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Abstract

Rumour detection, particularly on social media,
has gained popularity in recent years. The ma-
chine learning community has made significant
contributions in investigating automatic meth-
ods to detect rumours on such platforms. How-
ever, these state-of-the-art (SoTA) models are
often deployed by social media companies; or-
dinary end-users cannot leverage the solutions
in the literature for their own rumour detection.
To address this issue, we put forward a novel
browser extension that allows these users to per-
form rumour detection on Twitter. Particularly,
we leverage the performance from SoTA archi-
tectures, which has not been done previously.
Initial results from a user study confirm that
this browser extension provides benefit. Addi-
tionally, we examine the performance of our
browser extension’s rumour detection model
in a simulated deployment environment. Our
results show that additional infrastructure for
the browser extension is required to ensure its
usability when deployed as a live service for
Twitter users at scale1.

1 Introduction

The advent of social media has forever transformed
the way in which we are able to communicate with
one another. Content-sharing has effectively been
democratised with the removal of existing tradi-
tional barriers (Bates, 2007). Indeed, this provides
many benefits: for those individuals involved in a
newsworthy event, for example, information can
be shared in real-time. This allows for news to
propagate faster, with the intention of informing
the wider public and inciting action from relevant
stakeholders. However, with the low barrier of
entry to content production and dissemination on
social media, the overall quality of information on
these platforms has degraded (Shu et al., 2017).

1We make all the materials related to this work available at
the following GitHub repository under an open-source license.

Figure 1: Server architecture of the Twitter rumour
detection browser extension. Icons are taken from the
following sources a, b, c, d and e

Users of social media platforms are now able to, in-
advertently or deliberately, publish misinformation
and falsehoods (Kydd and Shepherd, 2023). This
has led to very damaging consequences for society
in the past: Sharma et al. (2019) have provided
examples of these effects in the financial, political
and social domains. With this in mind, the machine
learning community has created automatic detec-
tion systems which are designed to identify misin-
formation on social media platforms. However, it
is the case that companies who own and manage
these platforms are the ones that implement and de-
ploy their own misinformation detection services
(Kydd and Shepherd, 2023; Kumar et al., 2020).
As such, regular content-consumers do not have ac-
cess to these services directly. This takes away the
autonomy of an individual who wishes to perform
rumour detection for themselves, for example.

In this work, we present a Google Chrome
browser extension, and the associated server ar-
chitecture, (seen in Figure 1) that addresses this
problem as highlighted by Fernandez and Alani
(2018). It allows regular Twitter users to per-
form on-demand rumour detection for any tweet,
whilst enhancing their experience through proving
semantically-related news articles.
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2 Related Work

Considerable progress has been made in investigat-
ing methods to perform rumour detection on social
media platforms. Seminal papers in this discipline
initially focussed on generating informative, hand-
crafted features for this task (Castillo et al., 2011;
Qazvinian et al., 2011; Yang et al., 2012). Stem-
ming from these works, researchers refocussed
their attention on temporal features. Kwon et al.
(2013) showed that these features are highly pre-
dictive of rumours as they described the periodic
bursts that are typical for these phenomena. These
new features now allowed researchers to capture
how rumours change over time, which is particu-
larly important for early rumour detection. Ma et al.
(2015) identified rumours through modelling their
lifecycle as a time series, whilst Wu et al. (2015)
approached this through modelling the propaga-
tion pattern as a tree. Furthermore, certain features
were shown to have greater importance at differ-
ent steps in a rumours’ propagation (Kwon et al.,
2017). However, the collective flaw in these works
is that the feature engineering processes are detail-
specific, could introduce biases and are extremely
laborious (Bian et al., 2020; Ma et al., 2016). As
such, SoTA solutions turn to deep learning for
the automatic feature representations, increased
model complexity and subsequent increase in per-
formance for rumour detection.

Ma et al. (2016) implemented the same time se-
ries ideas from their earlier works (Ma et al., 2015)
with recurrent neural networks (RNNs), later im-
proved with attention (Chen et al., 2017), which
leveraged the deep hidden representations that were
learnt by the neural network. Ma et al. (2018) found
that recursive neural networks (RvNNs) were more
performant than RNNs as they are able to embed
both content-based and propagation-based informa-
tion due to their tree-like structure. This architec-
ture was also improved with an attention mecha-
nism (Ma et al., 2020). Bian et al. (2020) achieved
SoTA performance on the Twitter15 and Twitter16
datasets for rumour detection on Twitter through
not only modelling the propagation properties of
a rumour, but also the dispersion properties with
their Bi-Directional Graph Convolutional Network
(Bi-GCN).

However, deploying said rumour detection mod-
els as a service has not been extensively researched
in an academic setting. Gupta et al. (2014) intro-
duced TweetCred, a Google Chrome browser exten-

sion that assigned a credibility score to each tweet
on a user’s feed using an SVM-rank model using
45 handcrafted features. Thilakarathna et al. (2020)
created a browser extension for Twitter, called Ver-
itas, that is able to detect fake news on the social
media platform. Most notably, their architecture in-
volves a model trainer pipeline to ensure that their
neural models are constantly up-to-date. Kydd and
Shepherd (2023) explored a very similar tool that
used a deep learning solution as the backbone to a
browser extension focusing on clickbait detection.

Additionally, we note that news articles are a
typical resource that one would use to determine
the status of a rumour. These resources enhance
the experience for the user, informing them of the
context in which the tweet occurs. To this end, our
work attempts to address the following flaws found
in previous work. i) Previous works that tackle
rumour detection specifically do not leverage SoTA
rumour detection models at the core of their ser-
vice, which renders them outdated. ii) In certain
cases, the rumour detection model is deployed on
the user-side. We posit that with SoTA models,
this will render the service inutile due to the com-
putational complexity of the models (Kydd and
Shepherd, 2023). iii) None of the aforementioned
works enhance the user’s experience through rec-
ommending articles that are semantically related to
the tweet in question. Our browser extension will
explore this addition.

3 Browser Extension Architecture

When creating a browser extension, and the as-
sociated architecture, we wish for the following
properties to be met. These are chosen to max-
imise the extension’s ease-of-use, performance and
informativeness.
D1: Twitter users should be able to use the ser-

vice in-real time in concert with their ordinary
browsing experience.

D2: Users of the service should not have to bear
the computational load of the underlying ar-
chitecture.

D3: The detection model should be interchange-
able, allowing for the browser extension to
improve continually with the latest advance-
ments in the field.

D4: News articles that are semantically related to
the source tweet should enhance the user’s
rumour detection experience.

To meet the above desiderata, we put forward the
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(a) The browser extension’s landing page.

(b) The browser extension with results: a rumour
classification label of “True” and a list of five se-
mantically related news articles.

Figure 2: Screenshots showing the graphical user interface (GUI) of the browser extension.

browser extension architecture seen in Figure 1.
Furthermore, we designed a user-friendly interface
in the form of a Google Chrome browser extension
seen in Figure 2.

A user will interact with the system as follows:

(i) A user browses Twitter via Google Chrome.
Once they identify a particular tweet on which
they wish to perform rumour detection, the
user opens the browser extension and clicks
the “Detect rumour” button seen in Figure 2a
(D1). Once the button has been pressed, the
tweet ID is extracted from the URL of the
tweet and the client’s web browser sends a
POST request to the web server (D2), with the
specific tweet ID as a parameter.

(ii) Once the web server receives this POST re-
quest, three functions occur sequentially:

(a) Using the tweet ID, the web server in-
teracts with the Twitter API to retrieve
the source tweet, and its respective tweet
cascade as outlined in section 3.2.

(b) Once the tweet cascade has been re-
trieved and preprocessed, this is then fed
into the rumour detection model (D3)
seen in section 3.1, and inference is per-
formed. This returns a particular rumour
classification label.

(c) Finally, using the source tweet, the web
server finds semantically-related key-
words and retrieves relevant news articles
from NewsAPI.org (D4), as outlined in
Section 3.3. This returns a list of relevant
news articles to the web server.

(iii) Once the rumour classification label and the
relevant news articles have been retrieved,

these are returned to the user as a JSON object
in response to the original POST request.

3.1 Rumour Detection Model Choice

For this iteration of the rumour detection browser
extension, we choose the Bi-GCN architecture
(Bian et al., 2020) as the machine learning model
used in our service. The training code can be found
in our GitHub repository, or at in the original repos-
itory. This model was chosen as it reported SoTA
performance for the rumour detection task on the
Twitter15 and Twitter16 datasets. The model is
able to represent both the top-down and bottom-up
views of a tweet cascade, each of which is passed
to a dedicated two-layer GCN, along with a shared
tweet feature matrix (linguistic tokens). Bian et al.
(2020) also implement DropEdge to prevent overfit-
ting, and root feature enhancement after each GCN
layer to emphasise the information contained in the
source tweet2. To deploy the model, we train it us-
ing the Twitter16 data, with the same specifications
as in (Bian et al., 2020) (see Section 4) with 5-fold
cross validation, taking the average model as final.
The Bi-GCN, with a hidden dimension size of 64,
is trained using stochastic gradient descent with the
Adam optimiser (η = 5 × 10−4) to minimise the
cross entropy loss. The model is trained for 200
epochs, with early stopping on the validation loss
and patience set to 10 epochs. DropEdge rate is
set to 0.2, dropout rate is set to 0.5 and L2 regu-
larisation is applied to all model parameters with
λ = 1× 10−4.

2We point the interested reader to their original paper for
more details on the model’s functionality.
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3.2 Twitter API

We make use of the Twitter API to retrieve the
raw data required to classify the rumour status of
a particular tweet. Since the Bi-GCN represents
each tweet as a cascade, we first collect the source
tweet from the API to act as the root of the cascade.
We then retrieve all the replies, quote tweets and
retweets related to the root. We continue this pro-
cess recursively, until the algorithm bottoms out at
the leaf tweets. Once we have retrieved the cascade,
each tweet is assigned its textual features according
to the vocabulary used at training (Section 4).

3.3 Semantically-Related News Articles

To find the semantically-related news articles, we
made use of the open-source KeyBERT tool3. This
package leverages embeddings that are created us-
ing a Sentence-BERT architecture (Reimers and
Gurevych, 2019; Devlin et al., 2018), particularly
the all-MiniLM-L6-v2 model found on Hugging-
Face4, to generate the semantically related key-
words. Before passing raw tweet text to KeyBERT,
we first preprocess it with NLTK’s tweet tokenizer5.
Candidate keyword phrases are extracted from N-
gram sequences (one to three grams in particular) in
the document text, and word embeddings are com-
puted for these. KeyBERT returns the candidate
phrases that are most similar to the document text
using the cosine similarity metric, and have been re-
ranked using Maximal Marginal Relevance (MMR)
(Carbonell and Goldstein, 1998) to increase the di-
versity. The keywords are then passed to News-
API.org which returns relevant news articles ac-
cording to a keyword-based query.

4 Datasets

We make use of the Twitter15 and Twitter16
datasets (Ma et al., 2017) to train our rumour de-
tection model. The datasets comprise rumours
linked to newsworthy events at specific time pe-
riods; the statistics of these can be found in Table
1. In particular, these datasets are graphical in
nature. Each node refers to a tweet, where each
node is described by textual features derived from
a pretrained vocabulary of the top 5000 words in
terms of TF-IDF (Sammut and Webb, 2010) score.
Edges between tweets represent their retweet or
response relationships. A collection of tweets in a

3KeyBERT
4all-MiniLM-L6-v2
5NLTK Tokenize

cascade describes an event, and is assigned a ve-
racity tag (rumour (UR), non-rumour (NR), false
rumour (FR) or true rumour (TR)) which were
derived from cross-referencing rumour debunking
websites.

Statistic Twitter15 Twitter16
# of posts 331,612 204,820
# of users 276,663 173,487
# of cascades 1,490 818
# of non-rumours 374 205
# of false rumours 370 205
# of true rumours 372 205
# of unverified rumours 374 203
Avg. time length / cas-
cade (Hours)

1,337 848

Avg. # of posts / cas-
cade

223 251

Max # of posts / cascade 1,768 2,765
Min # of posts / cascade 55 81

Table 1: Statistics of the Twitter16 and Twitter16
datasets.

5 Rumour Detection Model Evaluation

5.1 Out-of-Distribution Performance

An imperative part of the browser extension’s func-
tionality relies on the underlying performance of
the machine learning model used for inference. It
is well accepted that models are able to generalise
well (if trained appropriately) to data that is unseen,
but comes from a similar distribution to the training
data (Hendrycks and Dietterich, 2019; Klaise et al.,
2020; Engstrom et al., 2019). However, using our
browser extension for rumour detection in the wild
necessitates that the model will be used to evalu-
ate tweets that are OOD relative to the data which
it was trained. Concept drift is frequently occur-
ring in social media, particularly when the nature
of discourse underlying different rumours changes
(Horne et al., 2019). Furthermore, end-users of
the browser extension could use the tool outside
the environment in which it was intended to be de-
ployed. In these scenarios, we would expect that
the browser extension would perform suboptimally
on the rumour detection task.

To simulate this effect, we conduct a data mix-
ing experiment. Specifically, we leverage two
datasets that are frequently occurring in the ru-
mour detection literature: Twitter15 and Twitter16.
In this experiment, we create a third TwitterMix
dataset through a linear-interpolation-like com-
bination of the Twitter15 and Twitter16 datasets
TM = pT15 ∗ T15 + pT16 ∗ T16, controlling for
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the size of the dataset by enforcing the following
constraint: pT15 + pT16 = 1. pT15 and pT16 act
as the proportion of the dataset that is selected.
We posit that a model trained on TwitterMix, as
a simple baseline, would be able to mitigate par-
tially the effects of concept drift. This baseline is
akin to a single-shot retraining procedure. Follow-
ing the training regime set out in Section 3.1, we
train three separate models based on the follow-
ing datasets: i) a Twitter15 model on the unmixed
1− pT15 Twitter15 data, ii) a Twitter16 model on
the unmixed 1 − pT16 Twitter16 data, and iii) a
TwitterMix model on the mixed data. In the case of
the Twitter15 and Twitter16, all models were eval-
uated on the pT15 and pT16 data. All models were
evaluated on the TwitterMix data, where we report
the cross-validation performance in the case of the
TwitterMix model. In Figure 3, we view the exper-
imental results where we set pT15 = pT16 = 0.5.
This particular proportion was chosen for the sake
of simplicity. On both the Twitter15 and Twitter16
datasets, we find that their respective models per-
form well, as expected. Similarly, we find that
the Twitter15 model’s performance decays dramat-
ically on the Twitter16 data, and vice versa. Both
models perform equally well on the TwitterMix
data. Furthermore, we find that the TwitterMix
model is able to mitigate some adverse effects when
evaluating a model on OOD data, seen particularly
on the Twitter15 data. While not as performant as
the Twitter16 model on Twitter16 data, it is able
to recover some performance relative to the Twit-
ter15 model. These results confirm findings of
Horne et al. (2019); Paleyes et al. (2022); Lobo
et al. (2020), and show the importance of retraining
schedules and engines when deploying machine
learning models in browser extension tools (Thi-
lakarathna et al., 2020). We perform additional
experiments (seen in Appendix B) altering the pro-
portion of pT15 and pT16. These experiments show
that if adequate care is not placed on constantly
maintaining a representative/diverse training sam-
ple through retraining, or if additional methods are
not put into place to detect when samples are OOD,
the performance of the model decays significantly.

5.2 Imperfect Data Performance

5.2.1 Textual Ablation Experiments

Another implication to consider is that the rumour
detection model’s performance is also constrained
by the Twitter API limits. For example, the quote

tweet endpoint has a 75 request per 15-minute win-
dow threshold6. This would not affect those users
who wish to perform rumour detection on a handful
of tweets, but rather “power users”. In the cases, we
could observe that the true tweet cascade cannot be
sufficiently represented, which in turn could affect
the performance of the rumour detection model.
Similarly, due to the effects of concept drift men-
tioned in Section 5.1, the rumour detection model
would be unable to represent the textual content
of certain tweets in a rumour cascade. As seen in
Section 3.1, the Bi-GCN architecture is trained on
a fixed, static vocabulary (as are many other NLP
solutions). If a tweet were composed of tokens that
were out-of-vocabulary for the rumour detection
model, this tweet would then be underrepresented.

To simulate these effects, we run two ablation
studies. First, we run a text ablation study where
generate new versions of the Twitter15 and Twit-
ter16 datasets according to some textual ablation
proportion. In these new datasets, we randomly
replace, according to the specified proportion, the
textual features of a given tweet with [0:1], which
is the corresponding [index:count] pair for an
<END> tag. Once the new datasets have been cre-
ated, we train a Twitter15 and Twitter16 model, and
report the performance on five-fold cross valida-
tion as done in section 3.1. This was done for the
textual ablation proportions: 0%, 50%, 70%, 90%,
100%. We view the results of this experiment in
Figure 4.

We see that the performance of the two models
dramatically decays as we increase the proportion
of tweets that have their textual features removed.
These results were expected due to the importance
of textual features to rumour detection models. Tex-
tual features have always provided an important
signal in predicting the rumour status of a partic-
ular tweet (Section 2). The same is true with the
Bi-GCN model. These results stress that without
the proper, and full, representation of tweet cas-
cades, the performance of the rumour detection
model drops dramatically.

5.2.2 Node Ablation Experiment
Similar to the textual feature ablation experiment,
we conduct a node ablation experiment. We first
generate new versions of the Twitter15 and Twit-
ter16 datasets according to some node ablation
proportion. However, instead of removing textual

6Quote Tweets API
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Figure 3: Result from the dataset mixing experiment for the Twitter15, Twitter16 and TwitterMix models, with
pT15 = pT16 = 0.5. Each subplot indicates the evaluation dataset, and the legend the model versions.
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Figure 4: Results from the textual and node ablation experiments, across varying ablation proportions, for the
Twitter15 and Twitter16 datasets.

features, we randomly remove nodes, and their de-
scendents, from every tweet cascade7. This was
done to simulate the scenario where certain tweets
would not be retrieved by the Twitter API. We
train a Twitter15 and Twitter16 model on these new
datasets and report the performance on five-fold
cross validation as done in section 3.1. We repeat
this experiment for the following node ablation pro-
portions: 0%, 50%, 70%, 90% and 99.9%. The
results of these experiments are specified in Figure
4.

Surprisingly, we did not observe the same ef-
fect as was seen in the textual ablation experiments
(Figure 4). Instead, we see that the Bi-GCN was
able to was able to maintain, and sometimes im-
prove, performance relative to the baseline, across
both datasets. This was achieved until over 90%
of the tweets in each cascade had been removed.
After this point, the models’ predictive capability
sharply decreased – once enough tweets had been
removed, both models lose enough signal from the
input data to classify the rumour status accurately.
However, we can contrast these results with the

7We did not remove the root nodes from the tweet cascades
as the label for each tweet cascade is tied to the root node.

early rumour detection study in the original paper
by Bian et al. (2020). Their work examined the
Bi-GCN’s performance on the task of early rumour
detection. Although our experiment does not re-
move tweets from the cascade temporally (as we do
not have access to the timestamp for each tweet),
we are, essentially, creating an experiment that is
very similar to this experiment in Bian et al. (2020).

However, an interesting result is that in both
datasets, we observed that the models were able
to score better than the baseline even with fewer
tweets representing the cascade. When randomly
removing a tweet, and its descendents, from a cas-
cade, we have no rules enforcing what type of
tweets are removed from the cascade. If we ob-
serve the rumour tweet in Figure 5, tweets that
express doubt in response to a root tweet indicates
that the tweet is potentially a rumour (Kwon et al.,
2017). As such, removing the tweets that express
support make the tweet seem more rumour-like.
Similarly, removing the tweets that express doubt
from the non-rumour would make this tweet more
non-rumour like. These situations would make
each of the tweet cascades seem more like a proto-
typical example of their respective class.
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Figure 5: Prorogation structure of two source tweets
taken from Ma et al. (2017). Red nodes express doubt,
blue nodes express neutrality and black nodes express
support. The green node is the root of the cascade.

A similar effect could, by chance, be observed
in our node ablation experiments. By randomly
removing certain nodes, we inadvertently simplify
the rumour detection task for that tweet as it would
seem more prototypical of its class.

6 Latency Experiments

Similar to the work done by Gupta et al. (2014),
we wish to evaluate the browser extension’s perfor-
mance with respect to response time. This is calcu-
lated as the amount of time taken for our browser
extension to respond to a particular rumour detec-
tion request. In our experiment, we measure the
response time across 50 randomly selected news-
worthy tweets of varying size. We view the cumu-
lative distribution function (CDF) of the response
times in Figure 6.

2 4 6 8 10 12 14
x (Response time in seconds)

0.0

0.2
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Figure 6: CDF for response time taken for rumour de-
tection across 50 tweets.

Observing Figure 6, we see that our browser
extension is able to provide a response for 90%
of requests in six seconds or less. This is an im-
provement over the 82% of requests in Gupta et al.
(2014); however, their experiment analysed the
CDF across 5.4 million requests. Due to time con-
straints, our sample size is significantly smaller.
Yet, we can make some initial comparisons be-
tween the two solutions. Our work retrieves the
entire tweet cascade for a tweet, and predicts the ru-
mour status using the Bi-GCN model. TweetCred,

on the other hand calculates 45 handcrafted fea-
tures based on the tweet itself, and uses SVM-rank
to assign a credibility score. Given the fact that
our approach uses far more information per tweet,
and a more sophisticated and computationally in-
tensive model8, this is still an encouraging result
for our browser extension. Unfortunately, the other
browser extensions mentioned in Section 2 do not
report results for a response time experiment. As
such, we are unable to compare our extension to
other solutions on this particular axis.

7 User Study

To determine whether the browser extension
provides benefit to Twitter users, we ran an
anonymised user study. We asked 19 participants
to perform five rumour detection tasks (RDTs). In
this context, a RDT is divided into two questions.

(i) Before performing rumour detection using the
browser extension, determine the rumour sta-
tus of the current tweet.

(ii) After performing rumour detection, assess
whether the browser extension aid in deter-
mining the true status of the tweet.

Each set of questions was asked on a preselected
tweet that was newsworthy at that instance in time.
This was done to ensure that the tweets used in the
study were as similar as possible to the training data
distribution on which the model was trained (see
Section 5.1 for out-of-distribution performance).

After performing these tasks, we asked the users
to comment on their overall experience using the
browser extension. The user study was facili-
tated through the use of anonymised survey. The
users accessed the server architecture through a re-
mote Google Cloud Platform server (GCP), and the
browser extension itself from a shareable Google
Chrome Store link. The user study was approved
by a research ethics board (see Section 8). The
results from the RDT and overall experience feed-
back are seen in Figures 7 and 8, respectively. See
Appendix A for full details on the user study.

Prior to performing rumour detection, we see
that there is considerable disagreement amongst the
annotators. Particularly, we find that Randolph’s
Kappa is κ = 0.345 (Randolph, 2010). These re-
sults confirm an assumed truth in the field: rumour

8Most notably, our browser extension was able to classify
a tweet cascade with over 579 retweets, 343 quote tweets and
454 replies in approximately 14 seconds.
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Figure 7: Results from the RDT in the user study.

Percentage of responses (%)

I found this browser extension
to be very useful.

I would recommend this browser
extension to my friends and

family.

I would use this browser
extension again in my personal

time.

5.26

5.26

10.53

15.79

5.26

5.26

42.11

31.58

52.63

36.84

57.89

31.58
Strongly disagree
Disagree
Neither agree nor disagree
Agree
Strongly agree

Figure 8: Results from global feedback in the user study.

detection, a highly subjective task, is difficult for
humans as the labels are not necessarily objective
(Touvron et al., 2023). This further motivates the
need for assistive tools such as this browser exten-
sion. Contrastingly, we see that, generally, annota-
tors found that the browser extension supported
their rumour detection experience. κ = 0.443
which supports the fair agreement on the browser
extension’s positive impact on their rumour detec-
tion experience. An interesting result is that this
kappa score is similar to the user agreement on
the credibility score (43%) obtained for TweetCred
(Gupta et al., 2014). Whilst the questions posed
to the users are different, these results show that
there is some benefit to be gained through using
additional rumour detection tools. However, there
needs to be additional measures put into place to
make users more confident in the tool’s perfor-
mance, which would lead to higher user agreement
(see Section 8).

Furthermore, we asked the users to rate their
agreement to three questions on a five-point Likert
scale. Observing Figure 8, we see that the feed-
back for the browser extension is generally posi-
tive. 78.95% of the participants in the user study
agreed or strongly agreed with finding the browser
extension to be useful. However, we see that there
was a small portion of users who either disagreed
or were ambivalent to the three statements. This
study did not require the participant to be a Twitter
user. As such, the study could have attracted partic-

ipants who: do not use Twitter frequently, do not
use Twitter as a news source, or those users that
do not have a Twitter account at all. These users
would not see the need to have access to a tool such
as this browser extension as they would have no
use for it personally.

8 Conclusion and Future Work

In this work, we put forward a novel browser exten-
sion that allows Twitter users to perform rumour
detection, leveraging the performance from SoTA
models. Our work shows that this tool provides
benefit to those Twitter users wanting autonomy
over their rumour detection. However, we note
that our work is merely the first iteration in a se-
ries of deployments. Future work could explore
additional mechanisms to allow the browser exten-
sion to cope with OOD data. Online retraining
(Horne et al., 2019) has been shown to be effec-
tive in minimising the effects of concept drift; this
is similar to the trainer pipeline in Veritas (Thi-
lakarathna et al., 2020). Furthermore, Diethe et al.
(2019) show a more sophisticated paradigm with
their continual learning approach. Additionally, we
could extend the browser extension’s functionality
through allowing its users to submit examples of
tweets they believe to be (non-)rumours (with evi-
dence) to some community-moderated data store.
This process could be used to create more up-to-
date datasets for rumour detection.
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Limitations

The work suffers from two main limitations, the
first of which is the current system’s reliance on the
Twitter API, and its changing access requirements.
At the time of writing, Twitter API users will no
longer be able to make use of the GET API end-
points, which include the endpoints used to fetch
the information needed for a tweet’s cascade repre-
sentation (Section 3.2), under the free tier. Instead,
users will have to pay $100 per month9. As such,
this limits the use-case of the browser extension
that we have created. However, the flexible archi-
tecture that we have created allows the browser
extension to be ported to a different context. In-
stead of focussing on Twitter, a similar use-case
would be found with Sina Weibo, for example. The
browser extension could focus on fake news de-
tection, rather than on rumour detection. Each of
these disciplines have their own state-of-the-art so-
lutions in the literature, and exploring practical
tools that would leverage their performance would
be a worthwhile research direction.

A second limitation lies in the small sample size
of the user study. Furthermore, the participants
themselves could be biased in their evaluation of
the browser extension because of their relation
to the author; the browser extension was shared
via a university mailing list. However, due to the
anonymity of the study, we hope that the partici-
pants of the user study would be objective in their
assessment of the browser extension. Nevertheless,
we find that these initial results support and en-
courage the viability of a Twitter rumour detection
extension. However, a potential direction for future
work would be extending the browser extension to
a wider, more diverse audience.
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A User Study Information

The participants, all of whom are fluent in English,
accessed the survey via an anonymised Google
Form sent via a university undergraduate mailing
list. The web server architecture was deployed on
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reproducibility and efficiency.
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Figure 9: Result from the dataset mixing experiment for the Twitter15 and Twitter16 models, with pT15 = 0.3 and
pT16 = 0.7.
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Figure 10: Result from the dataset mixing experiment for the Twitter15 and Twitter16 models, with pT15 = 0.7 and
pT16 = 0.3.
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