Correcting Semantic Parses with Natural Language through Dynamic
Schema Encoding

Parker Glenn, Parag Pravin Dakle, Preethi Raghavan
Fidelity Investments, Al Center of Excellence
{parker.glenn, paragpravin.dakle, preethi.raghavan}@fmr.com

Abstract

In addressing the task of converting natural lan-
guage to SQL queries, there are several seman-
tic and syntactic challenges. It becomes in-
creasingly important to understand and remedy
the points of failure as the performance of se-
mantic parsing systems improve. We explore
semantic parse correction with natural language
feedback, proposing a new solution built on the
success of autoregressive decoders in text-to-
SQL tasks. By separating the semantic and syn-
tactic difficulties of the task, we show that the
accuracy of text-to-SQL parsers can be boosted
by up to 26% with only one turn of correction
with natural language. Additionally, we show
that a T5-base model is capable of correcting
the errors of a T5-large model in a zero-shot,
cross-parser setting.

1 Introduction

The task of parsing natural language into structured
database queries has been a long-standing bench-
mark in the field of semantic parsing. Success at
this task allows individuals without expertise in the
downstream query language to retrieve informa-
tion with ease. This helps to improve data literacy,
democratizing accessibility to otherwise opaque
public database systems.

Many forms of semantic parsing datasets ex-
ist, such as parsing natural language to program-
ming languages (Ling et al., 2016; Oda et al., 2015;
Quirk et al., 2015), Prolog assertions for exploring
a database of geographical data (Zelle and Mooney,
1996), or SPARQL queries for querying a large
knowledge base (Talmor and Berant, 2018). The
current work discusses parsing natural language
into a structured query language (SQL), perhaps
the most well-studied sub-field of semantic parsing.

Most text-to-SQL works frame the task as a one-
shot mapping problem. Methods include transition-
based parsers (Yin and Neubig, 2018), grammar-
based decoding (Guo et al., 2019; Lin et al., 2019),

29

Give the flight numbers of flights leaving
from APG
Question
SELECT Flights.FlightNo FROM
DETOUR Airlines JOIN Flights WHERE
»\(Airlines.Abbreviation = 'APG'
V. Step 1: For each row in airlines table, find

the corresponding rows in flights table
Step 2: find FlightNo of the results of step 1
whose Abbreviation equals APG

Incorrect Parse

Explanation

abbreviation is wrong. Take source
airport in place of it.

Feedback

fA

Correct Parse

SELECT FlightNo FROM
Flights WHERE
= IAPGI n

Figure 1: Example item from the SPLASH dataset.
An incorrect parse from a neural text-to-SQL model is
paired together with natural language feedback com-
menting on how the parse should be corrected.

and the most popular approach as of late, sequence
to sequence (seq2seq) models (Scholak et al., 2021;
Qi et al., 2022; Xie et al., 2022).

In contrast to the one-shot approach, conversa-
tional text-to-SQL aims to interpret the natural lan-
guage to structured representations in the context
of a multi-turn dialogue (Yu et al., 2019a,b). It
requires some form of state tracking in addition to
semantic parsing to handle conversational phenom-
ena like coreference and ellipsis (Rui Zhang, 2019;
Hui et al., 2021; Cai et al., 2022).

Interactive semantic parsing frames the task as
a multi-turn interaction, but with a different ob-
jective than pure conversational text-to-SQL. As
a majority of parsing mistakes that neural text-to-
SQL parsers make are minor, it is often feasible
for humans to suggest fixes for such mistakes us-
ing natural language feedback. Displayed in Fig-
ure 1, SPLASH (Semantic Parsing with Language

Proceedings of the 5th Workshop on NLP for Conversational AI (NLP4ConvAI 2023), pages 29-38
July 14, 2023 ©2023 Association for Computational Linguistics

Assistance from Humans) is a text-to-SQL dataset
containing erroneous parses from a neural text-to-
SQL system alongisde human feedback explaining
how the interpretation should be corrected (Elgo-
hary et al., 2020). Most similar to SPLASH is
the INSPIRED dataset (Mo et al., 2022), which
aims to correct errors in SPARQL parses from the
ComplexWebQuestions dataset (Talmor and Be-
rant, 2018). While the interactive semantic parsing
task evaluates a system’s ability to incorporate hu-
man feedback, as noted in Elgohary et al. (2020),
it targets a different modeling aspect than the tra-
ditional conversational paradigm. Hence, good
performance on one does not guarantee good per-
formance on the other task.

We make the following contributions: (1) We
achieve a new state-of-the-art on the interactive
parsing task SPLASH, beating the best pub-
lished correction accuracy (Elgohary et al., 2021)
by 12.33% using DestT5 (Dynamic Encoding of
Schemas using T5); (2) We show new evidence that
the decoupling of syntactic and semantic tasks im-
proves text-to-SQL results (Li et al., 2023), propos-
ing a novel architecture which leverages a single
language model for both tasks; (3) We offer a new
small-scale test set for interactive parsing!, and
show that a T5-base interactive model is capable of
correcting errors made by a T5-large parser.

2 Dataset

In this work, we evaluate our models on the
SPLASH dataset as introduced in Elgohary et al.
(2020). It is based on Spider, a large multi-
domain and cross-database dataset for text-to-SQL
parsing (Yu et al., 2018). Incorrect SQL parses
were selected from the output of a Seq2Struct
model trained on Spider (Shin, 2019). Seq2Struct
achieves an exact set match accuracy of 42.94% on
the development set of Spider.

Alongside the incorrect parse, an explanation
of the SQL query is generated using a rule-based
template. Annotators were then shown the original
question ¢ alongside the explanation and asked to
provide natural language feedback f such that the
incorrect parse p’ could be resolved to the final gold
parse p.

Each item in the SPLASH dataset is associated
with a relational database D. Each database has a
schema S containing tables 7' = {t1, t2, ...t } and
columns C = {ci,...;cl 2,c2 cV N

ey Cpy s CTs ey Cpo s €1 5wy Cry s

"https://github.com/parkervg/DestT5

30

where N is the number of tables, and n; is the
number of columns in the ¢-th table. Figure 1 dis-
plays an example item from the SPLASH dataset,
excluding the full database schema S for brevity.

3 Model

3.1 Dynamic Schema Encoder

In converting natural language to SQL, a parser
must handle both the semantic challenges in se-
lecting the correct tables and columns from the
database schema, and generate valid SQL syntax.
As shown in Li et al. (2023), decoupling the schema
linking and skeleton parsing tasks in text-to-SQL
improves results when applied to the Spider dataset.
We take a similar approach with the SPLASH
dataset, separating the semantic and syntactic chal-
lenges of text-to-SQL by introducing an auxiliary
schema prediction model. This auxiliary model
serializes only the most relevant schema items into
the input for the final seq2seq text-to-SQL model.

The task of the schema prediction is to output
only those schema items (tables, columns, values)
that appear in the gold SQL p. The inputs can be
represented as follows.

1

. 1
101,

ey Oy

N

’|t]\/’ . Cl g ees N

nn

d=1 ,C 1)
r = ([CLS),q,[SEP),d,[SEP],p',[SEP], f)
2

Where d represents a flattened representation of
the database schema S, ¢ is the question, p’ is the
incorrect parse from SPLASH, and f is the natural
language feedback. For each schema item, the task
is to predict the presence or absence of the item in
the final gold SQL parse p.

By introducing this auxiliary schema prediction
model, the final text-to-SQL model should only be
tasked with stitching together the predicted schema
items into valid SQL logic. As shown in the exam-
ple in Figure 2, the text-to-SQL model is able to
filter out the unnecessary “join” clauses from the
incorrect parse, given the only table predicted by
the schema prediction is “Flights”.

This approach was validated by carrying out a
simple experiment. We serialize only those “gold”
schema items that appear in the translated SQL and
fine-tune a T5-base model?® on the Spider dataset
to achieve a best 78.10% execution accuracy. This

Zhttps://huggingface.co/tscholak/t5.1.1.1m100k.base

https://github.com/parkervg/DestT5
https://huggingface.co/tscholak/t5.1.1.lm100k.base

Output Sequence ¥

Pre-trained Language Model Text-to-SQL
Give the flight numbers of SELECT Flights.FlightNo FROM Airlines JOIN abbreviation is wrong.
flights leaving from APG. Flights WHERE Airlines.Abbreviation = 'APG' Take source airport in
place of it.
Question Incorrect Parse Filtered Serialized Schema ¥, Feedback
Output Sequence ¥1
‘ Pre-trained Language Model ‘ Schema Prediction

T T

SELECT Flights.FlightNo FROM Airlines JOIN

Give the flight numbers of
Flights WHERE Airlines.Abbreviation = 'APG'

flights leaving from APG.

f !

abbreviation is wrong.
Take source airport in
place of it.

Question Incorrect Parse

Figure 2: Model architecture. In “Schema Prediction”,

Eull Serialized Schema Feedback

the database schema is filtered to only the relevant items

41 using a classifier or generator described in Section 3.1. In “Text-to-SQL”, the output of the schema prediction

model is used to generate the final parse ys.

beats the vanilla T5-base model? by 18.7%, demon-
strating that successful schema prediction sets up a
text-to-SQL model to predict the final query with
high accuracy.

Schema Classifier We adopt the RoOBERTa-large
schema prediction described in Li et al. (2023) for
our classification model. To alleviate the label im-
balance problem caused by sparse schema targets,
focal loss is used as the loss function (Lin et al.,
2017). Focal loss adds a factor (1 — p;)” to stan-
dard cross entropy loss, reducing relative loss for
well-classified examples and putting more focus on
misclassified examples.

N

ZFL(yHyl

i=1

1

N

N n; '
Ly = Z Z (Y5> 9)
i=1 k=1
3)

Where F'L denotes the focal loss function. y; is
the ground truth label of the i-th table, either O or
1 indicating the presence or absence, respectively.
Similarly, y}g is the ground truth label of the k-th
column in the ¢-th table.

Rather than using a hard probability threshold,
hyperparameters k£ and ko are introduced. Tak-
ing the probabilities from the cross-encoder, only

*https://huggingface.co/tscholak/1zhaSono

the top-k; tables and top-ks columns are kept and
serialized into a ranked schema serialization, de-
scending by probability.

Schema Generator In addition to the previously
discussed RoBERTa-large cross-encoder, we also
experiment with a generative schema prediction
model. T5 (Text-to-Text Transfer Transformer) is a
transformer-based encoder-decoder model that con-
verts all NLP problems into a text-to-text format
(Raffel et al., 2020). In our task setup, the en-
coder applies its bidirectional attention mechanism
over the features from SPLASH and the serialized
schema items, depicted in Equation 2. The decoder,
then, generates the correct SQL parse, employing
teacher forcing during the training phase. It is fine-
tuned using standard cross-entropy loss.

M
=Y " yilog(¥)
=1

The target label y; will always take the form
of tokens comprising the gold schema items, i.e.,
those tables and columns that appear in the correct
SQL parse. We format the multi-label targets y as
text following the structure shown below. Note that
this is the same structure we use to serialize the
flattened database schema d in Equation 1.

[db_id] | [table] [column] (...)

“)

31

https://huggingface.co/tscholak/1zha5ono

Schema Model | F1 Precision Recall
Generator 88.98 90.84 89.18
Classifier 3450 22.12 94.41

Table 1: Performance of schema prediction models in
predicting gold schema items on the SPLASH test set.
Note that the classification-based method of Li et al.
(2023) trades low precision for high recall®.

As the theoretical output space of g is the un-
constrained vocabulary of the T5 model, schema
hallucinations are possible, and column/table pairs
may be generated that do not exist in the database
context*. A trade-off in this approach, however, is
that the generation objective allows us to bypass
the need for hyperparameters k; and ko, as we sim-
ply keep the greedy argmax of ¢ directly at each
timestep. As shown in Table 1, this optimization
objective results in far greater precision than the
classification approach but suffers a drop in recall.

3.2 Text-to-SQL Encoder/Decoder

We use a TS5-base model to encode the unified input
(with schema predictions) and generate the SQL
query (Raffel et al., 2020).

3.3 SQL Normalization

We follow the same normalization procedure de-
scribed in Li et al. (2023). Specifically, we normal-
ize both the incorrect parses and gold SQL queries
by (1) replacing table aliases with their original
names, (2) adding an ASC keyword if ORDER BY
doesn’t already specify, (3) lower-casing all text,
and (4) adding spaces around parentheses and re-
placing double quotes with single quotes.

4 Experiments

4.1 Experimental Setup

We run a series of experiments on the SPLASH
dataset to evaluate the robustness of the proposed
method. The training set contains 2,775 unique
questions from the train split of Spider. SPLASH
annotators were also asked to generate paraphrases
for a single piece of feedback to improve diversity,
resulting in a total of 7,481 items in the train split.
The SPLASH test set is based on 506 items from

“We note that Scholak et al. (2021) offers a solution for
these schema hallucinations, but leave the integration of Picard
to future work.

>Not considered in this table is the ranking-enhanced na-
ture of the RoBERTa-large method.

32

0.8

0.7

- 0.6

-05

Required Edits

-04

-03

5+

-02

medium hard
Gold Query Difficulty

Figure 3: DestT5 error rates on the SPLASH test set,
using the Spider exact match metric. As the distance (
Required Edits) from the incorrect parse to the gold
query increases, error rates also increase.

the Spider dev split, coming out to 962 total test
items with paraphrasing.

4.2 Evaluation Metrics

Exact Set Match (EM) This metric evaluates
the structural correctness of the predicted SQL. It
checks for an orderless set match between each
component in the predicted and gold query, ignor-
ing predicted values. Many early text-to-SQL mod-
els only report EM accuracy.

Execution Accuracy (EX) Execution accuracy
compares the execution results of the predicted
SQL query and the gold SQL query. Since
two SQL queries that do not have an exact
set match may execute to the same results
(e.g. “...ORDER BY val ASC LIMIT 1” and
“SELECT MAX(val)™), this metric serves as a per-
formance upper bound. However, this metric can
suffer from a high false positive rate. For this rea-
son, we use the test suite execution accuracy with
optimized database values described in Zhong et al.
(2020).

4.3 Implementation Details

Text-to-SQL All text-to-SQL models use a fine-
tuned T5-base. We use the same hyperparame-
ters specified in the PICARD codebase®. Models
were fine-tuned with Adafactor (Shazeer and Stern,
2018) with a learning rate le-4, batch size 16 for
256 epochs. A linear warm-up for the first 10%
of training steps is employed, followed by cosine
decay.

6https: //github.com/ServiceNow/picard

https://github.com/ServiceNow/picard

‘ Shuffled Feature EM % Change

Schema Model EM% \ Feedback Incorrect Parse
None 41.17 | - -
All Generator 51.35 -2.17 -28.27
Classifier 4979 | -2.7 -11.64
Question Generator 4896 | -4.47 -30.77
T ues Classifier 3597 | -11.23 29.94
_ Explanation Generator 5343 | -1.77 -18.09
XPINAON | o ssifier 4927 | -2.08 -17.57
- Question Generator 47.00 | -5.53 -38.68
- Explanation | Classifier 38.98 | -1247 -36.9

Table 2: Results on SPLASH test set with various features and schema prediction models. Generator refers to the
T5-large model, and Classifier refers to the RoBERTa-large model of Li et al. (2023). The models are evaluated on
the test set with shuffled features to examine the extent to which they utilize the unique interactive components of

the parsing task. In bold is DestTS5.

Schema Generation T5-large was used for the
schema generation model. It was fine-tuned using
Adafactor with a constant learning rate of le-4 and
a batch size of 4 for 512 epochs.

Schema Classification For the schema classifica-
tion model, we follow the implementation and hy-
perparameters described in Li et al. (2023). Specifi-
cally, we train a cross-encoder based on RoBERTa-
large (Liu et al., 2019). AdamW (Loshchilov and
Hutter, 2017) with a batch size of 32 and a learning
rate of le-5 is used for optimization. Focal loss
is used to alleviate the label-imbalance problem
that comes from sparse schema targets. The thresh-
old hyperparameters k1 and ko are set to 4 and
5, respectively. Specifically, only the top-4 tables
and top-5 columns with the highest logits are kept
and serialized as a ranked input to the text-to-SQL
model.

4.4 Evaluation

Unlike the Spider dataset, performance on the
SPLASH dataset is more nuanced and must be
viewed holistically. To this end, we plot both “Ex-
act Match %” and “Shuffled Feature Change” in
Table 2. The ideal model is one that achieves a com-
petitive exact match metric, while experiencing a
large drop in performance with shuffled feedback
and incorrect parses’. We find the highest exact
match accuracy when removing the explanation
of the incorrect parse, and by using a T5-based

"We note that a T5-base model fine-tuned with the Spider
train set achieves 50.00 EM on the SPLASH test set.

33

generative schema prediction model. This model,
denoted in bold in Table 2, is later referred to as
DestT5 (Dynamic Encoding of Schemas using T5).
Achieving an EM score of 53.43%, DestT5 beats
the previous best score of NL-EDIT by 12.33%
(Elgohary et al., 2021).

Using the scripts provided from Elgohary et al.
(2021) to count SQL edits, we plot error rates on the
SPLASH test set for both gold query difficulty and
the number of edits. “Difficulty” is defined by Yu
et al. (2018) and classifies each SQL query into one
of four categories depending on the complexity of
the query. As seen in the heatmap, error rates share
a positive correlation with both SQL difficulty and
edits required to reach the gold parse.

4.5 Generalizing to Other Parsers

In recent years, massive strides have been made in
the task of semantic parsing. Since the release
of the SPLASH dataset, variations of TS5 have
largely taken the top spots in the Spider leader-
board. As of April 2023, all 6 models in the top 10
with corresponding publications build off of some
T5 model. It is fair, then, to ask if performance
on the SPLASH dataset actually corresponds to
the ability to fix errors made with modern parsing
systems, such as those utilizing T5.

To this end, we evaluate DestT5 on the crowd-
sourced test sets’ based on errors made by EditSQL
(Rui Zhang, 2019), TaBERT (Yin et al., 2020), and
RAT-SQL (Wang et al., 2020). Additionally, we

*https://github.com/MSR-LIT/NLEdit

https://github.com/MSR-LIT/NLEdit

Seq2Struct (SPLASH) EditSQL TaBERT RAT-SQL T5-Large
Spider Dev EM% 41.3 57.6 65.2 69.7 71.2
Spider Dev EX% - - - - 74.4
NL-EDIT
SPLASH Test Set EM% 41.1 28 22.7 21.3 -
SPLASH Test Set EX% - - - - -
EM A w/ Interaction +20.3 +8.9 +5.9 +4.3 -
EX A w/ Interaction - - - - -
DESTTS (OURS)
SPLASH Test Set EM% 53.43 31.82 31.47 28.37 26.1
SPLASH Test Set EX% 56.86 40.3 28.84 36.53 30.43
EM A w/ Interaction +26.15 +10.16 +8.13 +5.71 +2.83
EX A w/ Interaction - - - - +3.3

Table 3: Evaluating zero-shot generalization of DestTS5 to other modern parsers. Shown are the scores without
interaction on the full Spider dev set, as well as the A w/ Interaction on the Spider dev set following single-turn
corrections with NL-EDIT and DESTTS. This change is a byproduct of the size of the test sets (962, 330, 267, 208,
and 112 left-to-right), and it is expected to increase proportional to the reported Test Set EM %/EX % as the size of
the dataset increases. We indicate instances where the scores are not publicly available for a given model with -.

Text-to-SQL Model

Schema F1 # Hallucinated Schema Items

T5-large® 79.00
T5-base 73.92
DestT5 80.09

92
121
59

Table 4: Analysis of the schema items produced by the final text-to-SQL model. DestT5, with an auxiliary schema
prediction model, identifies the presence of gold schema items with a higher F1 than a T5-large text-to-SQL model

alone.

compile a new, small-scale test set of errors made
by a fine-tuned T5-large model'? on the Spider dev
set. It contains 112 items annotated with feedback
referencing the erroneous parse made by the model
and is later referred to as the “T5-large Test Set”.

Table 3 plots the end-to-end accuracy of DestT5.
As mentioned in Elgohary et al. (2021), there is a
notable drop in the end-to-end gains as the accuracy
of the base parser improves. This is likely due to
the fact that as parsers improve, most of the errors
are based on very complex gold SQL queries.

4.6 Error Analysis
4.7 Errors on T5-Large Test Set

Figure 4 depicts the outputs of a randomly selected
set of interactions from the T5-large test set. We
discuss some of the examples below.

https://huggingface.co/tscholak/3vnuv1ve

34

In Example 1, the original T5-large text-to-SQL
model fails to map the phrase “all lines” to both
columns line_1 and line_2. However, even with
the feedback “Find line_2 as well”, the auxiliary
schema prediction model fails to select “line_2" as
a schema candidate. As a result, the final DestT5
text-to-SQL is not equipped with enough context
to generate the correct parse.

In Example 2, an ‘easy’ gold query
(“SELECT MIN(loser_rank) FROM matches”) is
incorrectly parsed. This is likely due to the same
reason described in Lin et al. (2020), characterized
by difficulty in mapping “predominantly” to
spoken by the largest percentage of the population:
it remains challenging for large pre-trained models
to ground terms like “best rank” to the DB schema.
Pre-training tasks have been proposed in attempts
to further improve schema grounding in LLMs, but
more work can be done to align LLMs with lexical

https://huggingface.co/tscholak/3vnuv1vf

Which address holds the most number of students currently? List the address id and all lines.

SELECT address_id, line_1 from addresses...

Find line_2 as well

DestTs
>< SELECT Addresses.address_id. Addresses.line_1 FROM Addresses JOIN Students ON P
Addresses.address_id = Students.current_address_id GROUP BY Addresses.address_id nel oot
ORDER BY COUNT(*) DESC LIMIT 1
What is the best rank of losers across all matches?
SELECT loser_rank FROM matches
Find the minimum loser_rank
DestTs
SELECT min(loser_rank) FROM matches
Give the number of Jetblue Airways flights.
SELECT COUNT(*) from Airlines join Flights on Airlines.uid = Flights.uid
WHERE Airlines.Abbreviation = ‘Jazz' and Airlines.Airline = ‘Jazz'

DestT5

We only need to find where airline = 'JetBlue Airways'

Predicted Schemas

SELECT COUNT(*) FROM Flights WHERE Airline = ‘JetBlue Aiways'

For all of the 4 cylinder cars, which model has the most horsepower?

SELECT Model_list. model FROM Cars_data JOIN Model_list ON
Cars_data.id = Model_list.modelid WHERE Cars_data.cylinders = 4

Incorrect Parse

Make sure you only return the model with highest

value for horsepower. We should get model column

from car_names table.

DestT5

X

horsepower DESC LIMIT 1

Predicted Schemas

SELECT model FROM Cars_data WHERE cylinders = 4 ORDER BY

Figure 4: Example outputs of DestT5 on errors made with a T5-large text-to-SQL model. When the schema
prediction model fails to identify schema items, the final text-to-SQL output is incorrect. However, when the schema
prediction model is correct, it allows the text-to-SQL component to focus its efforts on generating valid SQL syntax,
faithful to the feedback. See section 4.7 for more detailed analysis of these examples.

constructs grounded to the syntax of semantic
parsing tasks (Deng et al., 2021; Yin et al., 2020).
In one turn of interaction with DestT5, this syntax
error is corrected.

Example 4 displays an interaction parsing
long feedback with mixed success. The inter-
action allows DestT5 to remedy the missed se-
mantic mapping from “most horsepower” to the
“ORDER BY horsepower” clause, but it hallucinates
the “Cars_data” from the “model” table, failing
to learn from the feedback saying otherwise.

5 Discussion

5.1 Impact of Auxiliary Schema Prediction

Table 2 displays the EM of a standard text-to-SQL
model with no auxiliary schema prediction (with
all schema items directly serialized as input). As
shown, the score drops from 51.35% with an auxil-
iary generator to 41.17% without. We hypothesize
that given the increased number of features in in-
teractive semantic parsing (explanation, feedback,

35

incorrect parse), distilling the role of the text-to-
SQL model to primarily handling syntax parsing
prevents excessive proliferation of feature interac-
tions.

Table 4 displays the schema F1 scores of var-
ious text-to-SQL models. Schema F1 is calcu-
lated by comparing those schema items (tables,
columns) generated in the predicted parse to the
schema items in the gold SQL. As shown, imple-
menting a dedicated schema prediction model into
a text-to-SQL pipeline helps identify those gold
schema items with a higher F1 score, and mini-
mizes schema hallucinations (i.e. generating ta-
bles/columns not present in the database schema).

How often does the text-to-SQL model use the
predicted schemas? We evaluate the usage rates
of the predicted schema items by the final text-to-
SQL model. Specifically, we examine the rate at
which DestT5 either predicts a schema item not
directly serialized by the schema prediction model,
or fails to integrate a schema item that was serial-

ized. We find that on the SPLASH test set, there
are 112 instances of overpredictions by the text-
to-SQL model and 210 underpredictions. There
is an average distance of 0.81 between the seri-
alized schema items and gold schema items, and
0.93 between the schema items predicted by the
text-to-SQL model and gold. This indicates that,
if the text-to-SQL model were explicitly restricted
to use only the schema items generated by the aux-
iliary schema prediction model, performance will
improve. We leave this and other combinations of
the two models (such as joint training) to future
work.

5.2 Evaluating Interactive Parsing

The goal of interactive semantic parsing is not
to parse the most interactions correctly on the
SPLASH test set, but more specifically to parse
those interactions correctly that the original text-to-
SQL model parsed incorrectly. For example, if a
hypothetical interactive parsing model A achieves
a high EM% on the SPLASH test set, but the “A
w/ Interaction” metric with modern parsers is small,
then the model serves minimal utility in an actual
conversational setting. On the other hand, if a
model B performs poorly on the SPLASH test
set but demonstrates a high “A w/ Interaction”, we
would deem this model as the better interactive
semantic parser.

We argue, then, that the “Correction Acc. (%)”
metric from SPLASH should be replaced in favor
of the end-to-end accuracy, referred to as “A w/
Interaction” in Elgohary et al. (2021).

Specifically, future work should include Execu-
tion Accuracy (EX%) along with Exact Set Match
(EM%). As the set of errors made by modern
parsers increasingly drifts towards more difficult
gold SQL parses, it becomes more likely that the
EM% and EX% scores will be disjoint. Examining
the errors by T5-large, it was common for a gold
parse to be expressed with an “EXCEPT SELECT”
clause, whereas the predicted SQL executed identi-
cally with a “NOT IN” clause.

Additionally, as depicted in Table 3, the EX%
score is higher than EM% for all test sets except for
TaBERT. This is due to the fact that TABERT does
not predict values. Instead, it uses the placeholder
“value” instead of string values, and “LIMIT 0 in
limit clauses'!. Though these instances are not

""We find this odd, as the feedback provided in the TABERT
test set comments on the values

36

judged as incorrect with EM, they are penalized
with EX.

6 Conclusion

We present a new model, DestT5 (Dynamic
Encoding of Schemas using T5), which achieves a
new state-of-the-art correction accuracy on the in-
teractive parsing dataset SPLASH. By using T5 as
a schema prediction model, we display better per-
formance compared to classification-based meth-
ods. We validate our results on a new test set for
interactive semantic parsing based on a modern
parser, and offer recommendations for evaluating
future systems.

Limitations

As mentioned in Table 3, one limitation of the cur-
rent study is the small scale of the test sets with
modern parsers. We encourage future work to em-
phasize the development and evaluation on these
test sets, specifically those which more closely re-
flect the current SoTA in text-to-SQL (e.g. T5).
Additionally, though we have shown using an auxil-
iary schema prediction model greatly improves the
performance of a text-to-SQL system, the addition
of a model for the text-to-SQL task is a limitation
given the time and training resources required.

References

Zefeng Cai, Xiangyu Li, Binyuan Hui, Min Yang,
Bowen Li, Binhua Li, Zheng Cao, Weijie Li, Fei
Huang, Luo Si, and Yongbin Li. 2022. STAR: SQL
guided pre-training for context-dependent text-to-
SQL parsing. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 1235—
1247, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Xiang Deng, Ahmed Hassan Awadallah, Christopher
Meek, Oleksandr Polozov, Huan Sun, and Matthew
Richardson. 2021. Structure-Grounded Pretraining
for Text-to-SQL. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1337-1350, Online. As-
sociation for Computational Linguistics.

Ahmed Elgohary, Saghar Hosseini, and Ahmed Has-
san Awadallah. 2020. Speak to your Parser: Interac-
tive Text-to-SQL with Natural Language Feedback.
In Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2065—
2077, Online. Association for Computational Lin-
guistics.

https://aclanthology.org/2022.findings-emnlp.89
https://aclanthology.org/2022.findings-emnlp.89
https://aclanthology.org/2022.findings-emnlp.89
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2021.naacl-main.105
https://doi.org/10.18653/v1/2020.acl-main.187
https://doi.org/10.18653/v1/2020.acl-main.187

Ahmed FElgohary, Christopher Meek, Matthew
Richardson, Adam Fourney, Gonzalo Ramos,
and Ahmed Hassan Awadallah. 2021. NL-EDIT:
Correcting semantic parse errors through natural
language interaction. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 5599-5610, Online.
Association for Computational Linguistics.

Jiagi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-
Guang Lou, Ting Liu, and Dongmei Zhang. 2019. To-
wards complex text-to-sql in cross-domain database
with intermediate representation. In Proceeding of
the 57th Annual Meeting of the Association for Com-
putational Linguistics (ACL). Association for Com-
putational Linguistics.

Binyuan Hui, Ruiying Geng, Qiyu Ren, Binhua Li,
Yongbin Li, Jian Sun, Fei Huang, Luo Si, Pengfei
Zhu, and Xiaodan Zhu. 2021. Dynamic hybrid rela-
tion exploration network for cross-domain context-
dependent semantic parsing. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 13116-13124.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In AAAL

Kevin Lin, Ben Bogin, Mark Neumann, Jonathan
Berant, and Matt Gardner. 2019. Grammar-
based neural text-to-sql generation. arXiv preprint
arXiv:1905.13326.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollar. 2017. Focal loss for dense object
detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980-2988.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging Textual and Tabular Data for Cross-
Domain Text-to-SQL Semantic Parsing. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 4870—-4888, Online. Association
for Computational Linguistics.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomas Kocisky, Fumin Wang,
and Andrew Senior. 2016. Latent predictor networks
for code generation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 599-609,
Berlin, Germany. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

37

Lingbo Mo, Ashley Lewis, Huan Sun, and Michael
White. 2022. Towards transparent interactive seman-
tic parsing via step-by-step correction. In Findings of
the Association for Computational Linguistics: ACL
2022, pages 322-342, Dublin, Ireland. Association
for Computational Linguistics.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation. In 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 574-584. IEEE.

Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan,
Yu Cheng, Chenghu Zhou, Xinbing Wang, Quanshi
Zhang, and Zhouhan Lin. 2022. RASAT: Integrating
Relational Structures into Pretrained Seq2Seq Model
for Text-to-SQL. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3215-3229, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 878-888, Beijing, China.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. The Journal of Machine Learning Research,
21(1):5485-5551.

He Yang Er Sungrok Shim Eric Xue Xi Victoria
Lin Tianze Shi Caiming Xiong Richard Socher
Dragomir Radev Rui Zhang, Tao Yu. 2019. Editing-
based sql query generation for cross-domain context-
dependent questions. In Proceedings of the 2019
Conference on Empirical Methods in Natural Lan-
guage Processing, Hong Kong, China.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. PICARD: Parsing incrementally for
constrained auto-regressive decoding from language
models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895-9901, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning,
pages 4596-4604. PMLR.

Richard Shin. 2019. Encoding Database Schemas
with Relation-Aware Self-Attention for Text-to-SQL
Parsers. ArXiv:1906.11790 [cs, stat].

https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2021.naacl-main.444
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/2022.findings-acl.28
https://doi.org/10.18653/v1/2022.findings-acl.28
https://aclanthology.org/2022.emnlp-main.211
https://aclanthology.org/2022.emnlp-main.211
https://aclanthology.org/2022.emnlp-main.211
https://doi.org/10.3115/v1/P15-1085
https://doi.org/10.3115/v1/P15-1085
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
https://doi.org/10.18653/v1/2021.emnlp-main.779
http://arxiv.org/abs/1906.11790
http://arxiv.org/abs/1906.11790
http://arxiv.org/abs/1906.11790

Alon Talmor and Jonathan Berant. 2018. The Web as

a Knowledge-Base for Answering Complex Ques-
tions. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long Papers), pages 641-651, New
Orleans, Louisiana. Association for Computational
Linguistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL.:
Relation-aware schema encoding and linking for text-
to-SQL parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567-7578, Online. Association for
Computational Linguistics.

Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong,
Torsten Scholak, Michihiro Yasunaga, Chien-Sheng
Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang, Vic-
tor Zhong, Bailin Wang, Chengzu Li, Connor Boyle,
Ansong Ni, Ziyu Yao, Dragomir Radev, Caiming
Xiong, Lingpeng Kong, Rui Zhang, Noah A. Smith,
Luke Zettlemoyer, and Tao Yu. 2022. UnifiedSKG:
Unifying and multi-tasking structured knowledge
grounding with text-to-text language models. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 602—631,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 7—12, Brussels, Belgium. Association
for Computational Linguistics.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413-8426, On-
line. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric
Xue, Bo Pang, Xi Victoria Lin, Yi Chern Tan,
Tianze Shi, Zihan Li, Youxuan Jiang, Michihiro Ya-
sunaga, Sungrok Shim, Tao Chen, Alexander Fab-
bri, Zifan Li, Luyao Chen, Yuwen Zhang, Shreya
Dixit, Vincent Zhang, Caiming Xiong, Richard
Socher, Walter Lasecki, and Dragomir Radev. 2019a.
CoSQL: A Conversational Text-to-SQL Challenge
Towards Cross-Domain Natural Language Interfaces
to Databases. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 1962-1979, Hong Kong, China. Association
for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,

Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir

38

Radev. 2018. Spider: A large-scale human-labeled
dataset for complex and cross-domain semantic pars-
ing and text-to-SQL task. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3911-3921, Brussels, Bel-
gium. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern

Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4511-4523, Florence, Italy.
Association for Computational Linguistics.

John M Zelle and Raymond J Mooney. 1996. Learning

to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050—-1055.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic

evaluation for text-to-SQL with distilled test suites.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396411, Online. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/N18-1059
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://aclanthology.org/2022.emnlp-main.39
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/D18-2002
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29

