that are also
relevant to the task instructions. To form a valid
parse-plan, instructions must be translated into a se-
quence of executable actions. All requisite actions
must be represented in the plan, potentially includ-
ing actions not explicitly mentioned. Complicating
matters, the common-sense knowledge needed to
reason about valid plan sequences in a domain is
only very implicitly represented within the LLM
and few-shot examples.

To address these challenges, we propose Plan-
ning Augmented Semantic Parsing. Our method
leverages a formal symbolic planning representa-
tion to rank and correct candidate plans. Plans
are corrected by searching for sequences of ac-
tions that satisfy the preconditions of all output
actions. Ranking selects plans which best meet
the domain’s planning and syntactic constraints
by ranking plans highly if they have fewer inad-
missible actions, require fewer additional actions
to correct, and have fewer steps with invalid syn-
tax. After ranking, planning errors are fixed using
symbolic planning methods. The result is an ef-
fective neuro-symbolic approach that combines the
strengths of deep-learned LLMs and classical AI
planning.

We validate our approach using leave-one-out
cross validation across each dataset and provide
ablations for various aspects of our model choices.
Results show that using Planning Augmented Se-
mantic Parsing results in more valid plan sequences
that still maintain high relevance to the natural lan-
guage task instructions.

Overall we make the following contributions:

• Develop a novel method for using symbolic
planning to improve semantic parsing with
large language models.

• Demonstrate improvements in the executabil-

ity of generated plans on two datasets, in a
low-data, few-shot setting.

2 Background

2.1 Planning
We consider these instructional text semantic parses
to be plans in a symbolic task planning setting. A
task planning domain defines a world-state, actions
that modify the world-state, and transition function
specifying the effect of actions on the world-state
(Ghallab et al., 2016). The world state is composed
of a collection of Boolean values defining the ex-
istence and state of various kitchen objects and
planning actions are implemented as STRIPs-style
operators (Fikes and Nilsson, 1971). Each action
has logical preconditions that must be satisfied for
its execution. For any state, the admissible actions
are all actions with satisfied preconditions. Upon
execution the action changes the values of the vari-
ables which define the world-state. A planning task
is specified by an initial state and a goal state. The
resulting plan (if it exists) comprises a sequence of
actions that can be taken to reach the goal state.

2.2 In-Context Learning
In-context learning allows LLMs to perform novel
tasks specified in terms of a small number of sam-
ple input-output pairs (Brown et al., 2020). These
examples are provided as part of the generation
context to condition the language model. Typically
these examples are drawn from the training split
of a dataset and prepended to a test example. Few-
shot prompted learning differs from other LLM
learning paradigms including the zero-shot infer-
ence utilized in the evaluations of GPT-2 (Radford
et al., 2019) and fine-tuning used to transfer pre-
trained model weights to novel tasks as in (Radford
et al., 2018), (Peters et al., 2018) and (Devlin et al.,
2018).

3 Related Work

(Branavan et al., 2009) develops a reinforcement
learning-based method for semantic parsing of in-
structional texts and (Branavan et al., 2010) addi-
tionally learns to fill in low-level steps from high-
level instructions using environment interaction.
Previous work also formulates semantic parsing as
a text-to-text machine translation task (Wong and
Mooney, 2006). Our work builds on the few-shot
semantic parsing of (Shin et al., 2021) and (Shin
and Van Durme, 2021) that establishes OpenAI’s
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Codex model (Chen et al., 2021) as a high perform-
ing LLM for few-shot semantic parsing. (Bollini
et al., 2013) and (Tasse and Smith, 2008) intro-
duce the recipe-semantic parsing datasets we use
for evaluation but learn semantic parsers using shal-
low features and classification-based approaches.
Other work investigates semantic parsing of recipes
(Malmaud et al., 2014) including using modern
deep-learning methods (Papadopoulos et al., 2022).
Recent work uses few-shot learning and large lan-
guage models to map single commands (Huang
et al., 2022) and short sequences of commands
(Brohan et al., 2022) to executable plans. How-
ever, to our knowledge, ours is the first work to use
symbolic planning to improve semantic parsing of
instructional texts.

4 Methods

For the LLM we use Davinci Codex (Chen et al.,
2021) based on the GPT-3 architecture (Brown
et al., 2020). Like GPT-3, the model was trained on
a large web-sourced text corpus, but includes code
in the dataset. While OpenAI does not publish the
sizes of the Codex models available through their
API, (Gao, 2021) empirically estimate the size of
text-only Davinci at 175B parameters.

4.1 Datasets

We evaluate our method on two recipe semantic
parsing datasets from (Tasse and Smith, 2008) and
(Bollini et al., 2013). (Tasse and Smith, 2008)
contains 260 recipes with corresponding seman-
tic parses in the Minimal Instruction Language for
the Kitchen (MILK) syntax. Each statement in
the language corresponds to a plan step with an
action and arguments. Some plan steps produce
new variables (ingredients or tools) which are con-
sumed by subsequent steps. The recipes in this
dataset cover a wide range of cuisines, ingredients,
techniques, and tools. Each step also contains an
optional human-readable description of the step.
The original dataset uses variables as arguments
to action steps. We replace these with their literal
values to make the generation problem easier for
the LLM. The 60 recipes of (Bollini et al., 2013)
were selected to be executed by a cooking robot.
The recipes are mainly limited to baking and con-
tain a small fixed set of tools and actions. This
dataset also contains planning domain definitions
in the form of STRIPs-style operator actions (Fikes
and Nilsson, 1971). Recipe steps that require tools

or techniques outside of this fixed vocabulary are
mapped to a NO-OP. Examples from both datasets
are in the Appendix: with in Table 5 and action
signatures are defined in Table 6.

4.2 Planning Domain

(Bollini et al., 2013) contains planning domain def-
initions that specify the state of the kitchen, in-
gredients, and tools used in each recipe. These
were developed to facilitate recipe execution on
a real-world cooking robot. We utilize these def-
initions for planning in this domain. The domain
also provides a successor state function that given
a starting state and a search depth, returns all valid
sequences of actions up to the search depth. This is
used in Algorithm 1. The (Tasse and Smith, 2008)
dataset does not provide planning definitions. We
construct planning definitions where the existence
of ingredients and tools are the only predicates and
transitions in the environment involve either cre-
ating or destroying these objects. Therefore the
only preconditions in this domain involve the ex-
istence of objects. Actions are considered valid if
their objects have been instantiated by prior steps,
otherwise the their preconditions are considered
unsatisfied.

4.3 Prompt Design

To generate a plan for a test example using few-
shot learning, we prompt the model with sample
recipes and parses taken from the held-out exam-
ples. Following (Liu et al., 2021), prompt exam-
ples are selected using nearest-neighbor search us-
ing the cosine distance between their embeddings
as computed by a text embedding model, specifi-
cally the “all-mpnet-base-v2” model from the Sen-
tenceTransformers library (Reimers and Gurevych,
2019) based on the MPNet model (Song et al.,
2020). Due to the limited length of the input con-
text for the Codex models (8, 000 and 2, 048 to-
kens) and API request limits, the number of train-
ing examples is limited to a maximum of five for
the recipes of (Bollini et al., 2013) and one for
(Tasse and Smith, 2008). The selection of few-shot
training examples reduces to Equation 1, where a
is a training example, X denotes the set of held-out
examples, and E represents the recipe embedding
function.

P (a) = argmin
x∈X

{cos_sim(E(x), E(a))} (1)
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The full prompt is formed by concatenating the
training example instructions with their semantic
parses, and the instructions for the test example.
Each component of the prompt is separated by new
line characters, and a special delimiter “###” which
is also appended to the end of the prompt. Because
of the in-context learning, the model learns to ap-
pend the delimiter to the end of the generated parse.
Thereby, the delimiter is used to identify the end of
the model’s sequence completion.

4.4 Planning-Augmented Decoding

Given a prompt sequence, the LLM defines a dis-
tribution over next token continuations. Due to
utilization limits of the Codex API, our method
samples a fixed number of plan completions for
each recipe. For sampling next tokens, we use
nucleus sampling introduced by (Holtzman et al.,
2020), which offers improvements over other sam-
pling methods. These are then ranked using a scor-
ing function based on the generation probability
and a planning score which factors in the number
of precondition errors and syntax errors in the plan
and the sequence probability of the plan.

The planning score is calculated by combining
measures of plan executabilty: the number of pre-
condition errors, syntax errors, and additional plan-
ning steps. Precondition errors occur when a plan
step’s preconditions are not satisfied. For example
when the step references non-existent ingredients
or the world state does not allow the action to oc-
cur. Syntax errors occur when the plan contains
malformed steps that cannot be parsed by the plan
interpreter. The syntax error score (SE) is the num-
ber of plan steps which contain syntax violations.
The precondition error score (PE) is the number of
plan steps which cannot be executed because their
preconditions are not satisfied. Finally, (AS) is the
number of steps added to the plan by planning in
order to maximize the number of plan steps with
valid preconditions. Steps with errors are counted
as opposed to counting all errors in each step. This
allows for computation of a score in the interval
[0, 1] to match the sequence probability score. In
general identifying multiple syntax errors in a given
step is not possible, as the presence of even a single
syntax error may result in an undefined grammati-
cal context.

These counts are normalized by the plan length
(N ) so as not to penalize longer plans. The natu-
ral log is taken to re-scale the planning score for

addition with the sequence log-probability, adding
ϵ to avoid taking the logarithm of zero in cases
where the plan contains no errors and requires no
additional steps to be valid. The planning score is
added to the mean log-probability of the token se-
quence representing the plan. This scoring function
results in plans with a higher sequence probability
and fewer planning errors being selected.

score = ln(1.0− SE + PE +AS

N
+ ϵ)

+
1

T

T∑

t=1

lnPt

(2)

The plan that maximizes the score function is
passed to a planning module. For each inadmissible
step where the preconditions are not satisfied, it
searches for sequences of admissible actions to
insert into the plan, such that those actions lead
to valid preconditions for that step. To limit the
search space, the planning module only searches
in the space of plans that can be inserted before an
existing inadmissible plan step.

4.5 Correcting Plans

While the ranking procedure ensures that high prob-
ability and low-error plans will be surfaced, these
plans may still contain precondition errors. The
planning domain information and a planning algo-
rithm together form a planning module that can
attempt to correct these precondition errors. The
ranking procedure incorporates this planning mod-
ule to calculate the additional steps AS that can
be inserted into a plan to fix precondition errors.
These steps are also included in the total number
of steps N . Therefore fixable plans will receive a
better planning score.

Algorithm 1 describes the procedure for finding
steps to insert into a plan to ensure that each step’s
preconditions are satisfied. As input, it takes the
world state after executing some number of plan
steps, and computes the sequence of actions needed
to ensure the preconditions of the next plan step A
are met. The algorithm returns the shortest number
of actions required to satisfy the step’s precondi-
tions. Aside from producing more valid plans, this
method should produce plans which correspond
more closely to the ground truth semantic parse an-
notations. However because the planning module
only inserts steps into a plan before an inadmissi-
ble step, and does not change the existing steps,
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Algorithm 1: The planning algorithm in-
serts steps before actions with unmet pre-
conditions.
Input: A starting state S, desired action A,

transition function T , and search
depth N .

Output: The shortest sequence of actions P
which ends in action A or null if
none exists.

sequences = successors(S, T, depth=N);
best = null;
for s in sequences do

if A in s then
/* truncate the plan until

the action A or false if
no such prefix exists */

plan = prefix(s, A);
if plan && length(plan) <

length(best) then
best = plan;

end
end

end

it cannot necessarily fix all precondition errors in
a plan. Utilizing planning and likelihood based
decoding balances the desire for plans with valid
preconditions while ensuring that plans contain
relevant steps to the recipe. These two require-
ments may compete in some cases. In the simplest
case, an empty plan, there are no potential precon-
dition errors, but the plan also contains no relevant
plan steps. In practice there exists a trade-off be-
tween plan executability and correctness as noted
by (Huang et al., 2022).

5 Experiments

We use leave-one-out cross-validation to evaluate
performance of various models on our two recipe
datasets. For the shorter recipes in the (Bollini
et al., 2013) dataset, we evaluate using both one
and five training plans in the prompt. We evaluate
the longer recipes of the (Tasse and Smith, 2008)
dataset using only a single prompt example due to
context length limitations.

To evaluate the correctness of each output plan
we compare the generated plan to the ground truth
annotation from the dataset. We use metrics that
measure the similarity between the output and
ground truth plans. However for each recipe there

are potentially many admissible plans and subjec-
tive judgements about the level of detail of the
annotation and about which attributes to include.
To address these potential ambiguities, we evalu-
ate models using several diverse metrics to capture
different aspects of plan accuracy.

5.1 Baselines

We evaluate three baseline methods for ranking the
generated plans: Random, Rank (PPL), and Rank.
Our full ranking method with partial planning is
denoted Rank+Plan. No Rank simply selects a ran-
dom plan from the set of generated completions.
Rank (PPL) selects the plan with the lowest per-
plexity (PPL) (the highest sequence probability),
providing a baseline where no planning domain in-
formation is utilized. Finally, Rank ranks the plans
by the scoring function in Equation 2, but does not
correct precondition errors through planning like
Rank + Plan does.

5.2 Longest Common Subsequence (LCS)

Prior work evaluates plan correctness in terms of
the LCS between generated and ground truth plans
(Puig et al., 2018). We normalized LCS by the
length of the longer plan. LCS evaluates the textual
overlap between plans; computing common sub-
sequences which may contain interwoven unequal
sequences. It therefore does not strongly penal-
ize erroneous injected subsequences. This metric
ranges from [0.0, 1.0] where 0.0 indicates no se-
quence overlap and 1.0 indicates identical plans.

5.3 Plan Steps F1

LCS reflects the order and content of the gener-
ated plan steps compared to the ground truth. We
also report an F1 measure (the harmonic mean of
precision and recall) that quantifies the quality of
the individual plan steps without regard to their se-
quencing. Steps in the generated and ground truth
plans are compared based on string equality. In
many plans, steps are often repeated. For example
a recipe from (Bollini et al., 2013) may have many
mix() steps after pouring different ingredients. We
choose to treat each of these repetitions as a unique
step when computing the precision and recall. We
also exclude NO-OP steps from these calculations
for the (Bollini et al., 2013) dataset as they do not
change the plan’s results.
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(Bollini et al., 2013)
Rank Rank + Plan Ground Truth

pour(nuts)
mix()
scrape()
bake(25)

pour(nuts)
mix()
scrape()
preheat(350)
bake(25)

pour(nuts)
mix()
scrape()
preheat(350)
bake(25)

(Tasse and Smith, 2008)
Rank Rank + Plan Ground Truth

combine(“1/2 cup all-purpose
flour”, “1 egg”, “1 tablespoon
chopped fresh parsley”, “1/2
teaspoon salt”, “1/4 teaspoon
freshly ground nutmeg”,
“mashed potatoes”, “dough”,
“stir in”)

create_ing(“1/2 cup
all-purpose flour”)
...
combine(“1/2 cup all-purpose
flour”, “1 egg”, “1 tablespoon
chopped fresh parsley”, “1/2
teaspoon salt”, “1/4 teaspoon
freshly ground nutmeg”,
“mashed potatoes”, “dough”,
“stir in”)

create_ing(“1/2 cup
all-purpose flour”)
...
combine(“1/2 cup all-purpose
flour”, “1 egg”, “1 tablespoon
chopped fresh parsley”, “1/2
teaspoon salt”, “1/4 teaspoon
freshly ground nutmeg”,
“mashed potatoes”, “mashed
potato mixture”, “stir in”)

Table 1: Excerpted examples of improved parsing for recipes using the Rank + Plan method. The parses were
selected by randomly selecting recipe where the Rank + Plan method resulted in an improvement in the number of
precondition errors over the baseline methods. NO-OP actions are omitted for brevity.

5.4 Precondition and Syntax Errors (PE &
SE)

The previous metrics assess similarity to the ground
truth plan and do not explicitly reflect the exe-
cutability of generated plans. Therefore, we also
measures the frequency of precondition and syntax
errors in plans. Errors are counted on a per-step
basis. If a step contains more than one error or
more than one type of error these are quantified as
a single error and type for the step.

5.5 Implementation Details

We utilize Davinci Codex1 for all experiments due
to its large context size of 8, 000 tokens which is
sufficient for all prompts and completions across
both datasets. Our method samples ten completions
up to a fixed length of 1, 500 tokens or until the spe-
cial delimiter sequence is reached. The decoding
length was chosen to be longer than the longest
recipe parse in either of the datasets. We generate
ten completions for each recipe to offer a diversity
of plans to rank and correct through planning. We

1The OpenAI API name for the model is “code-davinci-
002”.

also utilize a nucleus sampling top-p value of 0.5.
This value was selected because it maximizes the
performance of the No Rank baseline with respect
to LCS. We perform ten trials to compute means
and confidence intervals.

6 Results

We report results for the (Bollini et al., 2013)
dataset in Table 2 and the (Tasse and Smith, 2008)
dataset in Table 3. Mean cross-validation results
are reported with 95% confidence intervals com-
puted using a t-distribution for ten trials. For both
datasets, the number of precondition errors are re-
duced by ranking using our scoring metric and cor-
rective planning. The Rank method results in a de-
crease in the precondition error rate, and by adding
corrective planning (Rank + Plan), the error rate
is again reduced significantly. This results in more
valid, executable plans. Even as the precondition
error rate is reduced, the LCS remains constant for
the (Bollini et al., 2013) dataset and only slightly
reduced for the (Tasse and Smith, 2008) dataset.
This indicates that the plans maintain high agree-
ment with the ground truth plans while steps are
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Models (Bollini et al., 2013)
LCS↑ PE↓ SE↓ F1 ↑

No Rank
Davinci Codex, E=1 0.908± 0.007 0.737± 0.067 0.065± 0.025 0.784± 0.002
Davinci Codex, E=5 0.950± 0.001 0.277± 0.020 0.000± 0.000 0.859± 0.002

Rank (PPL)
Davinci Codex, E=1 0.897± 0.008 0.962± 0.685 0.042± 0.008 0.784± 0.004
Davinci Codex, E=5 0.949± 0.005 0.198± 0.009 0.002± 0.004 0.863± 0.003

Rank
Davinci Codex, E=1 0.901± 0.008 0.382± 0.037 0.025± 0.008 0.798± 0.002
Davinci Codex, E=5 0.952± 0.005 0.120± 0.015 0.002± 0.004 0.868± 0.002

Rank + Plan
Davinci Codex, E=1 0.903± 0.008 0.143± 0.033 0.025± 0.008 0.807± 0.002
Davinci Codex, E=5 0.952± 0.005 0.033± 0.000 0.002± 0.004 0.870± 0.002

Table 2: Results and ablations for the (Bollini et al., 2013) dataset, reported as means over the leave-one-out cross
validation. 95% confidence intervals are computed using a t-distribution over ten trials. Results using one (E=1) and
five (E=5) training examples in each prompt are shown. All plans are generated using a nucleus sampling top-p
value of 0.5.

Models (Tasse and Smith, 2008)
LCS↑ PE↓ SE↓ F1 ↑

No Rank
Davinci Codex, E=1 0.707± 0.002 0.805± 0.029 0.940± 0.134 0.448± 0.001

Rank (PPL)
Davinci Codex, E=1 0.692± 0.003 0.827± 0.086 0.875± 0.199 0.443± 0.002

Rank
Davinci Codex, E=1 0.695± 0.004 0.293± 0.016 0.226± 0.024 0.446± 0.001

Rank + Plan
Davinci Codex, E=1 0.695± 0.003 0.000± 0.000 0.237± 0.018 0.446± 0.001

Table 3: Results and ablations for the (Tasse and Smith, 2008) dataset, reported as means over the leave-one-out
cross validation. 95% confidence intervals are computed using a t-distribution over ten trials. Results using one
(E=1) training example in each prompt are shown. All plans are generated using a nucleus sampling top-p value of
0.5.

added. For the (Bollini et al., 2013) dataset the F1
score also improves through ranking and correc-
tive planning indicating that highly ranked plans
contain more accurate selections of recipe steps.
The F1 score does not improve for the (Tasse and
Smith, 2008) dataset and the Rank + Plan method
results in no precondition errors. However, these re-
sults are not surprising because the for this dataset
the planning module can only insert ingredient and
tool definitions into the plan. These inserted actions
could result in lower LCS by lengthening the gener-
ated plan and may not match ingredient definitions
in the ground truth plan. Because of the presence

of free-text descriptions and specifications in the
(Tasse and Smith, 2008) dataset and the difficulty
of parsing longer plans, both the LCS and F1 are
lower than for the (Bollini et al., 2013) dataset. Fi-
nally providing more in-context examples for the
(Bollini et al., 2013) dataset improves performance
for all measured metrics.

Table 1 contains qualitative examples of the
Rank + Plan performance. For the example from
the (Bollini et al., 2013) dataset, in the generated
plan the oven is not preheated before baking. The
corrected plan adds a preheat() action to satisfy the
preconditions of the bake() action, which requires
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a heated oven. In the example from the (Tasse and
Smith, 2008) dataset, a recipe that uses certain in-
gredients to make dough. In the generated plan
these ingredients are not instantiated. However the
planning module inserts actions to instantiate the
ingredients which improves the validity of the gen-
erated plan. An additional example for the (Bollini
et al., 2013) dataset is included in Table 4

7 Discussion

Evaluations show that our method improves plan
validity as measured by the mean number of precon-
dition errors, syntax errors, and accuracy of steps
returned (F1) in each plan. LCS remains fairly
constant across our evaluations and ablations. The
LCS metric reflects both the content of planning
steps and their sequencing. By contrast, F1 only as-
sesses the accuracy of steps in the generated plans.
Perhaps there exists a trade-off wherein the pro-
cess of inserting corrective plan steps reduces the
amount of alignment of the generated and ground
truth plans (lowering LCS), but increases the ac-
curacy of included steps (raising F1). Of all the
metrics considered, our method results in largest re-
duction in the number of precondition errors (PE).
We achieve these improvements without singifi-
cant reductions in LCS and with an increase in
F1. This is an important validation for our method,
as (Huang et al., 2022) finds that there exists a
trade-off between the executability and semantic
correctness (measure by LCS) of generated plans.
It is straightforward to increase executability (fewer
precondition errors) by ignoring the instructional
text content and only outputting valid actions. For
any downstream applications, plans must be exe-
cutable and while also reflecting the content of the
instructions. Therefore is is important to reduce the
number of precondition errors while maintaining
content similarity to ground-truth plans.

7.1 Limitations and Future Work

Our approach requires access to planning informa-
tion for each instructional text domain. In gen-
eral, creating this information requires program-
ming and domain knowledge to formally specify
the planning constraints. However for high-value
applications the effort associated with generating
these planning domain definitions may be justified
by their potential to help in generating more valid
plan-based semantic parses. Having this knowl-
edge is also crucial to allowing an agent or robot

to execute the resulting plan and may be naturally
available in many domains as part of the execu-
tion component. In the course of developing our
semantic parsing model, we discovered that Codex
could generate valid planning domain definitions
in a variety of output formats including the Plan-
ning Domain Definition Language (Fox and Long,
2003). This may provide a path towards automat-
ically generating planning domain definitions for
novel environments or reducing the need for hu-
man annotators. Future work could also evaluate
our method in other planning domains that contain
tasks beyond cooking such as VirtualHome (Puig
et al., 2018) or ALFRED (Shridhar et al., 2020).

8 Conclusion

We develop an approach to semantic parsing for
long-form instructional texts that leverages plan-
ning domain information to generate more valid
plans in a low-data, few-shot setting. Our method
significantly reduces the number of precondition
errors present in semantically parsed plans for two
recipe datasets. These results highlight the benefit
of a neuro-symbolic approach that utilizes the state-
of-the-art code-generation LLM Codex to produce
relevant steps for recipe execution and refines these
plans using classical symbolic planning. In quan-
titative and qualitative evaluations, our approach
generates plans that reflect the relevant steps of
the natural language recipe. The symbolic plan-
ning component corrects precondition errors that
arise from omitted or implied instructional steps
and the challenges of learning with long context-
dependencies from limited examples.
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(Bollini et al., 2013)
Rank Rank + Plan Ground Truth

pour(flour)
mix()
mix()
preheat(350)
bake(20)

pour(flour)
mix()
mix()
preheat(350)
scrape()
bake(20)

pour(flour)
mix()
scrape()
preheat(350)
bake(20)

Table 4: Additional excerpted generation examples for the (Bollini et al., 2013) dataset.

(Tasse and Smith, 2008)
A Very Intense Fruit Smoothie

1 (10 ounce) package frozen mixed berries
1 (15 ounce) can sliced peaches, drained
2 tablespoons honey
In a blender, combine frozen fruit, canned
fruit and honey.
Blend until smooth.

create_ing(“1 (10 ounce) package frozen
mixed berries”)
create_ing(“1 (15 ounce) can sliced peaches,
drained”)
create_ing(“2 tablespoons honey”)
create_tool(“blender”)
combine(“1 (10 ounce) package frozen mixed
berries”, “1 (15 ounce) can sliced peaches,
drained”, “2 tablespoons honey”, “fruit and
honey”, “”)
put(“fruit and honey”, “blender”)
mix(“fruit and honey”, “blender”,
“smoothie”, “blend”)
chefcheck(“smoothie”, “smooth”)

(Bollini et al., 2013)
Easy Cake Mix Cookies

1 (18 1/4 ounce) box chocolate cake mix
1/3 cup vegetable oil
2 eggs
Combine cake mix, oil and eggs.
Mix well.
Bake at 350F for about 10 minutes.
Remove from oven and let cool on pan for
several minutes before removing to rack to
finish cooling.

ingredient([“cake_mix”], “1 (18 1/4 ounce)
box”, homogenous=True)
ingredient([“oil”], “1/3 cup”,
homogenous=True)
ingredient([“eggs”], “2”, homogenous=True)
pour(cake_mix), pour(oil), pour(eggs), mix()
mix()
scrape(), preheat(350), bake(10)
noop()

Table 5: Example recipes from the (Tasse and Smith, 2008) and (Bollini et al., 2013) datasets. These examples are
the second shortest and shortest for each dataset respectively.
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(Bollini et al., 2013)
ingredient(contains : string, amount : string, homogenous : bool)
pour(ingredient : string)
scrape()
preheat(temperature : string)
bake(time : string)
noop()

(Tasse and Smith, 2008)
create_tool(name : string)
create_ing(name : string)
chefcheck(name : string, description : string)
cut(item : string, tool : string, result : string, description : string)
combine(item : string, tool : string, result : string, description : string)
cook(item : string, tool : string, result : string, description : string)
do(item : string, tool : string, result : string, description : string)
leave(item : string, description : string)
mix(item : string, tool : string, result : string, description : string)
put(item : string, tool : string)
remove(item : string, tool : string)
separate(item : string, result1 : string, result2 : string, description : string)
serve(item : string, description : string)
set(item : string, description : string)

Table 6: Action definitions for the cooking recipe domains. The actions of (Bollini et al., 2013) operate on a
world-state definition that includes the state of the ingredients, a mixing bowl, a baking pan, and the oven. In
contrast (Tasse and Smith, 2008) provides no planning domain definitions and employs qualitative descriptions of
state transformations in the action annotations. We build a simple planning domain where the state consists only the
existence of objects as state variables. The preconditions for an action are met if the items used in the action have
been instantiated.
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