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Preface

The workshop series on Natural Language Processing (NLP) for Computer-Assisted Language
Learning (NLP4CALL) is a meeting place for researchers working on the integration of Natural
Language Processing and Speech Technologies in CALL systems and exploring the theoretical
and methodological issues arising in this connection. The latter includes, among others, the
integration of insights from Second Language Acquisition (SLA) research, and the promotion of
“Computational SLA” through setting up Second Language research infrastructures.

The intersection of Natural Language Processing (or Language Technology / Computational
Linguistics) and Speech Technology with Computer-Assisted Language Learning (CALL) brings
“understanding” of language to CALL tools, thus making CALL intelligent. This fact has given
the name for this area of research –Intelligent CALL, or for short, ICALL. As the definition
suggests, apart from having excellent knowledge of Natural Language Processing and/or Speech
Technology, ICALL researchers need good insights into second language acquisition theories and
practices, as well as knowledge of second language pedagogy and didactics. This workshop there-
fore invites a wide range of ICALL-relevant research, including studies where NLP-enriched tools
are used for testing SLA and pedagogical theories, and vice versa, where SLA theories, peda-
gogical practices or empirical data and modeled in ICALL tools. The NLP4CALL workshop
series is aimed at bringing together competences from these areas for sharing experiences and
brainstorming around the future of the field.

We invited submissions:

• that describe research directly aimed at ICALL

• that demonstrate actual or discuss the potential use of existing Language and Speech
Technologies or resources for language learning

• that describe the ongoing development of resources and tools with potential usage in
ICALL, either directly in interactive applications, or indirectly in materials, application,
or curriculum development, e.g. learning material generation, assessment of learner texts
and responses, individualized learning solutions, provision of feedback

• that discuss challenges and/or research agenda for ICALL

• that describe empirical studies on language learner data

In this edition of the workshop a special focus is given to work done on error detection/
correction and feedback generation. We encouraged paper presentations and software demon-
strations describing the above-mentioned themes primarily, but not exclusively, for the Nordic
languages.

A special feature in this year’s workshop was a shared task on grammatical error detection that
was held in connection to the workshop: the MultiGED shared task on token-level error detection
for L2 Czech, English, German, Italian and Swedish, organized by the Computational SLA
working group. System descriptions from participating teams are included in these proceedings.

Invited speakers

This year, we had the pleasure to welcome two invited speakers: Marije Michel (University of
Groningen) and Pierre Lison (Norwegian Computing Center).

Marije Michel is chair of Language Learning at Groningen University in the Netherlands.
Her research and teaching focus on second language acquisition and processing with specific
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Linköping Electronic Conference Proceedings 197: i–v.

i



attention to task-based language pedagogy, digitally-mediated interaction and writing in a second
language.

In her talk, TELL: Tasks Engaging Language Learners, she reviewed the most important
principles of designing engaging learning tasks, highlighted examples of practice-induced L2
research using digital tools, and showcased some of her own work on task design for L2 learning
during digitally mediated communication and L2 writing.

Pierre Lison is a senior researcher at the Norwegian Computing Center, a research institute
located in Oslo and conducting research in computer science, statistical modelling and machine
learning. Pierre’s research interests include privacy-enhancing NLP, spoken dialogue systems,
multilingual corpora and weak supervision. Pierre currently leads the CLEANUP project on
data-driven models for text sanitization. He also holds a part-time position as associate professor
at the University of Oslo.

In this talk, Privacy-enhancing NLP: a primer, he discussed the privacy concerns associated
with personal data in text documents, particularly in the context of Computer-Assisted Language
Learning. He highlighted the presence of lexical and grammatical errors that can inadvertently
reveal the author’s identity and discussed privacy-enhancing techniques to mitigate these risks.
These techniques include text sanitization, text rewriting, and privacy-preserving training. He
also presented their own research on data-driven text sanitization, which incorporates explicit
measures of privacy risks. Furthermore, he introduced the Text Anonymization Benchmark
(TAB) as a tool for evaluating such methods.

Previous workshops

This workshop follows a series of workshops on NLP4CALL organized by the NEALT Special In-
terest Group on Intelligent Computer-Assisted Language Learning (SIG-ICALL1). The workshop
series has previously been financed by the Center for Language Technology at the University of
Gothenburg, the SweLL project2,the Swedish Research Council’s conference grant, Spr̊akbanken
Text3, L2 profiling project4, itec5 and the CENTAL6.

Submissions to the twelve workshop editions have targeted a wide range of languages, ranging
from well-resourced languages (Chinese, German, English, French, Portuguese, Russian, Span-
ish) to lesser-resourced languages (Erzya, Arabic, Estonian, Irish, Komi-Zyrian, Meadow Mari,
Saami, Udmurt, Võro). Among these, several Nordic languages have been targeted, namely
Danish, Estonian, Finnish, Icelandic, Norwegian, Saami, Swedish and Võro. The wide scope of
the workshop is also evident in the affiliations of the participating authors as illustrated in Table
1.

The acceptance rate has varied between 50% and 77%, the average being 65% (see Table 2).
Although the acceptance rate is rather high, the reviewing process has always been very rigorous
with two to three double-blind reviews per submission. This indicates that submissions to the
workshop have usually been of high quality.

1https://spraakbanken.gu.se/en/research/themes/icall/sig-icall
2https://spraakbanken.gu.se/en/projects/swell
3https://spraakbanken.gu.se
4https://spraakbanken.gu.se/en/projects/l2profiles
5https://itec.kuleuven-kulak.be
6https://cental.uclouvain.be
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Country Count Country Count

Algeria 1 Japan 7
Australia 2 Lithuania 1
Belgium 10 Netherlands 4
Canada 4 Norway 16
Cyprus 3 Portugal 6
Czech Republic 1 Romania 1
Denmark 5 Russia 10
Egypt 1 Slovakia 1
Estonia 3 Spain 4
Finland 15 Sweden 78
France 10 Switzerland 13
Germany 110 UK 18
Iceland 6 Uruguay 5
Ireland 2 US 8
Israel 1 Vietnam 3
Italy 11

Table 1: NLP4CALL speakers’ and co-authors’ affiliations, 2012–2023

Workshop year Submitted Accepted Acceptance rate

2012 12 8 67%
2013 8 4 50%
2014 13 13 77%
2015 9 6 67%
2016 14 10 72%
2017 13 7 54%
2018 16 11 69%
2019 16 10 63%
2020 7 4 57%
2021 11 6 54%
2022 23 13 56%
2023 18 12 67%

Table 2: Submissions and acceptance rates, 2012-2023
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Program committee

We would like to thank our Program Committee for providing detailed feedback for the reviewed
papers:

• David Alfter, University of Gothenburg, Sweden

• Serge Bibauw, Universidad Central del Ecuador, Ecuador

• Claudia Borg, University of Malta, Malta

• António Branco, Universidade de Lisboa, Portugal

• Andrew Caines, University of Cambridge, UK

• Xiaobin Chen, Universität Tübingen, Germany

• Frederik Cornillie, University of Leuven, Belgium

• Kordula de Kuthy, Universität Tübingen, Germany

• Piet Desmet, University of Leuven, Belgium

• Thomas François, Université catholique de Louvain, Belgium

• Thomas Gaillat, Université Rennes 2, France

• Johannes Graën, University of Zurich, Switzerland

• Andrea Horbach, FernUniversität Hagen, Germany

• Arne Jönsson, Linköping University, Sweden

• Ronja Laarmann-Quante, FernUniversität Hagen, Germany

• Herbert Lange, University of Hamburg, Germany

• Peter Ljunglöf, University of Gothenburg, Sweden and Chalmers Institute of Technology,
Sweden

• Margot Mieskes, University of Applied Sciences Darmstadt, Germany

• Lionel Nicolas, EURAC research, Italy

• Ulrike Pado, Hochschule für Technik Stuttgart, Germany

• Magali Paquot, Université catholique de Louvain, Belgium

• Evelina Rennes, Linköping University, Sweden

• Egon Stemle, EURAC research, Italy

• Francis M. Tyers, Indiana University Bloomington, US

• Sowmya Vajjala, National Research Council, Canada

• Elena Volodina, University of Gothenburg, Sweden

• Zarah Weiss, Universität Tübingen, Germany
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• Torsten Zesch, FernUniversität Hagen, Germany

• Ramon Ziai, Universität Tübingen, Germany

• Robert Östling, Stockholm University, Sweden

We intend to continue this workshop series, which so far has been the only ICALL-related
recurring event based in the Nordic countries. Our intention is to co-locate the workshop series
with the two major LT events in Scandinavia, the Swedish Language Technology Conference
(SLTC) and the Nordic Conference on Computational Linguistics (NoDaLiDa), thus making
this workshop an annual event. Through this workshop, we intend to profile ICALL research
in Nordic countries as weell as beyond, and we aim at providing a dissemination venue for
researchers active in this area.

Workshop website

https://spraakbanken.gu.se/en/research/themes/icall/nlp4call-workshop-series/nl

p4call2023

Workshop organizers

• David Alfter, Gothenburg Research Infrastructure in Digital Humanities (GRIDH), Uni-
versity of Gothenburg, Sweden

• Elena Volodina, Spr̊akbanken Text, University of Gothenburg, Sweden

• Thomas François, Cental, Université catholique de Louvain, Belgium

• Arne Jönsson, Department of Computer and Information Science, Linköping University,
Sweden

• Evelina Rennes, Department of Computer and Information Science, Linköping University,
Sweden
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Abstract

This paper reports on the NLP4CALL shared
task on Multilingual Grammatical Error De-
tection (MultiGED-2023), which included five
languages: Czech, English, German, Italian
and Swedish. It is the first shared task or-
ganized by the Computational SLA1 working
group, whose aim is to promote less repre-
sented languages in the fields of Grammati-
cal Error Detection and Correction, and other
related fields. The MultiGED datasets have
been produced based on second language (L2)
learner corpora for each particular language.
In this paper we introduce the task as a whole,
elaborate on the dataset generation process and
the design choices made to obtain MultiGED
datasets, provide details of the evaluation met-
rics and CodaLab setup. We further briefly de-
scribe the systems used by participants and re-
port the results.

1 Introduction

Shared tasks are competitions that challenge re-
searchers around the world to solve practical re-
search problems in controlled conditions (e.g.,
Nissim et al., 2017; Parra Escartín et al., 2017).
Within the field of (second) language acquisition

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

1The acronym SLA stands for Second Language Acquisi-
tion. More information on the working group can be found
here: https://spraakbanken.gu.se/en/compsla

and linguistic issues related to language learning,
there have now been several shared tasks on vari-
ous topics, including:

• argumentative essay analysis for feedback
generation2 (e.g., Picou et al., 2021), where
the challenge was to classify text sections
into argumentative discourse elements, such
as claim, rebuttal, evidence, etc.;

• essay grading / proficiency level prediction
(e.g., Ballier et al., 2020), where, given an
essay, the major task was to assign a corre-
sponding CEFR proficiency level (A1, A2,
B1, B2, etc);

• second language acquisition modeling (e.g.,
Settles et al., 2018), where the challenge was
to predict where a learner might make an er-
ror given their error history;

Most prominent, though, have been challenges
on so-called grammatical error detection (GED)
and correction (GEC), where the task has been to
either detect tokens in need of correction, or to
produce a correction. Note that the attribute gram-
matical is used traditionally rather than descrip-
tively, since other types of errors (e.g. lexical, or-
thographical, syntactical) are also targeted. GEC
and GED have complemented each other over the
years, and the historical interest in the two tasks
is visualized in Figure 1. In their comprehen-
sive overview of approaches to GEC, Bryant et al.

2https://www.kaggle.com/competitions/feedback-prize-
2021/
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Figure 1: Terms grammatical error detection and grammatical error correction in Google N-grams (1990–2019)

(2023) observe that most GEC shared tasks have
focused only on English, including HOO-2011/12
(Dale and Kilgarriff, 2011; Dale et al., 2012),
CoNLL-2013/14 (Ng et al., 2013, 2014), AESW-
2016 (Daudaravicius et al., 2016) and BEA-2019
(Bryant et al., 2019), with only a few exploring
other languages, such as QALB-2014 and QALB-
2015 for Arabic (Mohit et al., 2014; Rozovskaya
et al., 2015) and NLPTEA 2014–2020 (Rao et al.,
2020) and NLPCC-2018 (Zhao et al., 2018) for
Mandarin Chinese.

Though datasets do exist for languages other
than English – including for GEC and GED tasks –
these rarely feature in shared tasks3. Examples of
such GEC/GED initiatives are Náplava and Straka
(2019) for Czech, Rozovskaya and Roth (2019)
for Russian, Davidson et al. (2020) for Span-
ish, Syvokon and Nahorna (2022) for Ukranian,
Cotet et al. (2020) for Romanian, Boyd (2018) for
German, Östling and Kurfalı (2022) and Nyberg
(2022) for Swedish, to name just a few.

The Matthew effect in GEC and GED? It can
be said that the current state of NLP reflects the
Matthew effect – i.e., ‘the rich get richer, and the
poor get poorer’ (Perc, 2014; Bol et al., 2018). The
Matthew effect has been observed and studied in
various disciplines, including economics, sociol-
ogy, biology, education and even research fund-
ing, but is similarly applicable to NLP, as Søgaard
(2022) convincingly argued in the article with the

3with few exceptions, e.g., UNLP-2023 for Ukranian:
https://github.com/asivokon/unlp-2023-shared-task

provocative title “Should We Ban English NLP
for a Year?”. The growing bias of NLP research,
models and datasets towards English (‘the rich’)
creates inequality by not only making English a
‘better equipped language’, but also by lowering
chances of being cited for researchers working on
other languages than English (‘the poor’). We wit-
ness therefore a tendency in NLP research where
reseachers prefer to work on English as it is both
the best resourced and best cited language.

To counter-balance the current dynamics in the
field towards English dominance, we have taken
the initiative to form a Computational SLA work-
ing group whose main aim is to support and pro-
mote work on less represented languages in the
area of GED, GEC and other potential tasks in
SLA. The MultiGED-2023 shared task is the first
one organized by this Computational SLA work-
ing group. By bringing non-English datasets, in
combination with the English ones, to the atten-
tion of the international NLP community, we aim
to foster an increasing interest in working on these
languages.

2 Task and challenges

The main focus of the first Computational SLA
shared task was error detection, which we argue
should be given more attention as a first step to-
wards pedagogical feedback generation. Through
this task, several needs and challenges became
clearer which we summarize below.

(i) Use of authentic L2 data for training al-
Proceedings of the 12th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2023)
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gorithms. Leacock et al. (2014) convincingly
showed that tools for error correction and feed-
back for foreign language learners benefit from
being trained on real L2 students’ texts, and that
these systems are better suited for use in In-
telligent Computer-Assisted Language Learning
(ICALL) or Automatic Writing Evaluation (AWE)
contexts. Hence the importance of authentic lan-
guage learner data.

(ii) Focus on less represented languages in
GEC/GED. Both GEC and GED have predom-
inantly been explored in the context of English
data. There is a strong incentive to broaden the
language spectrum and draw the attention of the
international NLP community to other, less repre-
sented, languages. We therefore target a few of the
less represented languages, namely Czech, Ger-
man, Italian and Swedish, along with English for
comparison with previous work.

(iii) The requirement (i) to use authentic L2 data
for the task sets further challenges. First of all,
it brings attention to the scarceness of authentic
learner data for a number of languages. Most lan-
guages have modest or tiny collections of L2 data,
if any, which contain error annotation and correc-
tion. As a consequence, the data is too small to
be offered for a shared task by itself. As a way
to overcome that problem, we suggest that several
languages with smaller datasets coordinate their
efforts in a multilingual low-resource context, cre-
ating possibilities for augmentation of data and/or
use of datasets from several languages through do-
main adaptation, transfer learning, and other mod-
ern techniques. The low-resource context above
refers to a limitation on dataset sizes: there is a
maximum of ≈36,000 sentences for each Multi-
GED language to stimulate creativity in solving
problems relating to data scarcity, the smallest
datasets comprising ≈8,000 sentences.

(iv) However, (iii) brings further the need to
harmonize datasets between the languages partic-
ipating in a multilingual shared task. Harmoniza-
tion includes both data formatting and data anno-
tation (i.e., converting all language-specific error
tags into a set of shared tags). This in itself is
a tremendous challenge since languages differ in
both linguistic terms and in terms of the annotation
approaches and taxonomies adopted by research
teams who collated the various corpora. Our initial
attempts to convert existing error taxonomies for
the five languages to a set of five head categories –

Token Label Token Label
I c I c
saws i saws i
the c show i
show c last c
last c nigt i
nigt i . c
. c

Table 1: Data example with two sentences. The sen-
tence on the right demonstrates an error that requires
the addition of an extra token, which is indicated by ‘i’
attached to the next token (see ‘i’ attached to the token
show to indicate the missing article the before show)

punctuation, orthography, lexis, morphology and
syntax [POLMS] (Casademont Moner and Volod-
ina, 2022) – proved to be more challenging than
expected. As a result, we simplified the task from
a multi-class error detection to a binary error de-
tection task, leaving the idea of multi-class detec-
tion for future work.

MultiGED task in a nutshell The above chal-
lenges defined the way the task of multilingual
grammatical error detection in low-resource con-
texts was formulated:

Given an authentic, learner-written sen-
tence, detect tokens within the sentence
that contain errors (i.e. perform binary clas-
sification on a per-token level) for each pro-
vided language separately, or as a multilin-
gual system.

The tokens should be labeled as either correct (‘c’)
or incorrect (‘i’), as shown in Table 1.

We encouraged development of multilingual
systems that would process all or several lan-
guages using a single model, but this was not a
mandatory requirement. The submitted systems
were evaluated using per-language precision, re-
call, and F0.5 scores. F0.5 gives a double weighting
to precision over recall, and is conventionally used
as the primary metric for GED and GEC on the ba-
sis that high precision is more important than high
recall for educational applications (Section 4).

The shared task was organized as an open track,
in the sense that teams were freely permitted to
enhance the provided training and development
data for all languages, provided they report the
use of additional data, and share them for research

Proceedings of the 12th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2023)
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Language Source corpus Nr. sentences Nr. tokens Nr. errors Error rate MultiGED License
Czech GECCC 35,453 399,742 84,041 0.210 CC BY-SA 4.0
English FCE 33,243 531,416 50,860 0.096 custom
English REALEC* 8,136 177,769 16,608 0.093 CC BY-SA 4.0
German Falko-MERLIN 24,079 381,134 57,897 0.152 CC BY-SA 4.0
Italian MERLIN 7,949 99,698 14,893 0.149 CC BY-SA 4.0
Swedish SweLL-gold† 8,553 145,507 27,274 0.187 CC BY-SA 4.0
* We only provide a dev and test set for English-REALEC.
† The original SweLL-gold corpus is released under a CLARIN ID+BY+PRIV+NORED license.

Table 2: MultiGED data statistics.

use and replication studies. This contrasts with a
closed track shared task, where teams are prohib-
ited from using additional training and develop-
ment data beyond that provided by the organizers.

The task aimed to promote research into lan-
guages which have received less attention in GED
or GEC (Czech, Italian, German, and Swedish
alongside English), and for which appropriately
annotated datasets are available, even if modest in
size (8,000 – 36,000 sentences).

Our main contributions are three-fold.

1. We present the first shared task on GED
that includes original L2 learner data from
Swedish, Italian, German and Czech.

2. We introduce a new dataset of Russian
learner English, the REALEC corpus, for the
first time.

3. We standardize the formats of several mul-
tilingual datasets to faciliate development of
multilingual models.

3 Data

We provided training, development and test data
for each of the five languages: Czech, English,
German, Italian and Swedish.4 Test sets were
released during the test phase through CodaLab
and are available there for future work and system
comparisons.5 It is important to note that most
corpora are made available on a CC BY-SA 4.0
data license, however the English-FCE uses a cus-
tom license, and the original SweLL-gold corpus
uses a CLARIN PRIV+ID+BY+NORED license.

4The training and development splits are available for
download on the publicly available MultiGED-2023 github
repository: https://github.com/spraakbanken/
multiged-2023

5https://codalab.lisn.upsaclay.fr/com
petitions/9784

3.1 Source data
For each language, a MultiGED dataset was gen-
erated from a corpus of original error-annotated
learner essays. Table 2 provides an overview of
the source corpora, and data statistics of the re-
sulting MultiGED datasets expressed in number of
sentences, tokens, errors and error rates. Some of
the source corpora mentioned in the Table have
already been used in Grammatical Error Detec-
tion/Correction research, but we also release two
new datasets: one based on REALEC (English)
and another on SweLL-gold (Swedish). Where
possible, we use the same train/dev/test splits as
established in previous work (as is the case for
GECCC, FCE, Falko-MERLIN), and only cre-
ate new splits when necessary (REALEC, Ital-
ian MERLIN, SweLL). All datasets were derived
from error-annotated L2 learner essays. Below, we
provide an overview of each of the source corpora
used to create these datasets.

Czech The Grammar Error Correction Corpus
for Czech – GECCC (Náplava et al., 2022), con-
sisting of 83,000 sentences, is based on native
and non-native texts collected in several earlier
projects.6 The native part consists of essays writ-
ten by children and teenagers attending primary
and secondary schools, either (i) native in standard
Czech, or (ii) in its Romani ethnolect, and (iii)
informal website texts. However, only the non-
native part of GECCC is included in the Multi-
GED datasets: (iv) essays written by learners of
Czech as a foreign or second language, collected
mostly for the CzeSL project (Rosen et al., 2020)
at nearly all levels of proficiency, from begin-
ners to advanced learners7 (Rosen et al., 2020),

6The corpus is publicly available at http://hdl.ha
ndle.net/11234/1-4639

7The relatively high share of beginners is the reason why
the error rate for Czech in MultiGED is higher than for other
languages (Table 2).

Proceedings of the 12th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2023)
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but also for the Czech section of MERLIN (Boyd
et al., 2014). Instead of relying on the man-
ual and automatic error annotations available in
CzeSL and MERLIN, errors in spelling and gram-
mar in the entire GECCC were detected and nor-
malized manually, then categorized automatically
using the ERRor ANnotation Toolkit – ERRANT
(Bryant et al., 2017), which was modified for
Czech.8 The GECCC corpus is available in its raw
untokenized form and in M2 format (Dahlmeier
and Ng, 2012). Basic metadata are available about
sex, age and L1 family, with links to a richer set.

English-FCE The FCE Corpus (Yannakoudakis
et al., 2011) consists of essays written by can-
didates for the First Certificate in English (FCE)
exam (now “B2 First”) designed by Cambridge
English to certify learners of English at CEFR
level B2. It is part of the larger Cambridge Learner
Corpus that has been annotated for grammatical
errors (Nicholls, 2003). The FCE Corpus has been
used in grammatical error detection (and correc-
tion) experiments on numerous occasions, includ-
ing the BEA 2019 Shared Task (Bryant et al.,
2019).

English-REALEC REALEC (Russian Error-
Annotated Learner English Corpus) is a corpus of
essays written by Russian L1 university students
in their final English language examinations de-
signed for students at B1–B2 CEFR levels (Vino-
gradova and Lyashevskaya, 2022). The require-
ments for the two types of essays in this exami-
nation are the same as in IELTS9 Task 1 and Task
2. The grammar errors in these essays were an-
notated manually by specially trained students in
the Linguistics Bachelor program. The sentences
from all essays were shuffled for the MultiGED
shared task to avoid any breach of anonymity,
and sentences without any errors identified by the
annotators were manually double-checked once
more. At both stages of annotating errors and pro-
cessing sentences for the MultiGED shared task,
no stylistic improvements were suggested; all sen-
tences remained authentic.

German For German L2 data, we made use of
the Falko-MERLIN GEC corpus as introduced in

8The modified version of ERRANT, potentially useful for
related languages, is available at https://github.com
/ufal/errant_czech. However, error tags produced by
ERRANT are not used in the MultiGED dataset.

9https://www.ielts.org/

Boyd (2018). Falko-MERLIN involved the amal-
gamation of the Falko Corpus – specifically the
248 texts from ‘FalkoEssayL2’ v2.42 and the 196
texts from ‘FalkoEssayWhig’ v2.02 (Reznicek
et al., 2012) – and 1033 texts from the German
section of MERLIN v1.1 (Boyd et al., 2014). Both
corpora were annotated in a similar fashion, ac-
cording to guidelines which demanded only min-
imal corrections for grammaticality. Falko con-
tains essays at a more advanced proficiency level
whereas MERLIN covers a broader range of pro-
ficiencies.

Italian The Italian data is drawn from the trilin-
gual learner corpus MERLIN, which contains not
only Czech and German texts but also 813 Italian
written learner productions (letters and emails),
collected within the framework of standardised
language tests (Boyd et al., 2014). Similar to the
German texts, the handwritten originals of the Ital-
ian texts in MERLIN were transcribed and nor-
malised manually, with error annotations added on
various levels of linguistic accuracy. Like in the
German data, for the shared task we also used the
provided minimal corrections for grammaticality,
which ignore uncommon stylistic choices.

Swedish For Swedish, we used the SweLL-gold
corpus (Volodina et al., 2019), that contains 502
essays written by adult learners at different pro-
ficiency levels. The essays were manually tran-
scribed, pseudonymized, normalized and correc-
tion annotated. Due to the presence of personal in-
formation in the texts, the corpus is under GDPR
protection10 and is distributed for individual use
on signing an agreement form. For this reason,
texts in their entirety cannot be freely distributed,
for example, for use in shared tasks. Shuffling of
sentences and removal of demographic informa-
tion was therefore necessary to make SweLL-gold
data openly available for the MultiGED shared
task.

3.2 Data pre-processing

The starting point for the corpora featuring in
MultiGED varied from dataset to dataset. We took
steps to reformat and reshape the corpora so that
they were in a common format, as described in
Section 3.3 and shown in Table 1. This meant that
each corpus needed to be transformed into tabu-
lar form with one token per row in the first col-

10https://gdpr-info.eu/
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umn and labels in the second column, in line with
one of the conventional formats for GED and NLP
tasks used more widely. Pre-processing steps for
each corpus are described below, starting with the
three corpora which have been previously used for
GED experiments: Czech GECCC, English FCE
and German Falko-MERLIN.

3.2.1 Established GED corpora
For Czech, we retained only the learner section
of the corpus, which involved first obtaining a list
of identifiers for the texts written by L2 learners
of Czech (recorded in the ‘Domain’ field of the
metadata file). The GECCC text ID file is aligned
with the ‘input’ file of one sentence per line, but
not with the error annotations file (in M2 format:
because M2 format involves multiple lines per sen-
tence). We therefore attempted to align the origi-
nal input sentences with the tokenized sentences
given in the M2 file, where tokenization meant
that exact matches were often unlikely. We used
optimal string alignment as implemented in the
stringdist package for R (van der Loo, 2014),
allowing for a distance up to two-thirds the char-
acter length of the original sentence, and breaking
any ties manually. Text sequences11 written by L2
learners were then converted from M2 to CoNLL
format. We used the training, development and
test splits already defined in the GECCC.

For the English-FCE we started with the M2

format files made available in the BEA-2019
shared task12. The train/dev/test splits are long-
established for the FCE Corpus: we simply con-
verted the M2 files to CoNLL-format and left the
splits as they are. To produce files for GED – i.e.
with binary error labels – we labelled any token
bearing a correction (or following a missing word)
as ‘i’ and all other tokens were labelled ‘c’.

Boyd (2018) described the German Falko-
MERLIN corpus and defined the train/dev/test
splits that we use. We obtained the dataset as M2

files from Adriane Boyd’s GitHub repository13;
note that the data link there carries a security warn-
ing and so we made the files available in the Ger-
man directory of the MultiGED GitHub reposi-

11Note that not all sequences in the corpora are necessarily
sentences in a grammatical sense (well-punctuated and con-
taining a finite verb at least), which is why we prefer to refer
to them as ‘sequences’.

12https://www.cl.cam.ac.uk/research/nl
/bea2019st/

13https://github.com/adrianeboyd/boyd-w
nut2018/

tory. We converted the M2 files to CoNLL for-
mat14, and again used the error corrections to ar-
rive at our final token labels, binary ‘c’ (correct) or
‘i’ (incorrect).

3.2.2 New GED corpora
Next, we turn to the three corpora which have
not previously featured in GED experiments to the
best of our knowledge: English REALEC, Italian
MERLIN and Swedish SweLL.

Using manually annotated parts of English
REALEC in .brat format from https://re
alec.org/index.xhtml#/exam/, a tab-
ular representation was produced. Given that the
manually annotated subsection of REALEC is rel-
atively small, we only released a development set
and a test set for this corpus (i.e., not a training
set), randomly assigning each sentence to dev or
test. The annotation style in REALEC is differ-
ent from the other corpora in the shared task: er-
rors are annotated over spans at least one token
long. As a result, non-errorful tokens may be in-
cluded in the span; e.g., [present-day rythme →
the present-day rhythm], which means it is less
straightforward to precisely map edit labels to to-
kens. We nevertheless attempted to automatically
infer which tokens should be marked as incorrect
using heuristics; e.g. by removing unchanged to-
kens from the peripheries of both sides of the edit
span. Because this conversion process became
noisier the longer the error span however, we opted
not to attempt it for spans longer than eight tokens,
meaning that these longer corrections (just 2.9%
of the multiword corrections) are left as they are
(i.e. all tokens are labelled as incorrect).

For Italian MERLIN we started with the Ex-
maralda15 files provided with the 2018 release of
the MERLIN corpus (v1.1)16. The .exb files con-
tain manually corrected tokenisation and annota-
tions on various layers, including span annotations
for error annotation and correction, or token level
annotation for edit operations, etc. While the cor-
pus contains annotations for both TH1 (i.e. target
hypothesis 1, which only contains form-based cor-
rections of linguistic accuracy) and TH2 (i.e. tar-
get hypothesis 2, which also contains meaning-
based corrections considering semantics) as de-

14The Python script for this conversion process,
m2_to_conll_conversion-script.py, is
available in the MultiGED repository: h t t p s :
//github.com/spraakbanken/multiged-2023/

15https://exmaralda.org/en/
16http://hdl.handle.net/20.500.12124/6
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fined in Reznicek et al. (2013), we only used the
aligned original and TH1 layers of the multilayer
annotation.

We transferred the aligned layers into a verti-
cal tab-separated table format, marking any cor-
rections in the normal way as ‘i’ and uncorrected
tokens as ‘c’. We omitted lines with unreadable
tokens in the original (marked with ‘-unreadable-’
in the token layer), segmented the text where we
found sentence-final punctuation in order to insert
empty lines between sequences, and applied cor-
rections involving token insertion to the following
token in the sequence (in the multilayer annotation
of Exmaralda these are indicated against empty to-
kens). We randomly assigned each sequence to
train/dev/test with a probability of .8, .1, .1 respec-
tively.

Finally, for Swedish we started with the tab-
ular representation of the data first produced by
Casademont Moner and Volodina (2022), which
was derived from SweLL-gold in JSON format.
As part of processing the corpus, we removed
$ symbols (indicating illegible characters), re-
placed the “-gen” marker with a possessive ‘s’
suffix, and randomly selected one of four op-
tions wherever we encountered an anonymisation
placeholder. For instance, for any occurrence
of the “*-hemland” (‘homeland’) placeholder,
we sampled one of {‘Brasil’, ‘Spanien’, ‘Irak’,
‘Kina’} (Brazil, Spain, Iraq, China); and for
any occurrence of the “*-svensk-stad” (‘Swedish
town’) placeholder, we sampled a made-up place-
name from {‘Sydden’, ‘Norrebock’, ‘Rosaborg’,
‘Ögglestad’}. Similar fake replacements were
made for ‘*-geoplats’ (‘geolocation’), ‘*-plats’
(‘place’), ‘*-institution’, ‘*-skola’ (‘school’), ‘*-
land’ (‘country’), ‘*-region’, ‘*-stad’ (‘town’), ‘*-
linjen’ (‘transport line’).

As a GDPR-related requirement of using
SweLL, we randomly shuffled the order of sen-
tences in order to protect individual privacy. We
then assigned the sentences to train/dev/test splits
with a probability of .8, .1, .1 respectively. As
with Italian MERLIN, in SweLL the insertion
correction type is marked against an empty to-
ken: therefore we carried such annotations for-
ward to the next token, in line with other corpora
in MultiGED, and omitted the empty tokens. Sub-
sequently, the usual ‘i’ and ‘c’ labels were gener-
ated based on the presence of corrections (or not)
against each token in the file.

3.3 Data format

MultiGED data is, thus, provided in a tab-
separated format consisting of two columns and
no headers: the first column contains the token
and the second column contains the label (c or i),
as shown in Table 1. Each sequence is separated
by an empty line, and double quotes are escaped
(\"). Error labels (i) are attached on the same
line where the errors are, with one exception: if
an insertion is necessary, the i label is attached to
the next token; e.g., the right-hand side of Table 1.
System outputs should be generated in the same
format.

4 Evaluation

System evaluation was carried out in terms of
token-based F0.5 to be consistent with previous
work in error detection (Bell et al., 2019; Kaneko
and Komachi, 2019; Yuan et al., 2021). It has been
customary to evaluate GED/GEC systems in terms
of F0.5, which weights precision twice as much as
recall, since the CoNLL-2014 shared task, given
that it is more important to an end user that a sys-
tem makes a correct prediction than to necessarily
detect all errors (Ng et al., 2014). Precision (P),
Recall (R) and F-score (Fβ) were hence calculated
in the standard way based on the total number of
true positives (TP), false positives (FP) and false
negatives (FN) (Equation 1–3) with the parameter
β = 0.5.

P =
TP

TP + FP
(1) R =

TP

TP + FN
(2)

Fβ = (1 + β2)× P ×R

(β2 × P ) +R
(3)

One notable limitation of token-based F0.5 is
that systems will receive multiple rewards for de-
tecting each erroneous token in a multi-word edit,
e.g. [In other hand → On the other hand], when
it might otherwise be more realistic to treat such
cases as a single error. This approximation is gen-
erally acceptible, however, given that multi-token
errors are typically much rarer than single token
errors, and it may in fact be beneficial to reward
systems for the partial detection of multi-token er-
rors. It is nevertheless worth keeping this property
of token-based evaluation in mind.
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Team System description
EliCoDe XLM-RoBERTa language model pretrained on ≈100 languages
Colla et al. (2023) with a stacked linear classifier on top, with a dropout layer in-between

fine-tuned 5 different models for 5 languages on train (or train+dev) data
DSL-MIM-HUS XLM-RoBERTa language model from the HuggingFace repo
Ngo et al. (2023) pretrained on ≈100 languages, fine-tuned jointly on all MultiGED datasets

i.e. there is only one trained model for prediction of all the test datasets
Brainstorm Thinkers mBERT, for all six datasets
VLP-char (no eng-realec) character-based LSTM model with two recurrent layers, unidirectional
Ngo et al. (2023) supervised approach, separate model for each dataset, REALEC excluded

no external datasets
NTNU-TRH multilingual system based on LSTMs, GRUs and standard RNNs
Bungum et al. (2023) with multilingual Flair embeddings

for a sequence-to-sequence labeling multitask learning
su-dali (only swe) distantly-supervised transformer-based machine translation (MT) system
Kurfalı and Östling (2023) trained solely on artificial dataset of 200 million sentences, only Swedish

no supervision, training or fine-tuning on any labeled data

Table 3: Overview of submitted systems, lister in the order of registration

4.1 CodaLab
Evaluation was formally carried out on the Code-
Lab competition platform17, with participants be-
ing allowed to anonymously make a maximum
of 2 submissions on the test data during the test
phase. Each submission was expected to contain
output for as many languages as the team wished
to participate in, and so participants could effec-
tively make a maximum of 2 submissions for each
dataset in the shared task.

It is extremely important to note that we
treated the best score from either submission as the
official result for each team. This means that if a
team scored 50 in Language A and 60 in Language
B from Submission 1, but 45 in Language A and
70 in Language B from Submission 2, the official
score for the team is 50 in Language A (Submis-
sion 1) and 70 in Language B (Submission 2). In
other words, we did not penalise teams for upload-
ing their best system output in different submis-
sions.

5 Teams, Approaches, Results

In total, six teams participated in the task, rep-
resenting five different countries: China, Italy,
Norway, Sweden and Vietnam. Four teams de-
veloped systems for all five languages (and six
datasets): EliCoDe (Colla et al., 2023), NTNU-
TRH (Bungum et al., 2023), DDSL-MIM-HUS

17https://codalab.lisn.upsaclay.fr/com
petitions/9784

(Ngo et al., 2023, System 1) and Brainstorm
Thinkers (no submitted system description); one
team submitted results for all five languages ex-
cluding the English-REALEC dataset: VLP-char
(Ngo et al., 2023, System 2); and one team sub-
mitted results for Swedish only: su-dali (Kurfalı
and Östling, 2023).

The different approaches that each team took
are summarized in Table 3. The most success-
ful approaches relied on BERT-like large lan-
guage models (see Table 4). The team with the
best average result across all languages, EliCoDe,
fine-tuned a different model for each dataset and
showed considerably superior recall capabilities
on most datasets (Colla et al., 2023). The second-
best average result came from the DSL-MIM-HUS
team, who fine-tuned one pre-trained model on all
6 datasets at once (Ngo et al., 2023). The same
team also trained a character-based LSTM, VLP-
char. The NTNU-TRH team used LSTMs as well,
implementing their systems with FlairNLP and
comparing monolingual and multilingual scenar-
ios (Bungum et al., 2023). These latter approaches
require less data for training but show weaker per-
formance in recall and precision, either tending to
detect fewer errors or produce a greater number
of false positives. The su-dali team used artifi-
cial data mimicking the error distribution from the
Swedish source corpus, and achieved very good
results on Swedish showing that access to manu-
ally annotated training data can be avoided (Kur-
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a. Results on Czech
Team P R F0.5 ↓
EliCoDe 82.01 51.79 73.44
DSL-MIM-HUS 58.31 55.69 57.76
Brainstorm Thinkers 62.35 23.44 46.81
VLP-char 34.93 63.95 38.42
NTNU-TRH 80.65 6.49 24.54
Majority 84.32 43.22 70.85

b. Results on English – FCE
Team P R F0.5 ↓
EliCoDe 73.64 50.34 67.40
DSL-MIM-HUS 72.36 37.81 61.18
Brainstorm Thinkers 70.21 37.55 59.81
VLP-char 20.76 29.53 22.07
NTNU-TRH 81.37 1.84 8.45
Majority 85.35 32.48 64.39

c. Results on English – REALEC
Team P R F0.5 ↓
DSL-MIM-HUS 62.81 28.88 50.86
EliCoDe 44.32 40.73 43.55
Brainstorm Thinkers 48.19 31.22 43.46
NTNU-TRH 51.34 1.13 5.19
Majority 65.46 27.23 51.11

d. Results on German
Team P R F0.5 ↓
EliCoDe 84.78 73.75 82.32
DSL-MIM-HUS 77.80 51.92 70.75
Brainstorm Thinkers 77.94 47.55 69.11
NTNU-TRH 83.56 15.58 44.61
VLP-char 25.18 44.27 27.56
Majority 87.80 49.88 76.21

e. Results on Italian
Team P R F0.5 ↓
EliCoDe 86.67 67.96 82.15
DSL-MIM-HUS 75.72 38.67 63.55
Brainstorm Thinkers 70.65 36.46 59.49
NTNU-TRH 93.38 19.84 53.62
VLP-char 25.79 44.24 28.14
Majority 90.25 40.95 72.74

f. Results on Swedish
Team P R F0.5 ↓
EliCoDe 81.80 66.34 78.16
DSL-MIM-HUS 74.85 44.92 66.05
Brainstorm Thinkers 73.81 39.94 63.11
su-dali 82.41 27.18 58.60
VLP-char 26.40 55.00 29.46
NTNU-TRH 80.12 5.09 20.31
Majority 89.90 45.37 75.15

Table 4: Results for each language and team in terms of
Precision (P), Recall (R) and F-score (F0.5). The Ma-
jority score is based on the majority predicted token-
based labels across all systems.

falı and Östling, 2023).

Czech Systems that relied on Transformer-
based architectures (the top three in Table 4)
achieved the top-3 F0.5 scores. Despite that, the
best recall comes from the LSTM-based system
(VPL-char).

English-FCE The performance of the
RoBERTa-based architecture, fine-tuned ex-
clusively on the FCE dataset by EliCoDe team,
outperformed other architectures in all evaluation
metrics, indicating its superior efficacy for the
FCE dataset.

English-REALEC The results obtained from
the REALEC dataset were relatively low com-
pared to other datasets, which may be attributed
to the different annotation style in REALEC (see
Section 3.2), and the fact that REALEC was both
released later in the shared task and without a
training split.

German The highest scores were obtained by
all teams on the German Falko-MERLIN dataset.
Remarkably, the teams NTNU-TRH and VLP-
char, who did not use external data, exhibited
substantially better performance on the German
dataset.

Italian The solutions submitted for the German
and Italian datasets exhibited the highest perfor-
mance levels compared to the other datasets. This
finding could potentially be attributed to the fact
that these datasets were sourced from the MER-
LIN corpus and possessed a high level of consis-
tency in their annotations.

Swedish The Swedish dataset received the high-
est participation rate among all the datasets. The
best performance was achieved by Transformer-
based architectures, which is consistent with the
performance on other datasets. Nevertheless, sat-
isfactory results were also achieved by solutions
using LSTMs without pre-training or additional
data.

Altogether, shared task participants submitted
different systems representing a variety of ap-
proaches, including machine translation, LSTMs,
mBERT and XLM-RoBERTa (Table 3). The
best results were achieved by teams employing
the multilingual XLM-RoBERTa (large) language
model pre-trained on ≈100 languages (Conneau
et al., 2020). The systems trained and fine-tuned

Proceedings of the 12th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2023)

9



Language Team Best F0.5 ↓
German EliCoDe 82.32
Italian EliCoDe 82.15
Swedish EliCoDe 78.16
Czech EliCoDe 73.44
Eng-FCE EliCoDe 67.40
Eng-REALEC DSL-MIM-HUS 50.87

Table 5: Best results for each language dataset.

separately for each language dataset by the Eli-
CoDe team performed substantially better than the
ones that used one multilingual model for all lan-
guages (team DSL-MIM-HUS), with the excep-
tion of the English-REALEC dataset, where the
results were reversed (see the results for the top-
performing systems in Table 5). This is an im-
portant insight, because the EliCoDe team also
showed that for some language datasets multilin-
gual models, fine-tuned on all datasets, performed
better than monolingually fine-tuned ones (Colla
et al., 2023). On the one hand, it is intuitive that
monolingual models might perform better than
multilingual models because they are more spe-
cially trained for a particular target language, but
on the other hand, multilingual models might be
expected to perform better because they have ac-
cess to richer multilingual representations from
linguistically-related languages. In either case,
both approaches have different advantages which
are worth exploring further.

Table 4 also lists the scores from a token-based
majority vote for each language in gray. This is
based on the performance of a system relying on
a majority vote among all system outputs. For
the two languages with an even number of system
outputs – English-REALEC and Swedish – a fall-
back was implemented in case of a tie, namely to
choose the output of the best system (EliCoDe in
both languages). As can be observed, this major-
ity system led to better precision in all languages
and lower recall. If this score were to be included
in the ranking, it would end up on place two for
all languages, except for English-REALEC where,
with an F0.5 of 51.11 it would obtain first place.

In Figure 2 we combine all system output to get
more insights in the error detection (the i labels).
The blue bars (on the left) represent the percent-
age of errors that were detected by all participat-
ings systems in each language, whereas the orange

Figure 2: Percentage of errors in the test set which were
either detected by all (blue bars, on the left) or none
(orange bars, on the right) of the participating teams.

bars (on the right) illustrate the percentage of er-
rors none of which the systems were able to detect.
What draws the attention are the high percentages
of errors none of the approaches were able to de-
tect for English (33% for English FCE and 53%
for English REALEC, respectively). Also, when
ranked by best results for all languages (Table 5)
it is counter-intuitive to see that English comes
at the bottom, as English has typically received
the most attention in GED. REALEC is a spe-
cial case – we did not provide training data for it,
and obviously models trained on other languages
or other datasets for the same language did not
generalize well to REALEC – hypothetically be-
cause REALEC had a different type of annota-
tion approach. However, an interesting question is
why performance on the English-FCE dataset was
lower than on all other languages? In this respect,
the EliCoDe team (Colla et al., 2023) carried out
an analysis of training/development splits versus
the test split per language for linguistic similarity
and identified bigger differences between English
splits than any other MultiGED languages; they
conclude this may be the reason why scores were
lower on English.

A short look at the six system output files for
Swedish shows that most of the errors that all sys-
tems missed (i.e. labeled them as c instead of i)
are those that cover:

• lexical choices, for example non-idiomatic
use of vocabulary, e.g. Jag tror att
religion *har ingen roll...18

(‘I think that religion *has no role...’)

• verb tense harmonization with other verb
18The missed token shown in bold.
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tenses used in the sentence, e.g. Hon
tycker att Hans är hennes äkta
kärlek men så *var det inte
(‘She thinks that Hans is her real love, but it
*was not the case’)

• a few preposition and syntactic construction
choices, e.g. Hur går det *med dig?
(‘How is it going *with you?’)

• few of the errors missed by all systems would
in fact require longer context than one sen-
tence for determiniting the need of a correc-
tion

Note that these are only indicative insights and
a more thorough analysis would be necessary to
draw any proper conclusions.

Rather obviously, spelling errors resulting in
‘non-words’ (OOVs – out-of-vocabulary strings)
were easier to detect than errors resulting in some
existing word forms (‘real-word errors’). Whereas
the entire Czech test data included 6.937% of non-
words, there were much fewer non-words among
the 1716 incorrect word forms that all the systems
failed to detect: 0.047%. The almost 15:1 ratio
was lower for the English data (about 7:1 for FCE:
1.440% vs. 0.199%; 4:1 for REALEC: 1.135% vs.
0.310%), but it is still clear that real-word errors
were harder to detect.

In future, it would be useful to see error distri-
butions made by systems by types of (gold) error
labels [e.g. POLMS19] and account for their effect
on different language systems performance. An-
other possible interesting analysis could be to cor-
relate system performance with learners’ language
proficiency, their first languages, as well as with
the effect of essay tasks on system performance.

6 Comparison with previous work

To provide some context for the MultiGED results
on the English FCE benchmark, we present Ta-
ble 6, which summarisee results on English GED
in the past five years. The state-of-the-art has been
gradually pushed: Bell et al. (2019) explored the
effect of using different contexual embeddings and
their generalizability to different datasets, showing
the potential of “leveraging information learned in
an unsupervised manner from high volumes of un-
labeled data” and their sensitivity to error types,

19POLMS = P-unctuation, O-rthography, L-exical, M-
orphology, S-yntax

System / English FCE P R F0.5

MultiGED-23
EliCoDe 73.64 50.34 67.40
DSL-MIM-HUS 72.36 37.81 61.18
State-of-the-art
Yuan-2021, BERT 75.73 47.98 67.88
Yuan-2021, XLNet 77.50 49.81 69.75
Yuan-2021, ELECTRA 82.05 50.49 72.93
Previous results
Kaneko-Komachi-2019 68.87 43.45 61.65
Bell-2019, BERTBASE 64.96 38.89 57.28

Table 6: Comparison to previous GED results on En-
glish FCE dataset (Yuan et al., 2021; Kaneko and Ko-
machi, 2019; Bell et al., 2019).

with BERT embeddings (Peters et al., 2017) be-
ing especially promising (F0.5 57.28). Kaneko and
Komachi (2019) complemented BERTBASE with
a Multi-Head Multi-Layer Attention (MHMLA)
function to achieve a new state of the art for GED,
reaching F0.5 61.65 on FCE. Yuan et al. (2021)
meanwhile showed that ELECTRA (Clark et al.,
2020) has a “discriminative pre-training objective
that is conceptually similar to GED”, which im-
proved GED results by a large margin on several
public English datasets, reaching F0.5 72.93 on the
FCE benchmark. Two years later, the results by
Yuan et al. (2021) are still state-of-the-art. The
bulk of work on English provides potential ways
for improvement on other MultiGED languages –
if nothing else, to see whether the same trends hold
cross-linguistically.

We are unable to make similar comparisons for
the other languages in MultiGED because this is
the first time these languages have been evaluated
in the context of GED. More specifically:

• For Czech, previous research explores gram-
matical error correction (GEC) rather than
detection (e.g. Náplava and Straka, 2019; Ná-
plava et al., 2022). There has been some pre-
vious work on the evaluation of Czech er-
ror detection in the context of a spellcheck-
ing tool, Korektor (Ramasamy et al., 2015),
however, this is not fully compatible with the
scope of errors in MultiGED.

• For German, although there is some work
on sentence-level error detection (e.g. Boyd,
2012) and error correction (e.g. Boyd, 2018;
Sun et al., 2022; Pająk and Pająk, 2022), there
is no previous work on token-level GED.
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Feedback type Example NLP task
1. correct/incorrect incorrect sentence-level acceptability judgment
2. highlighting I saw show last night . GED – grammatical error detection (per token)
3. metalinguistic note definiteness / morphology multi-class GED
4. error explanation note rules for noun definiteness instructive feedback generation
5. correct answer I saw the show last night . GEC – grammatical error correction
6. level/grade CEFR level A2 AEG – automatic essay grading

Table 7: NLP tasks for different feedback types

• For Italian, we are unaware of any work on
GED or GEC at all.

• For Swedish, rule-based error detection was
developed within the Granska project, (e.g.
Birn, 2000; Arppe, 2000), however, it is diffi-
cult to use these results for comparison since
the evaluation metrics and test sets are differ-
ent, as is the scope of errors.

We can therefore conclude that the MultiGED-
2023 shared task has established a new set
of benchmark datasets and state-of-the-art GED
baselines for four new languages in this domain:
Czech, German, Italian and Swedish.

7 Concluding remarks

We have presented datasets and results for the
task of multilingual grammatical error detection
for five languages and six corpora, three of which
have not previously featured in the domain of
GED.

We view this contribution primarily as a step
towards empowering “smaller” languages and de-
creasing the Matthew effect in this field (Søgaard,
2022; Perc, 2014; Bol et al., 2018). It is our hope
that the availability of these datasets and base-
lines will spark further GED research for these
languages. Secondly, we view this shared task
as a step towards instructional feedback genera-
tion in ICALL tutoring systems – corrections, er-
ror classification and grammar explanations being
reserved as potential future shared tasks, see Ta-
ble 7 for some ideas.

Besides this, we summarise a few of our in-
sights that might be useful to keep in mind for fur-
ther GED experiments:

1. Pre-trained large language models have no
doubt pushed the field far forward (cf. Yuan
et al., 2021; Colla et al., 2023; Ngo et al.,
2023). It is left to see in the future how GPT20

20GPT stands for Generative Pretrained Transformers

models can influence the field (e.g. Radford
et al., 2018; Wu et al., 2023; Lund and Wang,
2023).

2. Monolingual fine-tuning tends to outperform
multilingual approaches, however, there are
some exceptions (Colla et al., 2023; Ngo
et al., 2023; Bungum et al., 2023), and more
attention should be given to multilingual ap-
proaches.

3. Embeddings of various types can have a
significant impact on system performance
(Bungum et al., 2023).

4. Artificial data containing error distributions
similar to the test data facilitates reaching
competitive performance with relatively low
costs (Kurfalı and Östling, 2023), and is a
promising way to go.

5. The quality of data annotation is critical for
high performance, as has been indicated by
the results on different MultiGED languages,
the ones coming from MERLIN (German and
Italian) showing better results compared to
other annotation paradigms (see Section 5 for
descriptions of Italian).

Finally, we would like to encourage those who
have L2 data and are willing to use it for a
shared task on L2 language in combination with
other languages, to make contact with the Com-
putational SLA working group.21 It would be
especially welcome if languages from beyond
the Indo-European group could feature in future
shared tasks.
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Abstract
The paper presents a monolithic approach to
grammatical error detection, which uses one
model for all languages, in contrast to the indi-
vidual approach, which creates separate mod-
els for each language. For both approaches,
pre-trained embeddings are the only exter-
nal knowledge sources. Two sets of embed-
dings (Flair and BERT) are compared as well
as two approaches to the problem of multi-
lingual rammar detection, building individual
and monolithic systems for multilingual gram-
mar error detection. The system submitted to
the test phase of the MultiGED-2023 shared
task ranked 5th of 6 systems. In the subse-
quent open phase, more experiments were con-
ducted, improving results. These results show
the individual models to perform better than
the monolithic ones and BERT embeddings
working better than Flair embeddings for the
individual models, while the picture is more
mixed for the monolithic models.

1 Introduction

The MultiGED-2023 shared task on Multilingual
Grammatical Error Detection (MGED; Volodina
et al., 2023) presents six datasets, in the languages
Czech, German, Italian, and Swedish as well as
two in English; all well-resourced languages with
more than 10 million speakers. Although not
strictly required, the task did encourage the sub-
mission of multilingual systems. This work com-
pares both approaches, multilingual and individual
models for each language.

The NTNU system aimed to answer two re-
search questions with its submission:

(i) the feasibility of using Flair embeddings (Ak-
bik et al., 2018) provided by the FlairNLP
framework (Akbik et al., 2019a) vs. the more
traditional BERT embeddings, and

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

(ii) the impact of training RNNs using language-
specific and multilingual embeddings, re-
spectively, to address the problem.

Consequently, no other external resources — or
synthetic data — were used. The submission to
the test phase of the shared task was a multilingual
system, which ranked 5th of 6 systems.

The rest of the paper is structured as follows:
first, Section 2 discusses relevant background,
and Section 3 briefly describes the dataset. Sec-
tion 4 outlines the proposed method and Section 5
presents the results, while Section 6 provides a dis-
cussion. Finally, Section 7 concludes and outlines
ideas for future work.

2 Background

Grammatical error detection (GED) has received
increased attention in the research community.
Figure 1 shows the number of publications about
GED registered in the Web of Science1 over the
last 31 years, most of which are categorized as
computer science disciplines. The results were ob-
tained by searching for the query “Grammatical
Error Detection” and asking for a citation report,
from which the chart was downloaded at the time
of submission.

Bryant et al. (2023) summarized the state-of-
the-art of the closely related field of grammati-

1http://www.webofscience.com

Figure 1: Number of GED publications registered in
the Web of Science per year from 1991 (1) to 2022 (27).
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cal error correction (GEC) as of November 2022,
citing various neural network methods, including
LSTMs and Transformers, but not contextualized
Flair embeddings. The authors cite the following
core approaches: 1) classifiers, 2) statistical ma-
chine translation, 3) neural machine translation, 4)
edit-based approaches, and 5) language models for
low-source and unsupervised GEC.

2.1 Flair Embeddings
Flair embeddings (Akbik et al., 2018) are contex-
tualized embeddings trained without explicit no-
tions of words and contextualized by their sur-
rounding text. As they were launched, the em-
beddings were evaluated on four classic sequence
labeling tasks: Named Entity Recognition (NER)-
English, NER-German, Chunking, and Part-of-
Speech (POS)-tagging. Akbik et al. reported im-
proved scores on several datasets. The embed-
dings are trained with a forward-backward Recur-
rent Neural Network (RNN), and can be stacked
before being applied to a particular problem.

Flair embeddings are pre-trained on large unla-
beled corpora, they capture word meaning in con-
text, and they model words as sequences of char-
acters, which helps them with modeling rare and
misspelled words. Thus, applying them to a se-
quence labeling problem such as GED is an in-
teresting research option. Akbik et al. (2019b)
launched pooled contextual embeddings to ad-
dress the shortcoming of dealing with rare words
in underspecified context. The pooled embeddings
aggregate contextualized embeddings as they are
encountered in a dataset. The Flair embeddings
are released for all of the languages studied in
MultiGED-2023, as well as in a multilingual ver-
sion, covering more than 300 languages.2

In addition to the authors’ experiments, Flair
embeddings have previously been applied to
sequence labeling in the biomedical domain
(Sharma and Jr., 2019; Akhtyamova and Cardiff,
2020), achieving similar performance to alter-
natives like BERT (Bidirectional Encoder Rep-
resentations from Transformers; Devlin et al.,
2019), despite being computationally cheaper.
Santos et al. (2019) and Consoli et al. (2020)
achieved state-of-the-art results on doing NER on
Portuguese literature in the geoscience domain.
Wiedemann et al. (2019) compared Flair embed-

2https://github.com/flairNLP/flair/bl
ob/master/resources/docs/embeddings/FLAI
R_EMBEDDINGS.md

dings to BERT in a word sense disambiguation
task, and argued that the latter models were bet-
ter able to find the right sense of polysemic words.
Syed et al. (2022) combined Flair and BERT em-
beddings for concept compilation in the medical
domain, reporting improved results with a hybrid
artificial neural network model, which concate-
nates the two embedding types. The FlairNLP
framework also offers this functionality.

3 Data and preprocessing

Six datasets in five languages were used for the
MultiGED-2023 shared task, ranging from 8k to
35k sentences.3 The data loaded unproblemat-
ically, with the exception of line 96487 in the
Swedish training corpus, a UTF-8 character that
broke scripts. Specifically, embeddings were cre-
ated with wrong dimensions. This character was
replaced by the string ‘FOO’ in the experiments
on this corpus to work around this problem. Ad-
ditionally, line 149 in the Swedish test corpus and
line 5351 in the Italian test corpus caused some
problems. Because the FlairNLP framework, in
contrast to, for instance, OpenNMT (Klein et al.,
2017), parses the vertical format directly, no other
preprocessing steps were necessary.

For the English Realec corpus, only a develop-
ment and a test file were provided. More details
are provided by Volodina et al. (2023).

4 Method

The FlairNLP framework was used to conduct the
experiments presented below. After the data was
loaded, it was passed to a processing pipeline,
which is a sequence-to-sequence labeler consist-
ing of a bi-directional LSTM (long short-term
memory; Hochreiter and Schmidhuber, 1997) with
an optional Conditional random field (CRF; Laf-
ferty et al., 2001) classifier on top. Next, the
model uses the training and development corpora
for training, as well as F1 scoring.

The architecture of the models can be adapted,
e.g., in terms of recurrent neural network (RNN)
layers, RNN type (RNN, LSTM or GRU — gated
recurrent unit), the number of hidden units and
training epochs, and the optional use of CRF. Ad-
ditionally, the Tensorboard4 system was used to
monitor training progress.

3https://github.com/spraakbanken/mult
iged-2023/

4Part of TensorFlow (Abadi et al., 2015).
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FlairNLP can combine several corpora into a
MultiCorpus object, which builds a monolithic
model of several corpora. This object can be used
to train and test a single model on a collection of
corpora, analogously to how a Corpus object can
be used to do training and inference of one cor-
pus for same. In the following, such a monolithic
MGED model is considered multilingual, in con-
trast to several smaller, individual models, one for
each language or dataset. While it is possible to
have different models for different languages and
direct input by means of language identification
prior to inference, this distinction is made for clar-
ity in separating the approaches.

Since the Realec corpus only came with devel-
opment and test files, it was used differently than
the other corpora: the English language was cov-
ered by the monolithic models and the individual
model for the English FCE corpus, so the Realec
test corpus was tested on this model and submit-
ted to CodaLab (Pavao et al., 2022) for evaluation.
The Realec dev corpus was not used in training.

4.1 Exploring Embeddings vs. Architecture

As a Bi-LSTM-CRF model is sensitive to initial-
ization, a wide range of RNN layers (2, 6, 12, 24),
hidden units (128, 256, 512) were explored as well
as using GRUs and standard LSTMs. While there
is a scope for tweaking the results, none of these
configurations resulted in markedly better perfor-
mance, with the exception of models with very few
layers that were unable to converge to anything but
same-labeling the entire corpus. For the results re-
ported in Section 5, the choice for RNN type was
LSTM, and the number of layers was 10.

4.2 System Submitted to the Test Phase of the
Shared Task

The system submitted to the test phase was a
monolithic multilingual system, which used the
multilingual Flair embeddings. The architecture
was a Bi-LSTM-CRF sequence labeler with only
one layer and using no CRF. While the system was
able to learn for all languages simultaneously, the
performance was weak, especially in terms of re-
call and F0.5.

5 Experimental Results

The experiments presented below were all carried
out with the RNN type LSTM, using 10 layers
with 256 hidden units, no use of CRF, and with a

Table 1: Monolithic system submitted to the test phase
of the shared task.

Dataset Precision Recall F0.5

Czech 80.65 6.49 24.54
English (FCE) 81.37 1.84 8.45
English (Realec) 51.34 1.13 5.19
German 83.56 15.58 44.61
Italian 93.38 19.84 53.62
Swedish 80.12 5.09 20.31

tag dictionary of only [c, i]. The experiments con-
sisted of two stages: initially, five systems (includ-
ing only one English model) were developed for
each language using both Flair and BERT embed-
dings; subsequently, two monolithic models were
created employing cased multilingual Flair and
BERT embeddings. After presenting the scores
of the simple system submitted to the shared task,
these two types of experiments will be presented.

5.1 System Submitted to the Test Phase of the
Shared Task

Table 1 shows the results of the system that was
submitted to the test phase of the shared task,
which was discussed above. Using only one RNN,
layer, the monolithic model using Flair embed-
dings did get good precision on some datasets, but
at the cost of recall and F0.5 score. Only the score
on the Italian dataset came close to the models us-
ing 10 layers in F0.5 terms.

5.2 Individual Models for each Language

Figure 2 shows how the English FCE model (as an
example) developed toward convergence and Ta-
ble 2 exhibits the results in tabular form. The FCE
models were chosen randomly as two samples of
the ten models that were built in total. The re-
sults are better for BERT embeddings across all
languages, and the differences are the largest for
the smaller datasets, Swedish and Italian, than the
larger English, German, and Czech, which is high-
lighted in the extra column of Table 2b.

BERT models are available for these languages
in the Huggingface5 interface: Czech (Sido et al.,
2021), English (Devlin et al., 2019), German6,
Italian7, and Swedish (Malmsten et al., 2020).

5https://huggingface.co/
6https://www.deepset.ai/german-bert
7https://huggingface.co/dbmdz/bert-bas

e-italian-cased
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(a) With Flair embeddings.

(b) With BERT embeddings.

Figure 2: Development corpus score per epoch until
convergence for the English FCE model.

Table 2: Comparison of individual models. The ‘Diff’
column shows the difference between the two models
(Flair vs. BERT). The biggest difference in bold, the
smallest in italics.

(a) Individual models built with Flair embeddings.

Dataset Prec. Rec. F0.5

Czech 75.3 39.46 63.73
En (FCE) 65.49 33.01 54.72
En (Realec) 41.52 28.12 37.91
German 78.06 56.37 72.48
Italian 70.29 27.28 53.44
Swedish 57.44 26.85 46.78

(b) Individual models built with BERT embeddings.

Dataset Prec. Rec. F0.5 Diff

Czech 80.2 47.22 70.37 6.64
En (FCE) 71.13 41.5 62.25 7.53
En (Realec) 44.9 35.2 42.56 4.65
German 81.99 65.48 78.05 5.57
Italian 83.45 63.54 78.53 25.09
Swedish 80.64 60.1 75.48 27.7

(a) With Flair embeddings.

(b) With BERT embeddings.

Figure 3: Development corpus score per epoch until
convergence for the monolithic models.

Table 3: Comparison of monolithic models. The ‘Diff’
column shows the difference between the two models
(Flair vs. BERT). The biggest difference in bold, the
smallest in italics.

(a) Monolithic model built with Flair embeddings.

Dataset Prec. Rec. F0.5

Czech 70.21 21.05 47.85
En (FCE) 66.76 10.13 31.52
En (Realec) 41.91 9.23 24.54
German 72.35 33.2 58.54
Italian 84.02 28.89 60.81
Swedish 67.57 19.45 45.2

(b) Monolithic model built with BERT embeddings.

Dataset Prec. Rec. F0.5 Diff

Czech 54.07 20.43 40.68 -7.17
En (FCE) 68.51 41.04 60.42 28.9
En (Realec) 42.07 35.1 40.46 15.92
German 59.6 26.55 47.72 -10.82
Italian 47.55 20.78 37.8 -23.0
Swedish 50.04 24.36 41.32 -3.88
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5.3 Monolithic Models for all Languages

Figure 3 shows how the monolithic model de-
veloped towards convergence for both embedding
types, and Table 3 exhibits the results in tabular
form. The multilingual and cased BERT model
and the corresponding Flair model were used for
the embeddings. The results are markedly better
for the English datasets but worse for the others,
in particular Italian.

6 Discussion

As expected, the Flair embeddings performed
worse than the more expensive BERT models in-
dividually. The results show that the Flair embed-
dings were performing closer to the BERT mod-
els for the larger corpora, with a larger difference
for the smaller Italian and Swedish corpora. The
masked language model training of BERT could
introduce more imbalances when the corpora have
different sizes. Possibly, the Flair embeddings
need more training data to perform well.

It was a more mixed picture for the mono-
lithic MGED models, where the BERT embed-
dings scored better for the English but worse for
the other languages. Unlike for the individual
models, performance was actually worse than with
Flair embeddings, the reasons for which should be
further explored.

In some experiments, the training process
would get stuck in local minima, which converged
to models that categorized all words as c. Anecdo-
tally, fewer experiments were necessary to make
the experiments using Flair embeddings to con-
verge to a result other than a one-category (thus,
meaningless) result. In contrast, the monolithic
models using BERT embeddings were harder to
get to converge to a result with both correct and
incorrect predictions. Thus, several experiments
were necessary to get a meaningful result out, al-
though those models were performing better.

Furthermore, some experiments on model ar-
chitecture were conducted by changing the RNN
type, number of layers, or the dimensionality of
the hidden state vector. While no notable differ-
ences in results were discovered in this exploratory
phase, a potential for tweaking the models to in-
crease performance on the test set likely remains.

As a consequence of an implementation er-
ror, the results submitted to the test phase of
MultiGED-2023 were revised and turned out to be
better. The errors were due to the FlairNLP sys-

tem outputting a labeling of the test set, which was
different from using the best model from train-
ing on the dataset, which caused minor differences
in scoring. However, the substantial performance
gain in the results presented above compared to
the results submitted to the test phase stems from
the architectural change to the system, whereby
more RNN layers were added. The submitted sys-
tem was simple, as the exploratory phase of get-
ting the setup to produce results reliably had just
been completed. As the scoring in CodaLab was
(and is) available in the open phase, more work
could be done, both in development and compari-
son terms.

For monolithic models, the multilingual BERT
models are resource-demanding. Since the experi-
ments were carried out on a multiuser HPC (high-
performance computing) grid with many outside
factors influencing performance, training times
cannot be compared directly. Approximately and
informally, however, the monolithic jobs with
BERT embeddings could take 36 hours to con-
verge, while the corresponding jobs with Flair em-
beddings converged in 6–8 hours.

7 Conclusion and Future Work

The research questions posed concerned (i) the
feasibility of using Flair embeddings on an MGED
task and (ii) monolithic vs. individual models.

The Flair embeddings were definitely feasible.
For the larger datasets, performance neared BERT
models, and did better on non-English languages
for the monolithic approach. The monolithic ap-
proach did, however, perform worse than the in-
dividual models for both Flair and BERT embed-
dings. Thus, more research is needed to improve
the monolithic approaches, with the gap in perfor-
mance in the presented results too big to ignore.

For future work, hybrid solutions could be ex-
plored, where Flair and BERT embeddings are
stacked. There is also room for further exploring
the parameter space of the sequence-to-sequence
labeling architecture, as well as leveraging newer
and larger language models for embeddings. In
addition, it would be interesting to apply F0.5 scor-
ing in training, as opposed to the default F1 scor-
ing in the FlairNLP framework that was used in
the experiments reported here.
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Abstract

In this paper we describe the participation
of our team, ELICODE, to the first shared
task on Multilingual Grammatical Error De-
tection, MultiGED, organised within the work-
shop series on Natural Language Process-
ing for Computer-Assisted Language Learning
(NLP4CALL). The multilingual shared task
includes five languages: Czech, English, Ger-
man, Italian and Swedish. The shared task is
tackled as a binary classification task at token
level aiming at identifying correct or incorrect
tokens in the provided sentences. The submit-
ted system is a token classifier based on XLM-
RoBERTa language model. We fine-tuned five
different models—one per each language in
the shared task. We devised two different ex-
perimental settings: first, we trained the mod-
els only on the provided training set, using the
development set to select the model achiev-
ing the best performance across the train-
ing epochs; second, we trained each model
jointly on training and development sets for
10 epochs, retaining the 10-epoch fine-tuned
model. Our submitted systems, evaluated us-
ing F0.5 score, achieved the best performance
in all evaluated test sets, except for the English
REALEC data set (second classified). Code
and models are publicly available at https:
//github.com/davidecolla/EliCo
De.

1 Introduction

Grammatical Error Detection (GED) is the task
of automatically identifying errors in learner lan-
guage. Despite its name, the errors to be identi-
fied are not only grammatical errors, but different
error types are considered, e.g. spelling, punctu-
ation, lexical. In Second Language Acquisition
and Learner Corpus Research, indeed, an error is

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

defined as “a linguistic form or combination of
forms which, in the same context and under sim-
ilar conditions of production, would, in all like-
lihood, not be produced by the speakers’ native
speaker counterparts” (Lennon, 1991). As can be
noticed, this definition includes different causes,
i.e. grammaticality and correctness, or acceptabil-
ity, strangeness and infelicity (James, 1998). This
difference results in different resources annotating
different errors, with some annotating as grammat-
ical errors also appropriateness errors—i.e. prag-
matics, register and stylistic choices (Lüdeling and
Hirschmann, 2015, p. 140)—others excluding ap-
propriateness, but including orthographical and
semantic well-formedness together with accept-
ability (Di Nuovo, 2022).

In both GED task and the related Grammati-
cal Error Correction (GEC) task, research has fo-
cused mainly on learner English (as second or
foreign language) (Bell et al., 2019; Ng et al.,
2014; Bryant et al., 2019). Recently, also non-
English error-annotated data sets have been re-
leased (Boyd, 2018; Náplava et al., 2022). Thanks
to these recent trends, the authors of MultiGED
(Volodina et al., 2023) organised this year the
first multilingual GED shared task, hosted at the
workshop series on Natural Language Process-
ing for Computer-Assisted Language Learning
(NLP4CALL).

Both GED and GEC can be seen as low or
mid-resource tasks, because of three main char-
acteristics: requiring time-expensive and highly-
specialised human annotation, annotated data sets
are usually small in size; the incorrect tokens in
a text are significantly scarce if compared to the
correct ones; since errors pertain to different error
categories, each error type in the data sets is rep-
resented unevenly.

The data sets included in MultiGED shared
task are in Czech, English, German, Italian and
Swedish. Some of these data sets have been al-

Davide Colla, Matteo Delsanto and Elisa Di Nuovo. EliCoDe at MultiGED2023: fine-tuning XLM-RoBERTa for
multilingual grammatical error detection. Proceedings of the 12th Workshop on Natural Language Processing for

Computer Assisted Language Learning (NLP4CALL 2023). Linköping Electronic Conference Proceedings 197: 24–34.
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ready used for GED or GEC tasks—i.e. Falko
and Merlin corpora (Boyd, 2018), Grammar Error
Correction Corpus for Czech (GECCC) (Náplava
et al., 2022), First Certificate in English (FCE)
corpus (Yannakoudakis et al., 2011)—others have
been released ad hoc for this shared task—i.e.
Russian Error-Annotated Learner English Corpus
(REALEC) (Kuzmenko and Kutuzov, 2014), re-
leased only as development and test data sets,
and learner Swedish SweLL-gold (Volodina et al.,
2019), comprising training, development and test
data sets.

The aim of MultiGED is to detect tokens to be
corrected labelling them as correct or incorrect,
performing a binary classification task at token
level. Training and development data sets were
segmented into sentences and tokens (no informa-
tion at text level was released).

Following previous GED shared tasks, the used
evaluation metric is F0.5, which weights precision
twice as much as recall, carried out on the Codalab
competition platform.1

The authors of the shared task encouraged sub-
missions using a multilingual approach and addi-
tional resources, provided that these resources are
publicly available for research purposes. How-
ever, since different resources can annotate differ-
ent errors, the use of other additional data might
be a double-edged sword. In fact, the additional
data would increase the tool’s ability to identify
a greater variety of errors, but at the same time,
as the tool is evaluated in-domain, it moves away
from the characteristics of the test set.

In this paper, we present the systems submit-
ted by our team, ELICODE, to MultiGED 2023
shared task. Our systems are both based on XLM-
RoBERTa language model (Conneau et al., 2019),
and do not use additional resources. We fine-
tuned five models—one per each language in the
shared task—for ten epochs. We devised two dif-
ferent experimental settings both using early stop-
ping: in the first experimental setting, we trained
the models only on the training data set and used
the early stopping according to the F0.5 score ob-
tained on the development data set (ELICODE);
in the second experimental setting, we trained
each model on both training and development data
sets (ELICODEALL). Since in both experimen-
tal settings the early stopping was based on the

1https://codalab.lisn.upsaclay.fr/com
petitions/9784

development data set, in the second one, being
it part of training, the training continued for all
the ten epochs. We comment the results of the
above-mentioned systems comparing them with a
baseline—a Naive Bayes model—and an XLM-
RoBERTa-based model trained jointly on the
five-language training data sets (ELICODEMLT )
and on both training and development data sets
(ELICODEMLTALL

), tackling the shared task with
a multilingual approach.

The remainder of this paper is organised as fol-
lows: in Section 2 we present related work; in Sec-
tion 3 we quantitatively describe the multilingual
data set; in Section 4 we describe in detail our sub-
mitted models; in Section 5 we report and discuss
the obtained results; in Section 6 we conclude the
paper highlighting possible future work.

2 Related work

The detection of errors in interlanguage texts
(Selinker, 1972) is a challenging task that has re-
ceived significant attention in the natural language
processing community, since GED systems can
be used to provide feedback and guidance to lan-
guage learners. In this section, we review some
of the most relevant and recent studies in this area
and in the related task of GEC.

Initially tackled using rule-based approaches,
GED systems have evolved from being able to
identify only certain types of errors to being more
and more able to handle the complexity and vari-
ability of natural language, thanks to modern ma-
chine learning techniques which make use of large
annotated text corpora, usually released in the oc-
casion of shared tasks. This switch is evident in
the evolution of the shared task from CoNLL-2013
(Ng et al., 2013) to CoNLL-2014 (Ng et al., 2014),
when it changed from annotating only five error
types to all error types.2

In CoNLL-2014 shared task, the majority of the
systems made use of hybrid approaches able to
deal with all error types together, as compared to
previous year’s submissions, where a specific clas-
sifier per each error type was trained. The most
popular approaches made use of one or more of

2Twenty-eight error types are annotated in the CoNLL-
2014 benchmark data set. However, it should be noticed that
this is still far from annotating all error types. For example,
in the English Corpus of Learner English (ICLE) (Granger
et al., 2020) there are 54 error tags, in the error-annotated
learner Italian corpus, VALICO-UD (Di Nuovo, 2022, p. 94),
120 error tags.
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the following: the Language Model (LM) based
approach (using n-gram language models), which
has been used for both GED and GEC; the phrase-
based Statistical Machine Translation (SMT) ap-
proach, used mainly for GEC; and rule-based ap-
proaches to tackle regular error types.

In 2019, the Building Educational Applications
(BEA) shared task on GEC (Bryant et al., 2019)
introduces a new data set, joining the Cambridge
English Write & Improve (W&I) (Yannakoudakis
et al., 2018) and LOCNESS corpus (Granger,
1998), making the test data set bigger than the one
on which CoNLL-2014 systems were tested (from
50 essays on two different topics, to 350 essays
on about 50 topics). Another major change con-
cerns the use of neural machine translation (Bryant
et al., 2022)—being it based on recurrent neural
networks (Bahdanau et al., 2014), convolutional
neural networks (Gehring et al., 2016), or trans-
formers (Vaswani et al., 2017)—instead of SMT
and n-gram-based LMs. BEA reported results
highlighted that the same system had different per-
formances in texts at different CEFR levels (Little,
2006), lexical errors were the most difficult to de-
tect and correct, and multi-token errors were better
handled than in the previous shared task.

Bell et al. (2019) integrate contextual
embeddings—BERT, ELMo and Flair em-
beddings (Peters et al., 2017; Devlin et al., 2018;
Akbik et al., 2018)—in Rei (2017) architecture for
GED (a bi-LSTM sequence labeler at token and
sentence level, making use also of character-level
bi-LSTM, to benefit from morphological informa-
tion). Their best model used BERT embeddings
and proved to better generalise in out-of-domain
texts. Their analyses show that missing tokens are
the most difficult errors to indentify.

Kaneko and Komachi (2019) proposed an ex-
tension of BERT base (Devlin et al., 2018) with
multi-head multi-layer attention, since research
has shown that different layers are best-suited for
different tasks, e.g. lower layers capture local syn-
tactic relationships, higher layers longer-range re-
lationships (Peters et al., 2018).

Recently, Yuan et al. (2021) fine-tuned BERT,
XLNet (Yang et al., 2019) and ELECTRA (Clark
et al., 2020) models to perform GED in English.
The three models obtained the new state of the art
in binary GED training on FCE data set and test-
ing on BEA-dev, FCE-test and CoNLL-2014, with
ELECTRA performing the best overall. Thus,

they used ELECTRA to carry out some multi-
class GED experiments to boost performance on
GEC data sets using it as auxiliary input or for re-
ranking.

Our system treats GED as a binary sequence
labelling task, like all the above-described sys-
tems, and since the best results have been ob-
tained by fine-tuning transformer-based models,
we followed this approach by fine-tuning XLM-
RoBERTa model (Conneau et al., 2019). We
decided to use multilingual RoBERTa because
its training focuses on the discrimination of the
masked token, and thus, it is conceptually similar
to GED. In the following section we quantitatively
analyse MultiGED data set, before describing in
detail our submitted systems in Section 4.

3 Data set quantitative analysis

MultiGED data set contains labelled training and
development sets in Czech (GECCC), English
(FCE), Italian (Merlin), German (Falko and Mer-
lin) and Swedish (SweLL-gold). In particu-
lar, for English language an additional data set
(REALEC) has been released only as development
set. In addition, for each data set an unlabelled test
set has been released.

Following the work of Siino et al. (2022), we
quantitatively analyse the 5-language data sets us-
ing established corpus linguistics methods imple-
mented in Sketch Engine (Kilgarriff et al., 2014).3

We report general data set figures in Table 1, as
computed using Sketch Engine.

We used Compare Corpora, the built-in func-
tion of Sketch Engine that applies chi-square (χ2)
test (Kilgarriff, 2001), to compare training, devel-
opment and test sets per each language. The re-
sult of this comparison is a confusion matrix per
each language, reported in Figure 1, showing val-
ues greater or equal to 1, with 1 indicating iden-
tity. The higher the value, the larger the differ-
ence between the compared data sets.4 For En-
glish we created a comprehensive confusion ma-
trix comparing the two different corpora (FCE and
REALEC).

3Available here: https://www.sketchengine.eu
(last accessed on 28 March 2023).

4Please consider that correct or incorrect labels are not
taken into account in this comparison. This comparison, in-
stead, gives as an idea of how different the data sets are ac-
cording to the different words used. Compare Corpora tool
is affected by set size: this is why development and test sets,
being the smallest, have a higher similarity score than when
compared individually to the bigger training sets.

Proceedings of the 12th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2023)

26



Source corpus Language Split # Tokens # Unique
words

train 333,995 37,228
GECCC Czech dev 32,071 8,145

test 35,075 8,764
train 465,038 13,972

FCE English dev 35,463 3,569
test 42,545 3,800
train – –

REALEC English dev 88,698 6,208
test 90,391 6,300
train 306,847 20,561

Falko-MERLIN German dev 39,627 5,606
test 36,763 5,478
train 82,040 6,957

MERLIN Italian dev 9,326 2,041
test 10,300 2,176
train 115,547 10,791

SweLL-gold Swedish dev 15,713 3,225
test 14,666 3,141

Table 1: MultiGED data set in figures. # stands for number of.

(a) EN data sets.

(b) CS data set. (c) DE data set.

(d) IT data set. (e) SV data set.

Figure 1: Confusion matrices obtained with word-
based chi-square test. The value 1.00 indicates identity
between the compared data sets. The greater the value,
the more different the data sets.

Looking at the matrices, we could suppose that
systems should have less trouble in handling the
task in German, Czech, Swedish (in order) than in
Italian and English.

English (EN) data set – Since the big differ-
ence between FCE and REALEC, the lowest re-
sults should be obtained using models trained on
FCE and tested on REALEC. Better results could
be instead obtained fine-tuning in-domain using
REALEC development set and testing it on the
test set (because of the smaller similarity score be-
tween REALEC development and training sets).
It is interesting to notice that REALEC develop-
ment and test data sets have a similarity score (i.e.
1.49) significantly lower than FCE development
and test data sets (i.e. 3.99). FCE training and de-
velopment data sets have a similarity score of 1.72.
FCE training and test data sets of 3.67. These
results might suggest that the English data set is
challenging for the models.

Czech (CS) data set – The lower similarity scores
between the data sets suggest that systems should
perform better on Czech than in English test set.
Also if compared to the similarity scores obtained
in Italian data sets, the lower similarity scores
might indicate that the systems should perform
better on Czech than in the Italian test set.

German (DE) data set – Since the low similarity
score, indicating a bigger similarity between the
sets, should mean that German should be the easi-
est to tackle for the models.

Italian (IT) data set – Here again, since sim-
ilarity scores between the sets are lower than in
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English one, models should perform better on the
Italian data set than in the English. In addition, the
higher similarity score between development and
test data sets suggests that choosing the best per-
formance model according to the results on the de-
velopment set should be avoided. Instead training
on both training and development data sets should
ensure the best performance in this data set.
Swedish (SV) data set – According to the re-
ported similarity scores, Swedish training set is in
an order of similarity with development and test
sets as the Czech sets. This might suggest that
similar performances might be expected.

4 System description

In this section, we describe in detail the specifica-
tions of our submission.

Given the nature of the MultiGED shared task,
we framed the problem as a token classification
task, where systems are required to provide a label
for each token within the input sequence. More
precisely, we employed a sequence labelling strat-
egy using the BIO labelling schema (Ramshaw
and Marcus, 1999). The standard schema is
formed by B-I-O tags, where each token in a sen-
tence is labelled with one of the three tags: B indi-
cates the beginning of the error span, i.e. the first
token of an incorrect use; I is used to label tokens
inside the error unit; O marks tokens that are out
of the error span, hence correct. However, since
in our task we did not have information about the
number of errors nor the error span, we decided
to use always B to mark an incorrect token, even
when preceded by another incorrect token, and O
to mark the correct tokens.

The adopted model allows framing the problem
as token classification task that, given a sentence
W = w1w2 . . . wn, amounts to labelling each
word wi with B or O tags because of the above-
mentioned reason. Figure 2 reports an example of
the system output of a sentence from the English
FCE training data. Considering the example, we
can see that the token disappointing is correctly
tagged with B, indicating an incorrect usage, and
then it is followed by another incorrect token a—
marked again with the label B because of the infor-
mation loss from the conversion from error-tagged
corpora to binary token labelling. In the same ex-
ample, the token week is labelled as correct while
the token holiday is labelled as incorrect token.

The model we employed is based on XLM-

RoBERTa large: we stacked a linear classifier—
with input size of 1024 units and the output size
is set to the number of labels—on top of the pre-
trained XLM-RoBERTa model, inserting in be-
tween the two a dropout layer—with a dropout
probability set to 0.1—to avoid overfitting. Fi-
nally, in order to compute the distance between
the actual data and the predictions we adopted the
Cross Entropy loss function. The model architec-
ture is depicted in Figure 3.

To run the experiments, we devised two dif-
ferent experimental settings. In the first one, we
trained the models only on the provided train-
ing set for 10 epochs, using the development
set to select the model achieving the best per-
formance across the training epochs (ELICODE).
In the second setting, we trained each model
jointly on the training and development sets for 10
epochs, and retained the 10-epoch trained model
(ELICODEALL).5

To build our models, we started from the
ClinicalTransformerNER framework (Yang et al.,
2020) and we adapted the code so as to deal with
XLM-RoBERTa language model.6

Our experiments were performed on machinery
provided by the Competence Centre for Scientific
Computing (Aldinucci et al., 2017). In particu-
lar, we exploited nodes with 2x Intel Xeon Proces-
sor E5-2680 v3 and 128GB memory. The training
time is about 15 hours per epoch for the provided
languages with a large training data—i.e. Czech,
English and German—and drops to 8 hours per
epoch for Italian and Swedish. The time taken in
the prediction phase is about 25 minutes per lan-
guage.

5 Results and discussion

We report in Table 2 the results obtained by all
teams participating to MultiGED shared task (up-
per part of the table),7 and additional experimental
results—i.e. a baseline and our submitted models
but trained in a multilingual fashion (bottom part
of the table). As far as the baseline is concerned,
we extracted the token counts from the training
data and adopted the multinomial Naive Bayes

5In both experimental settings we adopted a batch size of
4 and an early stop of 5 epochs.

6The code and the models will be publicly available on
GitHub after the review phase of this paper to ensure blind
review.

7We took the results from the official MultiGED reposi-
tory: https://github.com/spraakbanken/mult
iged-2023.
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I was very disappointing a week holiday for me because I

had got a lot of problem with the show .

O O O B B O B O O O O

O O O O O O O O O O

Figure 2: The output of the model for the sentence I was very disappointing a week holiday for me because I had
got a lot of problem with the show. Here the token disappointing is marked as the beginning of an error unit. By
the same token, a is marked as beginning of a new error due to the information loss caused by the conversion from
error-tagged corpora to binary token labelling. The token holiday is also marked as an incorrect use. The other
tokens are marked as correct uses.

In our Acadamy we are not allowed to smoke

EmbIn Embour EmbAcadamy Embwe Embare Embnot Emballowed Embto Embsmoke

Dropout Layer

Linear Classification Layer

O O B O O O O O O

XLM-RoBERTa

.

Emb.

O

Figure 3: Graphic representation of the model. The grey boxes represent the tokens in the example. These tokens
are vectorised and converted into embeddings by XLM-RoBERTa. Tokenisation in XLM-RoBERTa is simplified
in this figure for readability reasons. XML-RoBERTa output is inputted to the linear classifier, after passing a
dropout layer. The classifier predicts the label B or O for each token.
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classifier for sequence labelling (Baseline). As far
as the multilingual models are concerned, we fol-
lowed the same experimental settings of the sub-
mitted monolingual models, training two multilin-
gual models: a first model trained only on the con-
catenation of training data sets (ELICODEMLT ),
the second concatenating also the development
data sets (ELICODEMLTALL

).

The overall results obtained by both ELICODE

and ELICODEALL are higher than those obtained
by the other competing systems, except for the En-
glish REALEC test set.

Concerning Precision (P), the baseline and both
our ELICODE and ELICODEALL submissions
perform well overall. However, on the FCE par-
tition of the English data set the scores consis-
tently decrease by about 10% and, as expected,
the REALEC partition is the most challenging data
set: Precision scores drop from about 80% on av-
erage to about 40%. As far as Recall (R) is con-
cerned, the token count-based baseline performs
poorly: the average Recall of the baseline across
languages is about 12% while the average score of
ELICODE and ELICODEALL is about 58%. Fol-
lowing the same trend as Precision, Recall scores
for both our submitted systems drop from about
62% of average to 40% on the REALEC English
data set. Given the definition of F0.5 metric—i.e.
it puts more importance on Precision with respect
to Recall—, the overall scores reflect the trend of
Precision: the average F0.5 score is about 76%
for both ELICODE and ELICODEALL on all lan-
guages but the English REALEC data set, where
the average F0.5 drops to 43%.

Considering the different languages, as ex-
pected from the quantitative analysis from Sec-
tion 3, the ELICODEALL performance improves
compared to the scores obtained by ELICODE on
Czech, German, Italian and Swedish languages:
training on both training and development set al-
lows accounting for the similarities between de-
velopment set and test set too. Consistently with
the above-mentioned analysis, the performances
achieved on the Swedish and Czech data sets are
comparable and lower than the scores obtained
on the German data set, that recorded the high-
est F0.5 score of 82.32%. Concerning the differ-
ences in the English data, as expected, ELICODE

performs better than ELICODEALL on both FCE
and REALEC partitions, this is likely due to the
high dissimilarity between the English FCE devel-

opment and test data sets, thus training the model
on the development set as well amounts to intro-
ducing noise during the learning phase. Addition-
ally, given the great difference between FCE and
REALEC partitions, the results of models trained
on the FCE data set are consistently lower on
REALEC data compared to the results on the FCE
data.

In order to explore the impact of the difference
between the English data sets, we trained a model
only on the REALEC development set. The model
has been trained for 10 epochs and by maintain-
ing fixed all the other parameters so as to make
the results of such model comparable to the oth-
ers. The model trained only on REALEC data
achieved 58.44 of Precision, 33.19 of Recall and
the F0.5 is 50.72, thus improving the F0.5 of about
7% compared to the ELICODE result; in particu-
lar, the model becomes more precise in predicting
errors, but given the reduced amount of training
data is less incline to label tokens as incorrect.

Concerning the baseline, its poor performance
is likely due to the employed representation:
count-based features consider terms in isolation
rather than in context, in so doing, the model
is able to detect errors based on words fre-
quency only, thus detecting errors related only to
vocabulary—i.e. non-existing words or unseen to-
kens at training time. In this respect, the results
achieved by the baseline on the REALEC partition
of the English data set are lower than those for the
FCE data set—especially on Precision—, thus re-
flecting the difference between such two data sets.
Conversely, the representations employed by lan-
guage models such as XLM-RoBERTa are con-
text sensitive—i.e. each token representation ac-
counts for the whole sequence information—and
this is reflected in a consistent improvement in Re-
call scores.

In order to assess the multilingual competence
of the language model, we trained a model on the
concatenation of the training sets of all the dif-
ferent languages: typologically similar languages
may mutually improve the model representations,
while languages with different structures may neg-
atively impact the error detection in both lan-
guages. The trained multilingual models, as said,
follow the same experimental setting than the sub-
mitted monolingual models. Differently than the
monolingual models which were trained for 10
epochs, the multilingual models have been trained
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System
Czech English - FCE English - REALEC

P R F0.5 P R F0.5 P R F0.5

DSL-MIM-HUS 58.31 55.69 57.76 72.36 37.81 61.18 62.81 28.88 50.86
Brainstorm Thinkers 62.35 23.44 46.81 70.21 37.55 59.81 48.19 31.22 43.46

VLP-char 34.93 63.95 38.42 20.76 29.53 22.07 - - -
NTNU-TRH 80.65 6.49 24.54 81.37 1.84 8.45 51.34 1.13 5.19

su-dali - - - - - - - - -
ELICODE 82.29 50.61 73.14 73.64 50.34 67.40 44.32 40.73 43.55

ELICODEALL 82.01 51.79 73.44 71.67 50.74 66.21 43.69 40.74 43.07

Baseline 85.69 21.19 53.26 72.81 7.55 26.69 36.40 5.67 17.46
ELICODEMLT 83.06 50.72 73.66 73.85 50.08 67.45 44.36 42.29 43.93

ELICODEMLTALL
82.79 49.56 73.01 75.01 48.94 67.79 45.34 40.29 44.23

System
German Italian Swedish

P R F0.5 P R F0.5 P R F0.5

DSL-MIM-HUS 77.80 51.92 70.75 75.72 38.67 63.55 74.85 44.92 66.05
Brainstorm Thinkers 77.94 47.55 69.11 70.65 36.46 59.49 73.81 39.94 63.11

VLP-char 25.18 44.27 27.56 25.79 44.24 28.14 26.40 55.00 29.46
NTNU-TRH 83.56 15.58 44.61 93.38 19.84 53.62 80.12 5.09 20.31

su-dali - - - - - - 82.41 27.18 58.60
ELICODE 83.87 71.89 81.16 85.63 66.69 81.03 80.56 67.50 77.56

ELICODEALL 84.78 73.75 82.32 86.67 67.96 82.15 81.80 66.34 78.16

Baseline 80.99 10.25 34.02 85.11 10.72 35.65 78.09 13.65 40.16
ELICODEMLT 83.47 72.52 81.02 85.30 69.64 81.63 82.24 65.94 78.36

ELICODEMLTALL
84.80 71.09 81.65 85.71 65.95 80.87 83.34 64.37 78.70

Table 2: Results of experiments in the token classification task. To increase readability, we partitioned the re-
sults on two tables grouped by language. We reported the results for all the systems submitted to the MultiGED
competition—in the upper part of each sub-table—together with the results of our submission (ELICODE and
ELICODEALL). The bottom part of each sub-table report the Naive Bayes-based baseline and the multilingual
models (ELICODEMLT and ELICODEMLTALL

) results. For each system we report the scores obtained on all
the languages included in the competition; for each language, the corresponding columns report the Precision (P),
Recall (R) and F0.5 scores. The highest F0.5 scores are in bold.
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for 7 epochs: in this setting the training took on av-
erage 55 hours per epoch for ELICODEMLT and
62 hours for ELICODEMLTALL

.8

The multilingual models perform similarly on
the shared task test sets compared to monolingual
models. If we consider the two languages with a
smaller training and development sets, i.e. Ital-
ian and Swedish, we might notice that the perfor-
mance on the Italian test set does not improve us-
ing the multilingual approach. This might be due
to the fact that the other languages included in the
shared task are not typologically similar to Italian.
On the contrary, the performance on the Swedish
language, which is slightly higher than the mono-
lingual model performance, might benefit from the
German training and development data sets, being
both Germanic languages.

6 Conclusion and future work

In this paper, we presented the ELICODE sys-
tem submitted to the first shared task on Multi-
lingual Grammatical Error Detection (MultiGED).
We studied the effect of fine-tuning the pre-trained
XLM-RoBERTa language model on the multilin-
gual grammatical error detection framed as se-
quence labelling task. The submitted system
achieved the highest scores on five out of six dif-
ferent data sets in a multilingual setting: the pro-
vided data are in five languages, namely Czech,
English, German, Italian and Swedish.

We compared our system with a simple Naive
Bayes classifier based on token counting. The
comparison shows that a system based on local
representations is able to detect a small subset of
errors (good Precision and low Recall) such as ty-
pos or out-of-vocabulary words; conversely, a sys-
tem exploiting contextual representations detects
a larger number of error types (increased Recall).
Additionally, we compared our monolingual sys-
tem with a multilingual model trained jointly on
the five-language training data sets. We found that
the results achieved by the multilingual model are
comparable to those obtained by the monolingual
models, thus indicating that the token representa-
tions built by the language model are suited to gen-
eralise over different languages.

As part of future work, we plan to qualitatively
analyse the error types recognised by the presented

8The multilingual model trained only on the training data
sets (ELICODEMLT ) for 7 epochs achieved the same results
of the 8-epoch model. Thus, we assume that ELICODEMLT

reached the learning upper bound at the 7th epoch.

models, to find possible ways to improve gram-
matical error detection, e.g. by creating hybrid or
ensemble models, but also to verify that models
based on local representations are able to recog-
nise mainly error categories based on the signi-
fier, which do not need to take context into ac-
count. Another interesting solution could be that
described in Omelianchuk et al. (2020), in which
the authors address the GEC task iteratively.

Concerning error types and interlanguage, it
would be interesting to train Second Language
Acquisition theory-aware models taking interlan-
guage stages into account by grouping data ac-
cording to CEFR level information. Indeed, learn-
ers at the same learning stage share the same er-
ror types, irrespective to their mother tongue (Gi-
acalone Ramat, 2003). These models might per-
form better in applicative cases in which we know
learners’ language level (Bryant et al., 2019).

In addition, it would be interesting to analyse
the embeddings generated by models fine-tuned
on this task, using visualisation techniques as prin-
cipal component analysis, to verify if embeddings
representing the same word are localised in differ-
ent space areas according to their correct or incor-
rect usage.

Furthermore, we plan to explore the perfor-
mance of other language models already tested
in GEC and GED tasks to compare RoBERTa
and other transformer-based models trained using
a different technique (e.g. ELECTRA trained to
discriminate the wrongly generated token in a se-
quence).
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Gaëtanelle Gilquin, and Fanny Meunier, editors, The
Cambridge handbook of learner corpus research,
pages 135–157. Cambridge University Press, Cam-
bridge.
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Abstract

This paper presents our submission to the
first Shared Task on Multilingual Grammat-
ical Error Detection (MultiGED-2023). Our
method utilizes a transformer-based sequence-
to-sequence model, which was trained on
a synthetic dataset consisting of 3.2 billion
words. We adopt a distantly supervised ap-
proach, with the training process relying ex-
clusively on the distribution of language learn-
ers’ errors extracted from the annotated cor-
pus used to construct the training data. In the
Swedish track, our model ranks fourth out of
seven submissions in terms of the target F0.5

metric, while achieving the highest precision.
These results suggest that our model is con-
servative yet remarkably precise in its predic-
tions.

1 Introduction

In today’s interconnected world, learning a lan-
guage is not optional for the majority of people.
With digital platforms now the primary medium
for individuals to express their thoughts and ideas,
written communication has taken precedence over
verbal communication, many people often find
themselves producing text in a language that is
not their first language. Consequently, natural
language processing (NLP) systems that can as-
sist non-native speakers in producing grammat-
ically correct text are now more essential than
ever. Grammatical error detection (GED) and
grammatical error correction (GEC) are two well-
established tasks that are designed to improve the
writing skills of language users by identifying
their errors as well as offering possible sugges-
tions to correct them (Ng et al., 2014; Bryant et al.,
2019; Ranalli and Yamashita, 2022).

*The authors contributed equally to this work
†
Work carried out while at the Department of Linguistics.
This work is licensed under a Creative Commons

Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

This paper presents a system description of our
submission to the first Shared task on Multilin-
gual Grammatical Error Detection, MultiGED-
2023 (Volodina et al., 2023). Our approach re-
lies on training a transformer-based sequence-to-
sequence model on a synthetic dataset, building
upon previous work (e.g. Grundkiewicz et al.,
2019; Nyberg, 2022). The distantly supervised
training process requires manually error-annotated
corpus exclusively to extract the distribution of
language learners’ errors which is mimicked in
the synthetic data creation process. Hence, the
employed pipeline aims to capture the character-
istics of errors made by language learners while
sidestepping the problem of sparsity by eliminat-
ing the need for direct supervision or large labeled
datasets.

Our submission is confined to Swedish as the
developed model is intended as a baseline for our
ongoing work on Swedish grammatical error cor-
rection using large language models (Östling and
Kurfalı, 2022). According to the official results,
our model1 is very accurate with a high precision
score, indicating that it has a low false positive
rate; yet, it cannot recognize various error types, as
suggested by the low recall scores. The rest of the
paper discusses previous work on Swedish (Sec-
tion 2), presents the system in detail (Section 3),
analyzes the results and implications (Section 4),
and concludes with suggestions for future research
directions (Section 5).

2 Related Work

Following our focus on Swedish, we restrict this
section to research on Swedish grammatical error
correction. Granska (Domeij et al., 2000) is one
of the earliest Swedish grammar-checking sys-
tems, using part-of-speech tagging, morphologi-
cal features, and error rules to identify grammat-

1https://github.com/MurathanKurfali/swedish-gec
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Method Original Sentence Corrupted Sentence
1. Rearrange words Jag älskar att läsa läroböcker. Jag läroböcker att älskar läsa.
2. Insert spurious words or phrases Jag älskar att läsa läroböcker. Jag älskar att plötsligt läsa läroböcker.
3. Replace words or phrases Jag älskar att läsa läroböcker. Jag älskar att skriva läroböcker.
4. Change inflections, split compounds Jag älskar att läsa läroböcker. Jag älskade att läsa läro bok.
5. Letter substitutions Jag älskar att läsa läroböcker. Jag älskat att läda läroböcker.
6. Change capitalization Jag älskar att läsa läroböcker. jag älskar ATT läsa LÄROBÖCKER.

Table 1: Illustration of corruption methods applied to a simple sentence, “I love reading textbooks.” Note that
the table is not exhaustive and showcases only one of the several possible ways a sentence can be corrupted by a
specific strategy, and not necessarily the most probable way. For simplicity, the illustration does not show errors
added on top of each other, as done in the real data.

ical issues. More recent studies have explored
methods to correct errors in learner texts, such
as using word embeddings to obtain correction
candidates (Pilán and Volodina, 2018) and a tool
developed by (Getman, 2021) that detects erro-
neous words and sequences, suggesting correc-
tions based on sub-word language models and
morphological features.

Nyberg (2022) is the most notable, if not the
only, example of integrating neural approaches
into Swedish GEC, which also serves as the ba-
sis for our approach. Nyberg (2022) conducts
GEC using two different but related methods: one
employing a Transformer model for a neural ma-
chine translation approach, and the other utiliz-
ing a Swedish version of the pre-trained language
model BERT to estimate the likelihood of po-
tential corrections. These methods have demon-
strated promising results in correcting different er-
ror types, with the first approach excelling at han-
dling syntactical and punctuation errors, while the
latter outperforms in addressing lexical and mor-
phological errors.

3 System Overview

In the following section, we provide a detailed de-
scription of our submission. Our system is primar-
ily a grammatical error correction model which is
trained on a synthetic dataset consisting of original
sentences and their artificially corrupted versions.
The rest of the section details our training data
generation procedure, model architecture, and the
post-processing step to arrive at the locations of
the identified errors.

3.1 Training data

We generally follow the approach of (Nyberg,
2022) in generating artificial data by corrupting
text, but use more extensive corruption heuristics.

Data is collected from the collection of

Språkbanken2, and consists of a number of mixed-
domain corpora of modern Swedish. This includes
blog texts, news, and fiction. Since all data is
processed sentence by sentence, we use sentence-
scrambled data which we deduplicate after merg-
ing all the subcorpora. The final amount of data
is 3.2 billion words. Empirical distributions for
error types is derived from the DaLAJ (Volodina
et al., 2021) dataset of linguistic acceptability in
Swedish.

Corruption of sentences is performed as a
pipeline, where each of the following procedures
is applied in order:

1. Rearrange words. With probability 0.1, the
word at position i is moved to a position
sampled from N (i, 1.5) and rounded to the
nearest integer. Words are not moved across
punctuation marks.

2. Insert spurious words or phrases. For each
sentence position i, with probability 0.025 an
n-gram (possibly a unigram) is inserted at this
position. The n-gram to be inserted is sam-
pled from the DaLAJ distribution.

3. Replace words or phrases. For each sen-
2https://spraakbanken.gu.se/ – specifically we used

the following corpora, which constitutes Språkbanken’s
collection of modern Swedish corpora at the time of
download: sweachum, sweacsam, romi, romii, rom99,
storsuc, bloggmix1998, bloggmix1999, bloggmix2000,
bloggmix2001, bloggmix2002, bloggmix2003, blog-
gmix2004, bloggmix2005, bloggmix2006, bloggmix2007,
bloggmix2008, bloggmix2009, bloggmix2010, blog-
gmix2011, bloggmix2012, bloggmix2013, bloggmix2014,
bloggmix2015, bloggmix2016, bloggmix2017, bloggmixodat,
gp1994, gp2001, gp2002, gp2003, gp2004, gp2005, gp2006,
gp2007, gp2008, gp2009, gp2010, gp2011, gp2012, gp2013,
gp2d, press65, press76, press95, press96, press97, press98,
webbnyheter2001, webbnyheter2002, webbnyheter2003,
webbnyheter2004, webbnyheter2005, webbnyheter2006,
webbnyheter2007, webbnyheter2008, webbnyheter2009,
webbnyheter2010, webbnyheter2011, webbnyheter2012,
webbnyheter2013, attasidor, dn1987, ordat, fof, snp7879,
suc3, wikipedia-sv, talbanken
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tence position i, sample a replacement n-
gram from the empirical replacement distri-
bution in DaLAJ. Word deletion may also be
performed at this stage, by replacing by a
shorter n-gram. In most cases, this leads to
no change.

4. Change inflections and split compounds.
With probability 0.1, pick a random new in-
flection of the word (assuming it can be in-
flected – otherwise do nothing). With prob-
ability 0.25, split compounds by inserting
spaces. The compound analysis is performed
using the morphological lexicon of SALDO
(Borin et al., 2013).

5. Letter substitutions. For each letter in the
sentence, sample it using the empirical let-
ter replacement distribution from DaLAJ. In
most cases this results in no change. A tem-
perature parameter of t = 1.5 is used when
sampling.

6. Change capitalization. With probability
0.2, turn the whole sentence into lower-
case. With probability 0.01, turn the whole
sentence into upper-case. With probability
0.025, perform the following: for each indi-
vidual word in the sentence, turn it to upper-
case with probability 0.1.

We note that the DaLAJ dataset is derived from
the SweLL corpus (Volodina et al., 2019), and the
statistics used to estimate the sampling distribu-
tions for text corruption may overlap to some ex-
tent with the source of the shared task test set. It
is unfortunately difficult to quantify exactly how
large the overlap is, since both datasets (DaLAJ
and the SweLL-derived MultiGED test set) have
been created independently from the SweLL cor-
pus using different types of processing that makes
it challenging to map sentences between the two
resources. We hope that future work will be able
to remedy this problem by ensuring that fully dis-
joint sets of data are used to estimate the corrup-
tion model parameters and evaluate the final gram-
matical error detection system.

3.2 Model Architecture

We model grammatical error correction as a trans-
lation problem where the input sentence with er-
rors is treated as the source language and the cor-
rected sentence as the target language. Our model

Team Name P R F0.5
EliCoDe 81.80 66.34 78.16
DSL-MIM-HUS 74.85 44.92 66.05
Brainstorm Thinkers 73.81 39.94 63.11
Our system 82.41 27.18 58.60
VLP-char 26.40 55.00 29.46
NTNU-TRH 80.12 5.09 20.31

Table 2: Official results for the Swedish language.

is based on the transformer architecture (Vaswani
et al., 2017), which has become the default choice
for many natural language processing tasks due to
its self-attention mechanism which is highly effec-
tive in capturing long-range dependencies in se-
quences.

We implement our model with the OpenNMT-
py library (Klein et al., 2017), following the sug-
gested base configuration. The model is trained
for 100,000 training steps, with a validation step
interval of 10,000 and an initial warm-up phase of
8,000 steps. Both the encoder and decoder are of
the transformer type, with 6 layers, a hidden size
of 512, and 8 attention heads. We learn a sentence-
piece vocabulary (Kudo and Richardson, 2018) of
32,000 sub-word units to tokenize the sentences.

Training configuration We trained our model
using mini-batches containing 400 sentence pairs,
distributed across four GPUs, and accumulated
gradients for 4 iterations. This resulted in an effec-
tive mini-batch size of 6,400 sentence pairs. The
training was carried out on A100 GPUs, taking ap-
proximately 16 hours in total to complete.

3.3 Post-processing: Correction to Detection

As mentioned earlier, despite the shared task’s
focus on grammatical error detection, our model
is originally trained as a grammatical error cor-
rection model which we developed as a baseline
in our ongoing work (Östling and Kurfalı, 2022).
Therefore, the output of our model is in the form
of corrected sentences rather than detected errors.
To convert the corrected sentences into detected
errors, we perform post-processing on the model’s
output.

We use the difflib library3 to compare the orig-
inal sentences with the corrected sentences and
identify the differences between them. Given the
goal of the shared task is to identify incorrect

3https://docs.python.org/3/library/difflib.html
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P R F0.5
Training set 78.72 26.63 56.59
Development set 81.52 26.73 57.82
Test set 82.41 27.18 58.60

Table 3: Additional results on the training and devel-
opment set. The last line refers to the official results on
the test set.

words, we disregard all additions made by our
model and focus on the changes performed on the
original sentences. Specifically, any words that are
not copied unchanged from the original sentence
to the corrected sentence are marked as errors that
needed correction.

4 Results and Discussion

In this section, we present the results of the
shared task on grammatical error detection for the
Swedish language. The performance of our sys-
tem is compared to other participating teams in
terms of precision (P), recall (R), and F0.5 score,
which is the harmonic mean between precision
and recall, with a higher emphasis on precision.
Table 2 provides an overview of the performance
metrics for each team.

As shown in Table 2, our system achieved the
highest precision of 82.41% among all partici-
pants. This indicates that our model’s predic-
tions for grammatical errors were highly accurate.
However, our recall score of 27.18% demonstrates
that our model failed to identify a significant pro-
portion of the actual errors in the dataset. This
trade-off between precision and recall resulted in
an F0.5 score of 58.60%, which places our system
in the fourth position among the six participating
teams.

In addition to the official results on the test,
we present additional results on the shared task’s
training and development sets in Table 3 as none
of these sets are utilized during the model train-
ing. We observe that the results are stable across
the sets and our model exhibits the same conser-
vative behavior.

Lastly, it is worth noting that the task of gram-
matical error correction is significantly more chal-
lenging than the task of grammatical error detec-
tion. While error detection is essentially a bi-
nary classification problem at the token level, er-
ror correction requires identifying the specific type
and location of the error as well as suggesting a

suitable correction. Consequently, our pipeline is
counter-intuitive in the sense that we are using a
more sparse task (error correction) to tackle a sim-
pler one (error detection). Therefore, we would
like to emphasize that the results are unlikely to re-
flect the full potential of such a transformers-based
model for grammatical error detection. It’s highly
probable that the model could perform much bet-
ter if trained specifically to predict whether an in-
dividual token requires correction or not.

5 Conclusion

In this paper, we described our submission to the
first Shared task on Multilingual Grammatical Er-
ror Detection (MultiGED-2023) for the Swedish
language. Our approach relied on a transformer-
based sequence-to-sequence model trained on a
synthetic dataset, using a distantly supervised
training process. Our system achieved the high-
est precision score among the participating teams,
indicating that our model’s predictions for gram-
matical errors are highly accurate. However, our
low recall score indicated that our model was not
able to detect all errors in the dataset, possibly a
limitation of the training process.

6 Future work

While our current proposal focuses exclusively
on Swedish, the proposed pipeline can be readily
adapted to other languages with an error-annotated
corpus and a large monolingual corpus. Addition-
ally, an interesting direction for further research
would be to explore the effectiveness of follow-
ing the error distribution derived from the error-
annotated corpus through an ablation study.
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Abstract

This paper presents two neural models for
multilingual grammatical error detection and
their results in the MultiGED-2023 shared
task. The first model uses a simple, purely su-
pervised character-based approach. The sec-
ond model uses a large language model which
is pretrained on 100 different languages and
fine-tuned on the provided datasets of the
shared task. Despite simple approaches, the
two systems achieved promising results. One
system has the second best F-score; the other
is in the top four of participating systems.

1 Introduction

Grammatical Error Detection (GED) is the task
of detecting different kinds of errors in text such
as spelling, punctuation, grammatical, and word
choice errors. It is one of the key components in
the grammatical error correction (GEC) commu-
nity. This paper concerns with the development of
different methods for subtoken representation and
their evaluation on standard benchmarks for mul-
tiple languages. Our work is inspired by the recent
shared task MultiGED-2023. The aim of this task
is to detect tokens in need of correction across five
different languages, labeling them as either cor-
rect (“c”) or incorrect (“i”), i.e. performing binary
classification at the token level.

Recent GED methods make use of neural se-
quence labeling models, either recurrent neu-
ral networks or transformers. The first exper-
iments using convolutional neural network and
long short-term memory networks (LSTM) mod-
els for GED was proposed in 2016 (Rei and Yan-
nakoudakis, 2016). Later, a bidirectional, atten-
tional LSTM was used to jointly learn token-level
and sentence-level representations and combine

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

them so as to detect grammatically incorrect sen-
tences and to identify the location of the error to-
kens at the same time (Rei and Søgaard, 2019).
The bidirectional LSTM model was also used
together with grammaticality-specific word em-
beddings to improve GED performance (Kaneko
et al., 2017). A bidirectional LSTM model was
trained on synthetic data generated by an atten-
tional sequence-to-sequence model to push GED
score (Kasewa et al., 2018). Best-performing GED
systems employ transformer block-based model
for token-level labeling. A pretrained BERT
model has been fine-tuned for GED and shown
its superior performance in (Kaneko and Komachi,
2019). The BERT model has also been shown sig-
nificant improvement over LSTM models in both
GED and GEC (Liu et al., 2021). The state-of-
the-art GED method uses a multi-class detection
method (Yuan et al., 2021).

In this work, we also employ state-of-the-art
sequence labeling methods, which are based on
LSTM or BERT. In contrast to previous work,
we focus on different representations of tokens at
subtoken levels. Our best-performing system can
process multiple languages using a single model.

2 Methods

We use two different token representations, one at
the character level, and one at the subtoken level.

2.1 Character-based Representation

In this representation, the j-th input token of a sen-
tence is represented by the concatenation of three
vectors (bj ,mj , ej) corresponding to its charac-
ters. More precisely, the token is represented by
vector xj = (bj ,mj , ej) where the first vector bj
and the third vectors ej represent the first and last
character of the token respectively. The second
vector mj represents a bag of characters of the
middle subtoken without the initial and final posi-
tions.

Phuong Le-Hong, The Quyen Ngo and Thi Minh Huyen Nguyen. Two Neural Models for Multilingual Grammatical
Error Detection. Proceedings of the 12th Workshop on Natural Language Processing for Computer Assisted

Language Learning (NLP4CALL 2023). Linköping Electronic Conference Proceedings 197: 40–44.
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Last nigt they saw

L, as, t n, ig, t t, he, y s, a, w

(b,m, e) (b,m, e) (b,m, e) (b,m, e)

encoder encoder encoder encoder

softmax softmax softmax softmax

c
(Last)

i
(night)

c
(they)

c
(saw)

Figure 1: Our character-based model

The dotted frame in Figure 1 depicts this rep-
resentation. For example, the token “Last” is rep-
resented as a concatenation of the following vec-
tors: (1) an one-hot vector for character L; (2) an
one-hot vector for character t, and (3) a bag-of-
character multihot vector for the internal charac-
ters a, s. Thus, each token is represented by a vec-
tor of size 3V where V is the size of the alphabet.
The label yj is predicted by a softmax layer:

yj =
exp(Wj · hj)∑
k exp(Wk · hj)

.

This representation is inspired by a semi-
character word recognition method which was
proposed by Sakaguchi et al. (2017). It was
demonstrated that this method is significantly
more robust in word spelling correction compared
to character-based convolutional networks.

2.2 Subtoken-based Representation
Recent language processing systems have used un-
supervised text tokenizer and detokenizer so as
to make a purely end-to-end system that does
not depend on language-specific pre- and post-
processing. SentencePiece is a method which im-
plements subword units, e.g., byte-pair-encoding
– BPE (Sennrich et al., 2016) and unigram lan-
guage model (Kudo, 2018) with the extension
of direct training from raw sentences. Using this
method, the vocabulary size is predetermined prior
to the neural encoder training. Our system also
uses subtoken representation.

2.3 LSTM and BERT Encoders
The LSTM network is a common type of recur-
rent neural networks which is capable of process-

ing sequential data efficiently. This was a com-
mon method prior to 2017, before Transform-
ers (Vaswani et al., 2017), which dispense entirely
with recurrence and rely solely on the attention
mechanism. Despite being outdated, we devel-
oped a purely supervised LSTM encoder to test
the effectiveness of the character-based method.

We employ the XLM-RoBERTa model as an-
other encoder in our system. RoBERTa (Liu et al.,
2019) is based on Google’s BERT model released
in 2018 (Devlin et al., 2019). It modifies key
hyperparameters, removing the next-sentence pre-
training objective and training with much larger
mini-batches and learning rates. RoBERTa has the
same architecture as BERT, but uses a byte-level
BPE as a tokenizer. The XLM-RoBERTa model
was proposed in 2020 (Conneau et al., 2020),
which is based on RoBERTa. It is a large multi-
lingual language model, trained on 100 languages,
2.5TB of filtered CommonCrawl data. It has
been shown that pretraining multilingual models at
scale leads to significant performance gains for a
wide range of cross-lingual transfer tasks. Unlike
some XLM multilingual models, this model does
not require language tensors to understand which
language is used, and should be able to determine
the correct language from the input ids.

3 Experiments

This section presents the datasets in use, experi-
mental settings and obtained results of our system.

3.1 Datasets

The datasets are provided by the MultiGED-2023
shared task.1 The shared task provides train-
ing, development and test data for each of the
five languages: Czech, English, German, Ital-
ian and Swedish. The training and develop-
ment datasets are available in the MultiGED-2023
GitHub repository, and test sets are released dur-
ing the test phase for participating teams. Table 1
shows the statistics of the datasets.

3.2 Evaluation Metric

Evaluation is carried out in terms of token-based
precision, recall and F0.5, consistent with previ-
ous work on error detection. F0.5 is used instead
of F1 because humans judge false positives more
harshly than false negatives and so precision is
more important than recall.

1https://github.com/spraakbanken/multiged-2023
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Lang. Sents. Tokens Errors Rate
Czech 35,453 399,742 84,041 0.210
English 33,243 531,416 50,860 0.096
German 24,079 381,134 57,897 0.152
Italian 7,949 99,698 14,893 0.149
Swedish 8,553 145,507 27,274 0.187

Table 1: Statistics of datasets in five languages

3.3 Experimental Settings

Our first system, namely VLP-char, uses the
character-based token representation and the
LSTM encoder. Its parameters are initialized with
random vectors in each run. This allows us to es-
tablish results in a pure supervised learning setting
rather than a semi-supervised or transfer learn-
ing setting. The same model is trained sepa-
rately for each language, resulting five models.
All five language-specific models are trained with
the Adam optimizer (Kingma and Ba, 2015), and
with learning rate 5 × 10−4. We use the cross-
entropy loss function for multinomial classifica-
tion as usual. All models are trained in 80 epochs.
The maximum sequence length is set to 60 tokens
– this is enough to cover most sentences in the
provided datasets. Since the data is highly im-
balanced – the error rates are from only 10% (for
English) to 24% (for Czech), we set the incorrect
label weight to 90% and the correct label weight
to 10% when computing the objective function.

This system does not use any external re-
sources; only datasets provided by the organiz-
ers are used to train and validate the models. We
use the BigDL library2 as the deep learning frame-
work. Our code is publicly available on GitHub.3

Our second system, namely DSL-MIM-HUS,
uses the subtoken-based representation and the
pretrained XLM-RoBERTa embeddings.4 This
system uses the library NERDA5 to fine-tune the
pretrained embeddings on all datasets. That is, we
combine all the provided datasets (training and de-
velopment splits) into one large dataset and per-
form the experiment on this combined one. There
is thus only one model for all the five languages.
The combined dataset is divided into training, de-
velopment and test split with the ratios 0.8, 0.1 and
0.1, respectively. There are 82,976 training sam-

2https://github.com/intel-analytics/BigDL
3https://github.com/phuonglh/vlp/con/
4https://huggingface.co/xlm-roberta-large
5https://github.com/ebanalyse/NERDA

Language Precision Recall F0.5

Czech 34.93 63.95 38.42
English (FCE) 20.76 29.53 22.07
English (REA) – – –
German 25.18 44.27 27.56
Italian 25.79 44.24 28.14
Swedish 26.40 55.00 29.46

Table 2: Performance of the VLP-char system on the
private test set. The number in bold font is the best
recall of all participating systems on the Czech dataset.

ples, 10,371 development samples and 10,371 test
samples respectively. We did not keep the propor-
tion of different language data the same when sam-
pling. It had been more beneficial if the proportion
would have been kept since the sizes of languages
are very different – there are three times more Ger-
man sentences than Italian sentences. The hyper-
parameters are tuned on the development set and
selected as follows: the learning rate of 10−5, the
number of training epochs of 20.

3.4 Results

3.4.1 Supervised System
Without using any external datasets or pre-
trained embeddings, the VLP-char system ob-
tained mediocre results. It ranks the fourth place
among participating systems. This sytem consis-
tently gives higher recall than precision on all the
languages, while other systems have better pre-
cision than recall. It achieves 63.95% of recall
on the Czech test set, which is the highest recall
among participating systems for this language, as
shown in Table 2.

Despite mediocre results, this system represents
what we can build with very limited data.

3.4.2 Pretrained System
On our test split, the system DSL-MIM-HUS
achieves a precision of 80.88%, a recall of 64.07%
and F0.5 of 71.50% for incorrect token predic-
tion. The corresponding scores on the training
set is 98.54%, 96.75%, and 97.64%, respectively.
Since this combined dataset contains all the pro-
vided samples of all languages, it does not make
sense to evaluate on each language separately.

On the private test set of the shared task
MultiGED-2023 (Volodina et al., 2023), the sys-
tem DSL-MIM-HUS is the second highest rank-
ing. It achieves the best score among participating
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Language Precision Recall F0.5

Czech 58.31 55.69 57.76
English (FCE) 72.36 37.81 61.18
English (REA) 62.81 28.88 50.86
German 77.80 51.92 70.75
Italian 75.72 38.67 63.55
Swedish 74.85 44.92 66.05

Table 3: Performance of the DSL-MIM-HUS system
on the private test set. The number in bold font is the
best score of all participating systems on the English
REALEC dataset.

systems on the English REALEC dataset. Table 3
shows the performance of this system on the pri-
vate test set, as announced by the organizers.

Although the XLM-RoBERTa system clearly
outperformed the LSTM system, the LSTM sys-
tem was trained on a fraction of the data available
to the XLM-RoBERTa system.

4 Conclusion

We have presented two neural models for multi-
lingual grammatical error detection and their re-
sults in the MultiGED-2023 shared task. One
model uses a purely supervised LSTM network
on a character-based token representation. The
other model uses a pretrained BERT network on
a subtoken representation. The two systems have
achieved promising results in the shared task.

We are going to seek a better way to exploit syn-
tactic and semantic information which comes from
a dependency parser. We believe that explicit syn-
tactic and semantic dependency between tokens of
a sentence will be fruitful in detecting grammati-
cal errors. In a recent study, we have demonstrated
the usefulness of syntactic structures in improving
lexical embeddings (Dang and Le-Hong, 2021).
The idea of incorporating constituent-based syn-
tax has also been shown effective for GED as
well (Zhang and Li, 2022).
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Abstract

This paper presents an initial experiment on
Grammatical Error Correction and Automatic
Grading for short texts written by Uruguayan
students that are learning English. We present
a set of error detection and correction heuris-
tics, and some experiments on using these
heuristics for predicting the grade. Although
our experiments are limited due to the nature
of the dataset, they are a good proof of concept
with promising results that might be extended
in the future.

1 Introduction

The kinds of errors committed by students of En-
glish as a second language could be very different
depending on their background, in particular de-
pending on their L1, but also on the different ge-
ographical varieties of their language. For exam-
ple, the cognates between L1 and L2 (De Groot
and Keijzer, 2000), and the homophones between
languages and varieties (Kochmar and Briscoe,
2014), influence the way students learn. This
could have impact on Grammatical Error Cor-
rection (GEC) and Automatic Grading systems,
which are often trained in standard corpora that
are not adapted to model these geographical diver-
sities.

In Uruguay, the universalization of English
teaching throughout all primary schools is one of
the objectives of the National Public Education
Administration (ANEP). Together with the strate-
gic goals of ANEP, the adoption of One Lap-
top per Child (OLPC) program, developed as the
Ceibal project in Uruguay, improved the acces-
sibility to English classes and resources through-
out the country. Uruguay is a Spanish speaking
country, its Spanish variety is called Rioplatense

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

Spanish and is shared with some regions of Ar-
gentina. This variety presents some particularities
that might influence the way students learn En-
glish.

In this work, part of a research line on devel-
oping tools for Uruguayan learners of English as
a second language (Chiruzzo et al., 2022), we
present the results of some preliminary experi-
ments on creating automatic GEC and grading sys-
tems adapted to the particularities of Uruguayan
learners. We use a dataset of short English texts
produced by students as answers to an exercise.
We analyze the types of errors committed, and de-
sign heuristics for detecting and correcting them
automatically. Then we carry on experiments on
automatic grading using this information.

This work has an important limitation, which is
that the only information available in the dataset is
the answer to one specific exercise. This implies
that the results obtained for this exercise might not
generalize to other contexts. In order to alleviate
this problem, we try to focus on creating exercise
independent features for grading, but we consider
this should be taken as only a proof of concept
and an initial exploration on the topic, and better
datasets will be needed in the future. This is, as far
as we know, the first work on GEC and Automatic
Grading experiments that considers text produced
by Uruguayan students.

2 Related Work

Grammatical Error Correction (GEC) is an active
area of research in NLP, with shared tasks and
competitions organized regularly. A series of GEC
related shared tasks have been proposed together
with CoNLL between 2011 and 2014, for exam-
ple the CoNLL-2014 shared task (Ng et al., 2014)
proposed detecting and correcting errors in En-
glish essays written by students. They use the NU-
CLE corpus (Dahlmeier et al., 2013), that contains
1,400 essays in English written by students of the

Romina Brown, Santiago Paez, Gonzalo Herrera, Luis Chiruzzo and Aiala Rosá. Experiments on Automatic Error
Detection and Correction for Uruguayan Learners of English. Proceedings of the 12th Workshop on Natural Language

Processing for Computer Assisted Language Learning (NLP4CALL 2023). Linköping Electronic Conference
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National University of Singapore.
BEA 2018 Duolingo (Settles et al., 2018) shared

task proposed to build systems that predict (not
correct) the mistakes a learner will make in the fu-
ture, given a transcript of exercises written by the
same learner annotated with word level mistakes.
It is interesting in that it includes the country the
learner is from, which could be used to capture the
L1 variabilty and geographic diversity.

The BEA-2019 Shared Task on Grammatical
Error Correction (Bryant et al., 2019) included two
tracks with two datasets: one with 3,600 manually
annotated submissions from Cambridge Write &
Improve platform, and another LOCNESS dataset
with texts produced by native English speakers.
Other important datasets include: the Cambridge
Learner Corpus (Nicholls, 2003), that contains an-
swers to English exams from Cambridge by stu-
dents from all over the world, and its FCE sub-
set (Yannakoudakis et al., 2011) with 1,244 an-
notated answers to the First Certificate in English
exam; and the Lang-8 corpus (Mizumoto et al.,
2012), with around a million English sentences an-
notated in a crowd-sourced way from the Lang-8
website1. These resources are generally written in
a register that is much more complex than the texts
we are dealing with in this work, which are texts
written by schoolchildren, and most of them are
just beginning to learn English.

The main approaches to performing
GEC (Ailani et al., 2019) include using rule-
based heuristics, classification methods, and
machine translation based methods, with the
last two approaches requiring a relatively larger
set of annotated examples. The related task
of Automatic Grading of essays is usually ap-
proached with machine learning methods, using
a variety of features such as length of the text,
POS or n-grams features (Yannakoudakis et al.,
2011), different types of errors such as misuse of
tenses or spelling (Ballier et al., 2019), or even
the use of larger structures such as multi-word
expressions (Wilkens et al., 2022).

3 Dataset and Error Analysis

The dataset we worked with is a corpus of answers
written by Uruguayan schoolchildren to a writing
exercise. In the exercise, students had to describe a
person in a picture, together with her likes and dis-
likes shown as icons below the picture (see Fig. 1).

1https://lang-8.com/

Figure 1: Picture associated to the exercise. The stu-
dents had to describe the person in the picture, and her
likes and dislikes.

This was part of an exam that was taken in 2017 by
many schoolchildren from ages 9 to 11 that were
learning English throughout the country. All short
texts were graded by teachers following a rubric,
with grades between 0 and 6, which roughly corre-
spond to categories between A0 and B1 in CEFR.

There are 65,528 texts in total, but after filtering

Grade Count Example
0 13746 le gusta leer comer pipza y escribir lo que no le gusta es

cantar comer fruta y pescar

1 11428 i like reading,pizza and rite. i don’t like apple,to sing and
fish his she andrea 14 years old

2 17699 she wears a pink shirt and jeans shorts he likes to ride a
bicycle

3 10281 She has got a dog. She has got a glass in her face. She has
got a bike. She drive in a bike. She like read and draw. She
like eat pizza. She hate sing. She doesn’t like eat apples.

4 1350 Andrea is 14 years old, she is a blondy and athletic girl. She
is wearing a pink t-shirt, a white short and sunglasses. She
is reading a bike whit her pet, a little dog. She likes eat pizza
but doesn’t like apples. She has a lot of books because she
likes to read. Andrea studies from monday to friday. She
doesn’t like to fish because it’s boring, she doesn’t know
how to sing

5 135 She is Andrea. She is 14 years old. She tall and thin. She
has blonde, long hair. She is wearing white trainers, beige
shorts, a pink blouse and sunglasses. She is riding a bike.
She likes reading books, eating pizza and geometry. She
doesn’t like singing, eating apples and fishing. She has a
pet. It’s a dog. She loves it. She hasn’t got a car. She can
ride a bike but she can’t fly. She gets up early, has breakfast
and ride a bike. After that she has a bath and watch tv. Then
she has lunch and goes to high school. After high school
she goes to hockey classes. After she has a bath again, does
her homework and goes to bed. She lives in a big house
with his mother, father and sister. She loves her family and
she is very happy.

6 13 She is Andrea, she is fourteen years old. She’s wearing a
pink t-shirt, and a short of jean She is riding her bike with
her dog, she likes reading books, she likes eating pizza, and
she likes maths. She doesn’t like singing, eating apples and
fishing She’s got a dog but she doesn’t have a cat. She
doesn’t look like a professional bike riding, and she isn’t
fat but she isn’t thin. Her bike is brown and black and her
dog is gray and brown, her dog is super cute, I want to be
the owner of that dog, but her dog isn’t like mine (...) mine
is cuter than hers. She’s got yellow hair and a black glasses,
she is riding her bike in a quiet place, like in a countryside,
behind her is a big lake.

Table 1: Example and number of texts for each grade
in the corpus, after filtering empty texts.
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empty and a few ungraded texts, we were left with
around 54k texts. Table 1 shows a sample of each
grade, and the total number of texts per grade in
the corpus. The corpus is highly unbalanced, with
an overwhelming majority of texts for the lower
grades (almost half of them are graded with a score
of 0 or 1) and only a few texts with the highest
grades (less than 150 examples with grades 5 or
6). As can be seen in the table, lower graded texts
tend to be shorter and have much more interfer-
ence of Spanish words, while higher graded texts
are significantly longer and contain more varied
English vocabulary and structures.

3.1 Particularities of the sample

One interesting thing about this learners corpus is
that it contains particularities of Uruguayan Span-
ish speakers trying to learn English. It has errors
that Spanish speakers would make, but also errors
that only speakers of Rioplatense Spanish would
commit. Here is one example of an error in the
dataset that any Spanish speaker could make:

those *hare the things she does not like to do

Because the letter “h” is silent in Spanish, mis-
spelling are as *hare could be expected, as they
would sound homophonous from a Spanish per-
spective. However, consider the following exam-
ple from the dataset:

*llor green

In this case, the writer intended to write about
green shorts. Here we can see two errors: writ-
ing the adjective after the noun (as is the norm
in Spanish grammar), and another mistake that is
very particular to Rioplatense Spanish: The mis-
spelling of shorts as *llor responds to the fact that
the “ll” digraph is pronounced /S/, which is equiv-
alent to the English “sh” sound.

Also note that these are two different types of
spelling errors: in the latter case llor is a word that
does not exist in English, so it could be captured
by a dictionary search, but in the former case hare
is a perfectly valid word in English which is in-
valid in that context.

3.2 Types of errors

We took two small subsets of the dataset contain-
ing samples of texts for the different categories,
called the development sample and the evalua-
tion sample. The development sample contains
53 texts, and was used to manually inspect the

texts and mark all the different types of English
spelling and grammar errors that could be found.
Two researchers participated in this annotation:
They split the development sample set and each
researcher evaluated one subset, then they cross-
checked their corrections, and finally they dis-
cussed the cases were there was disagreement to
reach a final conclusion.

After this initial manual labeling of the texts,
we compiled a list of common errors and their
descriptions. This list was used by two other re-
searchers to mark down the evaluation sample,
comprised of 42 texts. Table 2 shows the differ-
ent types of errors considered, and how many in-
stances of them were found in the development
sample and in the evaluation sample. We focused
on the most prevalent errors found in the samples

Error Example Dev Eval
Spelling ✗ reding 84 69

✓ reading
Subject-Verb
agreement

✗ She have a dog 42 15
✓ She has a dog

Beginning of
sentence caps

✗ she is Andrea 39 68
✓ She is Andrea

Use of pronoun ✗ She likes riding in your
bike with your little dog

26 4

✓ She likes riding in her
bike with her little dog

Verb form ✗ She likes sing 24 41
✓ She likes singing

Missing
subject

✗ She has blond hair, is
wearing a pink sweater...

15 19

✓ She has blond hair, she
is wearing a pink sweater...

Proper noun
caps

✗ She is andrea 15 5
✓ She is Andrea

Noun number ✗ She likes apple 11 6
✓ She likes apples

Use of
determiner

✗ and a white trousers 7 14
✓ and white trousers

“I” caps ✗ i think she is... 6 0
✓ I think she is...

Adjective order ✗ She has a t-shirt pink 4 0
✓ She has a pink t-shirt

Contraction ✗ doesnt 3 0
✓ doesn’t

Missing verb ✗ She 14 years old 2 3
✓ She is 14 years old

Wrong verb ✗ She has 14 years old 2 10
✓ She is 14 years old

Other errors ✗ Finally she goes to bed
at 0:00 a.m. clock

24 23

✓ Finally she goes to bed
at 0:00 a.m.

Table 2: Types of errors found in the development sam-
ple and the evaluation sample.
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and tried to build heuristics for detecting and cor-
recting them, as we will see in the following sec-
tion.

4 Detection and Correction Heuristics

The proposed solution for error detection and cor-
rection comprises a series of modules that try to
capture each type of error, but also need to interact
with each other in order to improve the effective-
ness of the process. For example, some of the NLP
tools we use might not work too well with noisy
text such as the one found in this dataset, so it is
necessary to perform spelling correction first, be-
fore running the other modules. Each heuristic fo-
cuses on detecting one type of error, and also pro-
viding an appropriate suggestion for correction.

4.1 Spelling

We experimented with three widely used
spellcheckers: Hunspell2, the spellchecker used
in open source systems like LibreOffice and
the Mozilla suite which combines morpho-
logical analysis and pronunciation; Norvig’s
Spellchecker3, based on Levenshtein distance
search with dictionary filtering; and SymSpell4,
an improvement on Norvig’s focused on speed
and accuracy.

To capture particular errors like the ones men-
tioned in section 3.1, we made an adapted dic-
tionary including common mistakes found in the
texts. We tried using the different spellcheck-
ers and combinations of them with a voting
mechanism. Furthermore, we experimented
with the use of BERT (Devlin et al., 2018)
for predicting the correct word: We calculated
the probability of each word suggested by the
spellcheckers in the context of the text, using
the bert-base-uncased model from Hug-
ging Face.

Method Acc
All spellcheckers with voting resolution 0.84
All spellcheckers with adapted dictionary 0.71
All spellcheckers with BERT resolution 0.74
Only SymSpell for detection and resolution 0.89

Table 3: Performance of the different methods used for
spelling errors detection and resolution over the devel-
opment sample set.

2http://hunspell.github.io/
3https://norvig.com/spell-correct.html
4https://github.com/wolfgarbe/SymSpell

As shown in Table 3, out of the different com-
binations of models and tools we tested, the most
accurate was using only SymSpell. It was also the
fastest method, so we decided to use this tool for
the rest of the experiments.

4.2 Capitalization
Note from Table 2 that there are three common er-
rors related to capitalization, which involve not us-
ing an upper case in three cases: the beginning of a
sentence, the pronoun “I”, and proper nouns. The
first two cases can be easily detected after sentence
segmentation or finding the lowercase token “i”,
which is never used to refer to something differ-
ent than the pronoun. However, the third case is
more difficult, as the students could become cre-
ative and invent names and situations for this ex-
ercise. For example, one of the texts included the
name “Paco” for the dog in the picture.

We used the Named Entity Recognition mod-
ule by spaCy5 to detect proper names. It does a
good job when detecting common names used in
English, like Andrea, but it failed to capture names
or nicknames that are common in Spanish speak-
ing countries, like Paco. In order to overcome this
problem, we complemented the use of the NER
module with a search in a list of names compiled
from the Spanish National Institute of Statistics6.

4.3 Subject-Verb agreement
In English, as well as in Spanish, the subject of a
sentence and its verb must agree in number, and
agreement errors are a very prevalent mistake in
English learners. These errors could be easily
spotted once we identify what the subject and the
main verb are, which could be done using a syntac-
tic parser, for example a dependency parser. How-
ever, consider the following text from the corpus,
where the expected analysis would be the root verb
like with the subject she:

She *like pizza

Parsers work best when the analyzed text is
clean and well written, and this is of course not
the case with these texts. The spaCy dependency
parser for this example considers like as a SCONJ,
so it fails to detect it as the root of the sentence.
Similar errors occur frequently with noisy texts,
so a solution based on a pre-trained parser seems
not feasible, although other attempts at solutions

5https://spacy.io/
6https://www.ine.es/
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based on parsing exist, like capturing wrong parses
using mal-rules as in (Da Costa et al., 2016).

In our case, given the simplicity of the texts, we
opted for a different strategy. We use rules for de-
tecting the likely subject and main verb of the sen-
tence: pronouns and proper nouns at the beginning
of the sentence are likely subject candidates, fol-
lowed by verbs that belong to a list of 1000 com-
mon verbs for English learners7 (Turnbull et al.,
2010).

We split verb forms in categories according to
their inflection, then we experimented with two
strategies for agreement error detection: in the
first one, inspired by (Gehman et al., 2020), we
use BERT to calculate the probability of the verb
form used and the alternative ones; the second one,
inspired by (Wang and Zhao, 2015), uses a lex-
icon, POS-tagging and morphology for checking
agreement considering pronouns, nouns, verbs,
and auxiliary constructions like negations.

Table 4 shows a comparison of both approaches
on the development sample. The rules and lexi-
con approach, although simpler, beats the BERT
method on the three considered metrics.

Method Prec Rec F1
BERT 0.77 0.73 0.75

Rules and lexicon 0.82 0.76 0.79

Table 4: Performance of the different methods used for
subject-verb agreement errors detection over the devel-
opment sample set.

4.4 Verb form
Errors in the use of verbal forms are very common
when learning English, when students must learn
how to use different tenses, particularities of ir-
regular verbs, agreement and the use of infinitives
and gerunds in other constructions. The two most
frequent errors found in the development sample
were subject-verb agreement issues (seen in the
previous section) and confusion between infinitive
and gerund forms.

We considered our set of 1000 common verbs
and their corresponding forms, and wrote a series
of manual rules based on (Swan and Walter, 2011)
that cover different situations such as: the use
of verbs after adjectives, prepositions, accusative
pronouns, and verbs that require a specific form.

7Oxford University Press. Ox-
ford 5000 wordlist, aug 2020.
https://www.oxfordlearnersdictionaries.com/us/wordlists/

Special care had to be taken when dealing with the
issue of parallelism of a construction when used in
conjunctions. For example, consider the following
sentence:

She likes *eat pizza, walk at night and *singing.

In this case, our heuristic indicates that the verb
form after “likes” should be “to eat”, then the
use of the verb “walk” is correct, but the verb
“singing” should also be changed to “sing”.

4.5 Use of determiners
There are two types of errors involving the use of
determiners: they are either omitted, or included
unnecessarily (wrong use). The heuristic in this
case involves using the POS-tagger and morpho-
logical analyzer from spaCy to check cases of
nouns with or without determiners, and using a se-
ries of rules for deciding if the use of determiner
is correct. For example, plural nouns should have
a plural determiner, or none in some construc-
tions, while singular nouns could use a singular
determiner depending if they are countable or not.
When a missing determiner is found, the heuris-
tic always suggests including the indefinite arti-
cle (“a” or “an”), so a pronunciation dictionary8

is used to tell apart nouns which start with vowel
sounds (e.g. “an umbrella” vs. “a unicorn”).

4.6 Results in sample sets
Table 5 shows the results of our heuristics over
the development and evaluation samples. Note
that during the development of the detection and
correction heuristics, we used the information ob-
tained by manually annotating the development
sample, but the evaluation sample was not seen un-
til later. Nonetheless, the results obtained for the
evaluation sample are very similar, which gives us
some confidence on how good the heuristics are
for capturing the errors in the whole dataset.

Development Evaluation
Error Prec Rec F1 Pre Rec F1
Spelling 0.89 0.88 0.88 0.81 0.85 0.83
Caps - “I” 1.0 1.0 1.0 - - -
Caps - BoS 0.99 1.0 0.99 0.92 0.79 0.85
Caps - Proper noun 0.73 1.0 0.84 0.75 1.0 0.86
Subject-Verb agreement 0.82 0.76 0.79 0.83 0.77 0.80
Verb form 0.73 0.91 0.81 0.66 0.81 0.72
Determiner - Missing 0.71 0.87 0.78 0.50 0.81 0.62
Determiner - Wrong 0.67 0.67 0.67 0.38 0.75 0.5

Table 5: Results of the error detection heuristics over
the development and the evaluation sample sets.

8http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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5 Automatic Grading Experiments

After creating the set of heuristics to capture many
of the errors committed by the students, we wanted
to assess how useful this information would be for
predicting grades given by teachers. These grades
were assigned following a rubric that takes into
account many aspects, including the use of En-
glish or Spanish, the production of single words or
phrases, the types of errors committed, the general
readabilty and soundness of the text, etc. It was
interesting to see if our simpler heuristics would
provide sufficient information to at least roughly
predict the grade. We first split the whole dataset
into 70% for training, 15% for development and
15% for test (note that these are different splits
than the samples described in section 3.2).

Due to the high imbalance in the dataset, we de-
cided to cluster some grades into ranges. Grades 0
and 1 correspond to the low range, 2 and 3 to the
medium range, and 4 through 6 to the high range.
Although this does not completely fix the bal-
ance problem, by manually inspecting the texts we
found these ranges left more homogeneous texts
in each category. We will present results both for
grade ranges and separate grades.

We ran a baseline experiment where we used
bag of words and bag of bigram features. A model
trained with these features would of course be
highly tailored for grading this particular exercise,
and would probably not generalize well to other
prompts. For example, some of the most relevant
BoW features found in this experiment included
“Andrea”, “pizza”, and “14”. However, we have
two main motivations for these experiments: we
wanted to know how likely it is to create a classi-
fier that would emulate the grades given by teach-
ers, and at the same time we wanted to find out if
it is possible to create a classifier that works simi-
larly but is not overfit to the specific words of this
exercise.

5.1 Features and models

We trained different classifiers using different
combinations of features. As mentioned before,
we used BoW features, which in our case were the
750 most frequent unigrams and bigrams.

We also included one feature for each of the
heuristics described in section 4, called the “cor-
rection features”. The feature value is the number
of errors the heuristic found for a particular text.
So we have eight features counting the number of:

• spelling errors

• beginning of sentence capitalization errors

• pronoun “I” capitalization errors

• proper noun capitalization errors

• verb form errors

• subject-verb agreement errors

• missing determiner errors

• wrong determiner errors

The rationale behind the use of these features is
that, if we could capture all the errors in a text, this
information could help a classifier predict a grade,
even when not knowing the actual words of the
text. This would decouple the classifier from the
prompt of the exercise and be more generalizable.

We also used a feature indicating length of the
texts in tokens. This is because, as mentioned in
section 3, the length of the text seems to be corre-
lated with the grading. This could pose a problem
for an automatic grading system, because it could
learn that just producing a longer text would yield
a better grade. However, we must also consider
that when students produce longer texts they might
also be introducing more errors, which could be
captured by the heuristics. Of course further ex-
periments would be needed to validate this, and it
is out of the scope of this work.

All the classifiers we trained are from the
scikit-learn suite of machine learning
tools (Pedregosa et al., 2011). We experi-
mented with Naı̈ve Bayes (NB), Random Forest
(RF), Maximum Entropy (ME), Support Vector
Machine (SVM), and Multi-Layered Perceptron
(MLP) classifiers.

5.2 Results

The three rounds of experiments include: using
the BoW features, using only the correction fea-
tures plus the length feature, and using all the com-
bined features. Table 6 shows the results of these
experiments over the test partition. The best per-
forming classifiers are the RF model and the ME
model when using all the combined features. This
is expected, as using all the features provides a
lot of information. However, note that the MLP
and ME models with only correction and length
features, although not perfect, have a performance
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BoW Correction features + length Combined features
RF ME NB RF ME SVM MLP NB RF ME SVM MLP

All grades Acc. 0.67 0.62 0.48 0.56 0.59 0.59 0.60 0.44 0.68 0.63 0.33 0.32
All grades M-F1 0.48 0.40 0.32 0.37 0.35 0.36 0.37 0.29 0.49 0.41 0.12 0.08

Ranges Acc. 0.83 0.83 0.73 0.79 0.82 0.82 0.82 0.70 0.86 0.84 0.51 0.51
Ranges M-F1 0.74 0.70 0.61 0.64 0.64 0.63 0.68 0.61 0.76 0.71 0.22 0.23

Table 6: Results of the classifiers over the test set.

that is at least comparable to the top ones. This
is important, because these classifiers do not use
any information on the specific words of the exer-
cise, which gives us hope that this strategy could
be used to grade similar writing exercises but with
other prompts. Of course, more experiments are
needed to validate this with other datasets.

6 Conclusions

We presented an initial experiment on building
heuristics for detecting and correcting grammati-
cal errors in texts by Uruguayan learners of En-
glish, and then training a classifier to predict a
grade to assign to those texts. The heuristics have
good performance in capturing common grammar
errors like spelling, capitalization, and subject-
verb agreement. Our best classifier has 82% ac-
curacy and 76% macro-F1 for separating the texts
in three ranges according to grade. We found that
using only features that are independent from the
exercise text the performance of the classifier gets
to 82% accuracy and 68% macro-F1. This is a sig-
nificant drop, but we must consider that this clas-
sifier could be adaptable to other exercises as well.

This is only a proof of concept, as we are aware
that it is very difficult to build a generalizable sys-
tem with examples of only one exercise. There are
many ideas for future work about how to improve
these heuristics and make them useful in a broader
context. We would like to try using a language
model to produce a representation of the text that
could be comparable to a set of reference texts,
and measure the distance between them. Also,
we could try to use positive and negative lists of
words that the text should have, and create fea-
tures that would be adaptable to other exercises (in
this case the list would include “Andrea”, “girl”,
“read”, “bike”, etc.). Another interesting research
direction is trying to assess the number of texts it
would take to manually grade in a corpus, so we
can finetune a system that has at least a good esti-
mate of the grades for the rest of the corpus.

We are now in the process of building a bet-
ter dataset for working on these and related prob-
lems. We want to create a more varied corpus with
several exercise prompts and several example an-
swers written by Uruguayan students of English,
manually corrected and graded by teachers. This
dataset would help us test and compare our cur-
rent heuristics and other correction methods more
thoroughly.
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Yuning Ding1, Ruth Trüb2, Stefan Keller4, Johanna Fleckenstein3,5 and Andrea Horbach1,5

1CATALPA, FernUniversität in Hagen, Germany,
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Abstract

When predicting scores for different aspects
of a learner text, automated scoring algo-
rithms usually cannot provide information
about which part of text a score is referring to.
We therefore propose a method to automati-
cally segment learner texts as a way towards
providing visual feedback. We train a neural
sequence tagging model and use it to segment
EFL email texts into functional segments. Our
algorithm reaches a token-based accuracy of
90% when trained per prompt and between 83
and 87% in a cross-prompt scenario.

1 Introduction

Writing formal emails in English is part of many
English as a Foreign Language (EFL) curricula
due to its high practical relevance in academic
and professional life. However, manual scoring of
such writing tasks and the provision of feedback
to students are time-consuming tasks for teachers,
especially when feedback does not solely consist
of a single holistic score per text, but instead con-
sists of more fine-grained feedback such as high-
lighting certain elements in a learner text and pro-
viding feedback for each element.

In this paper, we investigate the task of seg-
menting EFL learner emails into functional ele-
ments relating to their main communicative func-
tion (Hyland, 2019). Examples would be the salu-
tation, closing or matter of concern (see Figure 1
for an annotated sample email). We perform the
automated segmentation task on the basis of the
eRubrix corpus (Keller et al., 2023) consisting of
1,102 semi-formal emails written by Swiss EFL
learners at lower secondary level (8th and 9th year
of schooling). In these emails, seven different core
elements of an email were annotated by trained
human raters. We use a neural sequence tagging

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

architecture to automatize the segmentation task
and compare it against a simple sentence-based
baseline.

Overall, the paper makes the following contri-
butions:

• We present segment annotations on the
eRubrix dataset. On the basis of aspects of
text quality developed by Keller et al. (2023),
we show how the human annotations pre-
sented in their study can be transferred to au-
tomated span annotations.

• We apply a sequence-tagging architecture
that is able to assign the right segment cat-
egory for 90% of all tokens.

• We show that the automatic segmentation can
be applied to new writing prompts almost
without performance loss.

• We provide learning curve experiments
showing that as little as 50 to 100 emails are
enough to train a model that is close to the
final performance on the whole dataset.

• We analyze the impact of positional informa-
tion in the training data, showing that posi-
tional information is - unsurprisingly - im-
portant in this automatic segmentation task,
especially on certain labels like subject line,
salutation and closing.

• We discuss how the algorithm can be used as
a basis for feedback to language learners and
for developing language learning activities in
EFL classrooms.

2 Related Work

The interdisciplinary research presented in this
paper combines second language writing studies
with educational science and natural language pro-
cessing. In the following section, we therefore dis-
cuss related work from these three disciplines.

Yuning Ding, Ruth Trüb, Johanna Fleckenstein, Stefan Keller and Andrea Horbach. Sequence Tagging in EFL Email
Texts as Feedback for Language Learners. Proceedings of the 12th Workshop on Natural Language Processing for
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Figure 1: Sample annotation in MAXQDA (Version 22.0.1) for a learner email from the Burger Palace task.

2.1 Second Language Writing Studies

A number of theories have been proposed to sup-
port students’ acquisition of second language writ-
ing competences (Matsuda, 2003). Among the
most widely used and researched approaches are
the genre-based approach and the approach based
on text functions (Hyland, 2019, pp. 6-20).

A genre-based approach assumes that all writ-
ing is done in a specific social context and that a
range of social constraints and choices exist that
operate on writers (Hyland, 2019, p. 18). Teaching
in this paradigm typically begins with the purposes
of communicating before moving on to learning
the “stages” of a text which can express these pur-
poses. This often involves the analysis of model
texts and typical language structures contained in
them.

The approach focusing on text functions is sim-
ilar in that it relates language structures to mean-
ings. This is achieved by showing students how
to compose effective paragraphs for the text func-
tions they want to express, e.g. describing, narrat-
ing, or reporting (Hyland, 2019, p. 6). Both the
genre-based and the text function-based approach
would concur in the view that providing feedback
on these core elements of an email can help stu-
dents to understand the communicative function of
an email and to apply them independently in their
own writing.

The automated annotation function described
in this article can be seen as a technique for en-
hancing genre-based writing instruction with au-
tomated span annotations: it identifies the salient
structural elements required in an email to ful-
fil the communicative function of the text (polite
greeting, expression of the writer’s purpose, ex-
pected response, adequate closing, etc.), highlight-
ing them for learners and laying the basis for feed-
back relating to specific text functions.

2.2 Multimedia Learning and Feedback
Processing

The cognitive theory of multimedia learning
(CTML) proposes that people learn more effec-
tively from multimedia sources than from text
alone (Mayer, 2001). This assumption is based
on the idea that people have limited cognitive pro-
cessing capacity, and that using a combination
of verbal and visual information can help reduce
the cognitive load on each channel (Mayer and
Moreno, 2003). Research has shown that adhering
to certain design principles reduces cognitive load
and positively affects learning in multimedia envi-
ronments (Noetel et al., 2021). The design prin-
ciples derived from CTML should also pertain to
automated writing feedback, but they have seldom
been transferred to this context (for an exception
see Burkhart et al., 2021). The visualization of
different segments of a learner text - as we pro-
pose in our study - makes use of the advantages of
multimedia learning and should thus support the
revision process. The multimedia design princi-
ples that are particularly relevant in the context of
this study are contiguity, signaling, and segment-
ing.

Contiguity refers to the relationship between
two events or stimuli that are presented close in
time or space. In multimedia learning materials,
contiguity can be used to help the learner under-
stand the relationship between different pieces of
information by presenting them in close proximity
to each other. For example, a graphic and a re-
lated caption might be presented together to show
the relationship between the two. By using spa-
tial contiguity, multimedia learning materials help
the learner better understand the relationship be-
tween different pieces of information and reduce
cognitive load by eliminating the need to search
for relevant information (Schroeder and Cenkci,
2018; Burkhart et al., 2021). When transferred to
the context of writing and revising, the principle
of contiguity can be accomplished by providing
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in-text feedback rather than providing feedback in
reference to an external rubric or message.

Signaling refers to the use of visual or au-
ditory cues to help the learner understand the
material and make connections between different
parts of the content. Signaling can be achieved
through a variety of means, including visual el-
ements such as arrows, colours, and highlighted
text. When used effectively, signaling helps the
learner to more easily understand and retain the
material presented in the multimedia learning re-
source (Richter et al., 2016). This principle ap-
plies to this study in that a central goal of sequence
tagging is to highlight certain parts of the text and
to assign different colors to different text elements.

Segmenting means breaking down a large
learning sequence into smaller segments. This is
often done with audiovisual content, for exam-
ple, in allowing learners to pause an instructional
video between meaningful sequences. According
to Clark and Mayer (2011) the rationale for using
segmentation is that it allows the learner to take es-
sential processing steps without overloading their
cognitive system. Learning has been shown to
be more effective when information is presented
in segments rather than in one long continuous
stream (Rey et al., 2019). Sequence tagging allows
us to segment a complex text into smaller parts that
are easier to process and therefore more likely to
be addressed by the learner.

2.3 Natural Language Processing Perspective

In a study which preceded the one presented
here, Horbach et al. (2022) developed an auto-
mated scoring model for the emails in the eRubrix
dataset. The purpose of that study was to prove
that the human scoring of emails presented in
Keller et al. (2023) could be generated automat-
ically, and to evaluate the effectiveness of auto-
mated feedback based on that algorithm when stu-
dents revised English emails. In their seminal
study, Keller et al. (2023) had shown how a feed-
back rubric could be developed for English emails
based on genre-based principles of writing instruc-
tion. They also showed that all aspects of writing
quality covered in their rubric could be reliably
used by human raters under the time-constraints of
a live feedback study, and that the scores provided
under such circumstances corresponded to differ-
ences in the linguistic quality of the texts, indi-
cating high content validity. Horbach et al. (2022)

then demonstrated that the human ratings provided
by Keller et al. (2023) could be automatized as a
set of binary quality criteria where each score was
computed based on the whole text as input. Their
study, however, did not automatize the segmenta-
tion (Horbach et al., 2022, p. 81). For that rea-
son, it was not possible to draw the learners’ at-
tention visually to the specific segments where re-
visions were necessary. This current study there-
fore seeks to fill this research gap and provide an
automated segmentation model which can be used
to provide feedback on learner texts that follows
central CTML design principles.

Methodologically, the approach in our study is
an instance of a segmenting task where elements
in a text are identified based on their function.
Such tasks have been used, for example, to iden-
tify different parts (like objective, method, results
and conclusion) in scientific abstracts (Hirohata
et al., 2008). Mizuta and Collier (2004) iden-
tified so-called rhetorical zones in biology arti-
cles. In the educational domain, our task is re-
lated to other NLP tasks with the goal of identify-
ing certain parts within a text either as feedback
for learners or teachers, such as argument min-
ing (Wachsmuth et al., 2016; Nguyen and Litman,
2018), where argumentative units are to be marked
in essays. We therefore use an architecture that has
been previously applied in argument mining tasks
(Ding et al., 2022).

3 Data

3.1 eRubrix Dataset

The eRubrix dataset (Keller et al., 2023) contains
1,102 semi-formal emails written by Swiss lower
secondary school students in grades 8 and 9. Most
of them were in their 6th and 7th year of learning
English as a foreign language and between 13 and
16 years old. The learners wrote three emails in
randomized order and received feedback and sug-
gestions for improvement in-between from trained
human raters (Keller et al., 2023).

3.2 Writing Tasks

The writing tasks in the data-set consisted of three
semi-formal emails in which students were asked
to make inquiries concerning authentic, real life
situations (Keller et al., 2023). In one task, they
gathered information about a language school in
the UK, in a second task, they inquired about a
summer job at a burger restaurant, and in a third
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task, they collected information for a holiday at a
camping site (Keller et al., 2023). Figure 2 shows
the Burger Palace task as an example. About
370 emails were written for each task (see Table
1). To avoid the need for anonymization, students
were asked to sign their emails using the (gender-
neutral) name Kim Weber.

Figure 2: Burger Palace task from the eRubrix dataset
(Keller et al., 2023, p. 25). The accompanying German
instruction translates as follows: “You want to make
some money during your school holidays and are look-
ing for a job. Read the advertisement you found on
the internet and look at the notes you took (in red).
Write an email to the store manager in which you intro-
duce yourself and say what you are looking for. Inquire
about the information in detail by using your notes in
red” (Keller et al., 2023, p. 24).

Prompt # emails ∅ # tokens (SD)

Language school 367 97.9 (± 33.0)
Burger restaurant 368 104.1 (± 34.0)
Camping 367 105.0 (± 34.1)

Table 1: Basic dataset statistics.

3.3 Annotation
In Keller et al. (2023), the eRubrix text corpus
was first rated on the basis of a rubric specif-
ically developed for providing feedback to the
learners. In a second step, the texts were addi-
tionally annotated in MAXQDA software by four
trained human raters for a more detailed linguis-
tic analysis (Keller et al., 2023). The different
text segments were marked according to specific
marking guidelines (see Table 2) and coded in
terms of text quality for further linguistic analy-
sis. These MAXQDA annotations provided the
necessary data to train the automated text segmen-
tation model presented in this paper. 40 texts had

been annotated by all four raters (Keller et al.,
2023) and were used in this study to calculate the
raters’ pairwise inter-annotater agreement (IAA)
when marking the different segments.

A number of evaluation metrics have been used
to calculate the IAA between two annotators in
similar span annotation tasks. Ziai and Meurers
(2014), for example, evaluated spans in focus an-
notations by computing agreement on the token
level, while Reiter (2015) used boundary edit dis-
tance (see Fournier, 2013) on the segmentation of
narrative texts. In our evaluation, we used a differ-
ent span evaluation metric which we also applied
in a similar fashion to evaluate human-machine
agreement. Spans identified by one annotator were
matched against spans found by the second an-
notator. They were considered true positive if at
least 50% of the tokens found by annotator 1 were
also identified by annotator 2, and vice versa. Un-
matched spans by annotator 1 counted as false
negatives, spans by annotator 2 without a counter-
part by annotator 1 as false positives. These were
combined to compute an overall Kappa score fol-
lowing Brennan and Prediger (1981). With this
measure, we reached a pairwise IAA between 0.75
and 1.0. When increasing the required overlap
from 50% to 90 %, the IAA was between 0.46
and 1.0 (see Table 3 for the averaged IAA val-
ues of all annotator pairs). The average percentage
agreement of the four raters, as calculated by the
average of their pairwise percentage agreements,
ranged between 0.81 and 1.00 for the different cri-
teria. Agreement for closing was low mainly
because it was unclear to annotators whether the
name after the closing should also be marked or
not.

Together with the segmentation, annotators also
assigned a quality label to each segment, indicat-
ing whether the content and form of the segment
was appropriate (not used in this study). The anno-
tator for the final gold standard was selected based
on a many-facet Rasch analysis (Eckes, 2011) of
these quality assessments, i.e. the rater whose rat-
ings were the most balanced in terms of severity
and leniency was selected.

Table 3 also shows basic statistics for the
dataset. Elements are listed in order of their typ-
ical appearance in the text. We see that ele-
ments occurring later (concluding sentence, clos-
ing) have higher chances of being missing as
learners often did not finish the email in time. We
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Label Annotation guidelines

Subject line Code the whole subject line. If missing, code first letter of the email.

Salutation Code the salutation including name and punctuation.

Information about writer Code the introductory information about the writer including punctuation. Could be multiple sentences.
Code entire extract, even if it contains a different type of information in between (e.g. matter of concern)

Matter of concern Code the introductory information about the matter of concern including punctuation. Could be multiple
sentences. Code entire extract, even if it contains a different type of information in between (e.g.
information about the writer)

Task questions addressed Code entirety of questions, including punctuation. If missing, code punctuation mark of previous sen-
tence (or last letter if no punctuation present), where the questions would usually appear. Could be
multiple sentences. Code entire extract even if there is additional information in between.

Concluding sentence Code entirety of the concluding sentences, including puntuation. Could be multiple sentences, but it
should be distinct from the questions.

Closing Code entire closing, including punctuation, but do not include “Kim Weber”. If closing is missing,
insert code over last letter/character in the email or if only “Kim Weber” is present code the entire
name.

Table 2: Guidelines for marking the segments in the eRubrix dataset

50% overlap 90% overlap

Label # segments avg. length ∅ % agreem. κ ∅ % agreem. κ

Subject line 1020 4.1 0.99 0.98 0.99 0.98
Salutation 1090 2.9 1.00 1.00 0.99 0.99
Information about writer 916 9.3 0.84 0.79 0.79 0.72
Matter of concern 1023 22.4 0.91 0.87 0.76 0.68
Questions 1015 45.2 0.96 0.95 0.73 0.64
Concluding sentence 747 10.2 0.93 0.91 0.76 0.69
Closing 697 2.1 0.81 0.75 0.60 0.46

Table 3: Number of segments per label as identified within the entire dataset, average length in tokens, and inter-
annotater agreement. Average percentage agreement of all rater pairs, and kappa calculated according to Brennan
and Prediger (1981). The segments were counted as agreement if either 50 or 90 percent of a segment matched
with that of the second rater.
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also see that individual elements have a very dif-
ferent average length with the question part by far
the largest element on average.

In the original annotation setup, it was possible
to annotate overlapping segments. It happened 93
times in the whole dataset, the majority of these
cases (81) being overlaps between matter of con-
cern and information about the writer. As our al-
gorithm cannot work with overlapping segments,
we ended a segment as soon as a new overlapping
segment started, i.e. in cases of an overlap, the
segment starting earlier was cut short.

4 Experimental Study

4.1 Experimental Setup

We use a sequence tagging architecture which
has been successfully applied for structure-related
tasks such as argument mining (Ding et al., 2022),
as shown in Figure 3. In this architecture, to-
kens with a Inside-Outside-Beginning (IOB) tag
representation of the gold-standard annotations are
used as the input to a pretrained language model
for token classification. We considered different
pretained models and decided for RoBERTa (Liu
et al., 2019) based on the Huggingface implemen-
tation 1 as it provided the best performance. We
train the model for 10 epochs with a batch size of
16, CrossEntropyLoss as loss function, a learning
rate at 1e-5 and an Adam optimizer.

We compare this model against several base-
lines: In the random sentence baseline, we split
the data into individual sentences using the NLTK
tokenizer2 and assign each sentence a random la-
bel. In the sentence order baseline, we tag the
first four sentences as subject line, salutation, in-
formation about the writer and matter of concern
respectively, the last two sentences as concluding
sentence and closing, and anything in-between as
questions.

To examine the influence of the writing prompt,
we train and test our model under several condi-
tions: In the all condition, we employ 10-fold
cross-validation on the complete dataset across all
3 prompts. In a per-prompt condition, we cross-
validate on the Language School, Burger Restau-
rant and Camping prompt individually. Differ-
ences in the performance between all and the three
per-prompt conditions (or rather a lack thereof)

1https://huggingface.co/roberta-base
2https://www.nltk.org/api/nltk.tokeni

ze.html

might be due to more training data available in the
all condition. Therefore, we also introduce an all-
reduced condition where we use only one third of
the all condition to make the dataset size compa-
rable to the per-prompt training sets. In a cross-
prompt condition, we train on one prompt and
test on one of the other two prompts. For each
fold, we use the run with the best performance on
the validation dataset.

Evaluation We follow a span evaluation F1 met-
ric used also in similar tasks3. For this score, iden-
tified spans are matched against gold spans and
considered a true positive if at least 50 percent
of the gold span tokens are covered by the iden-
tified spans, and vice versa as described in Section
3. Unmatched gold spans count as false negatives,
spans in the results without a gold counterpart as
false positives. These are combined to compute an
overall F-score. This score gives a good overall
impression but does not account for exact matches
at the segment boundaries. Therefore, we also
evaluate accuracy on the token level.

4.2 Experiment 1: Prompt-Specific vs
Generic Annotation

Table 4 shows the segmentation results for the two
baselines, followed by the all, all-reduced and
prompt-wise conditions.

Unsurprisingly, the random sentence baseline
does not perform well. That also the sentence or-
der baselines shows mediocre results can be taken
as an indicator that the segmentation task is non-
trivial.

The machine learning results show a high per-
formance overall with token-wise accuracy be-
tween .88 and .91 and F1 scores between .84 and
.89. The difference between the all condition and
the other conditions is minimal, both for prompt-
specific models and the all-reduced condition, in-
dicating that the smaller models have already been
provided with enough data to perform well.

4.3 Experiment 2: Cross-Prompt
Segmentation

Experiment 2 investigates the model transfer po-
tential from one email writing task to another. The
lower half of Table 4 presents the results when a
model trained on one prompt is applied to the other
two prompts individually. Performance is slightly

3https://www.kaggle.com/competitions/
feedback-prize-2021/overview/evaluation
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Figure 3: Adapted sequence labeling architecture from Ding et al. (2022).

Train Test F1 Acc.

Random Sentence Baseline .06 .12
Sentence Order Baseline .30 .42

All (CV) .89 .90

All-reduced (CV) .87 .89
Language school (CV) .85 .88
Burger restaurant (CV) .84 .88
Camping (CV) .88 .91

Language school Burger restaurant .84 .87
Language school Camping .85 .87
Burger restaurant Language school .81 .83
Burger restaurant Camping .86 .87
Camping Language school .83 .84
Camping Burger restaurant .84 .84

Table 4: Segmentation results for two baselines and
when training a generic or a prompt-based classifier
(upper half) and for cross-prompt transfer (lower half).
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Figure 4: Learning curve experiment

lower than for the prompt-specific models, indi-
cating that prompt-specific lexical material is cer-
tainly important. The criterion salutation can be
best predicted in the cross-prompt segmentation,
since it has a fixed form like “Dear xxx”. Sub-
ject line can also be well predicted without con-
text because it always spans over the first line of
the email.
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4.4 Experiment 3: The Influence of Training
Data Sizes

In a practical application scenario when a teacher
wants to train a model for a new prompt, it is
important to know how much labeled data is re-
quired, since human annotation effort is often
a crucial factor for creating a machine learning
model.

Therefore, we perform learning curve exper-
iments, in which we systematically vary the
amount of training data. We use the all condition
and 90% of the data for the training, while saving
10 % for testing.

Figure 4 plots labeled data on the x-axis vs seg-
mentation performance (accuracy and F1) on the
y-axis, showing that the algorithm is able to learn
most of its performance from very few training in-
stances. The curve flattens out in the end indicat-
ing that adding more training data will most likely
not substantially improve performance any further.

4.5 Experiment 4: The Influence of
Positional Information

Positional information is obviously important for
the task as most elements typically appear at a
certain position within the email. When students
make errors in organizing their emails, i.e. when
email elements do not appear in the expected loca-
tion, one would expect a feedback that addresses
this misplacement. It is thus important to correctly
identify misplaced segments. As a worst-case sce-
nario for emails in the wrong order, we there-
fore shuffle segments in emails randomly, i.e. we
use gold standard information about email bound-
aries but randomly vary the order in which the el-
ements appear. We use these scrambled emails in
several ways. To assess the contribution of posi-
tional information in our original tagging models,
we use scrambled test data (keeping the training
data as is). To check how to make models more
robust against misplacements, we train a model
on scrambled training data, testing on both un-
changed and scrambled test data.

Table 5 shows the results. We can observe a
performance loss when using our normally trained
model on scrambled test data (scramble test), in-
dicating that the model indeed learns in part to
rely on positional information and performs worse
on test data that does not follow this convention.
When also scrambling the training data, i.e. forc-
ing the model to ignore positional information,

Setup F1 Acc.

All (CV) - unscrambled .89 .90
All (CV) - scramble test .60 .78
All (CV) - scramble train .85 .91
All (CV) - scramble both .89 .92

Table 5: Segmentation results when training and/or
testing on scramled data.

scrambled test data can be handled with a similar
performance to the baseline (compare unscram-
bled with scramble both), indicating that the data
is somewhat redundant and that the same informa-
tion can be learned without the positional informa-
tion.

When comparing the performance on individ-
ual labels, we find that some labels, such as sub-
ject line, salutation and closing benefit more from
positional information than others, i.e. for these
labels there is a larger performance drop if posi-
tional information is missing.

4.6 Error Analysis
A confusion matrix between individual labels in
the all condition (see Table 6) provides further in-
formation about the behavior of the algorithm. As
can be seen in Table 6, most confusions occur be-
tween labeled segments and text segments with-
out any label rather than between two labeled seg-
ments. This shows that assigning correct segment
boundaries is sometimes difficult, resulting in seg-
ments without a counterpart with sufficient over-
lap. A comparison of the number of unmatched
gold standard labels (1062) and unmatched pre-
dicted labels (277) shows that the algorithm tends
to not assign a label rather than assign one.

When looking at the (substantially fewer) cases
of confusion between two labels, most confusions
unsurprisingly concern labels one would expect to
be adjacent in an email, such as matter of con-
cern and information about the writer. This cor-
responds to human annotation, as most overlap-
ping annotations were found between these two la-
bels. It often happens when the information about
the writer is surrounded by matter of concern seg-
ments. Take the following sentences as an exam-
ple: I am interested to help you out over the sum-
mer holidays. I am 14 years old and my name is
Kim Weber. I would like to earn some money in
the summer holiday and i thought this is the right
place to work in the summer holiday. The first and
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Subject Salutation Info. about Matter of Questions Conclud. Closing None
line writer concern sent.

Subject line 917 1 0 0 0 0 0 3
Salutation 5 976 0 0 0 0 0 4

Info. about writer 0 2 751 15 1 0 0 63
Matter of concern 0 0 10 841 2 0 0 68

Questions 0 0 0 1 893 0 0 21
Conclud. sent. 0 0 0 0 0 640 2 43

Closing 0 0 0 0 0 11 537 75
None 5 10 245 297 185 162 108 N.A.

Table 6: Confusion matrix between gold standard (columns) and results in the all setting (rows)

the last sentence illustrate the matter of concern,
whereas the sentence in-between was double an-
notated with both matter of concern and informa-
tion about the writer.

5 Discussion & Practical Applications

With the developed technology, we envision two
application scenarios. First, automatic segmenta-
tion could be used to provide formative feedback
to students by showing them not only how their
text was scored automatically, but also where the
algorithm thought it had found the respective pas-
sages, pointing at the location where a revision
could take place. According to CTML principles,
this should reduce cognitive load and thus posi-
tively affect learning. Contiguity can be achieved
by presenting feedback within the text rather than
in the margins. By being able to highlight and as-
sign colours to certain parts of the text, signaling
can support the learners’ understanding. Most im-
portantly, the segmentation of the text can break
a complex task down into smaller parts. Students
can revise their text step-by-step rather than being
faced with a lot of information at once. Especially
when combined with evaluative feedback (auto-
matic quality assessment) on the segment level,
the reduction of cognitive load in the revision pro-
cess may lead to higher feedback uptake and bet-
ter learning outcomes. In addition, such formative
feedback could also be enriched with automatic
quality assessment similar to the study by Horbach
et al. (2022). From an NLP perspective, the qual-
ity of automatic scoring, in turn, might also bene-
fit from segmentation in that only relevant parts of
the email would be fed into the scoring algorithm.

Second, segmentation could be the basis for
the generation of various activity types useful for
teaching students how to write an email. In partic-
ular, such activities could be set up with the texts
written by the learners themselves. These could

be identification tasks (Please indicate where the
Matter of Concern is in this email.), reordering
tasks (Please bring these email segments into the
right order.), gap-filling tasks (Which part is miss-
ing here?) and many more. When combined
with an automated model for judging the quality
of the segments, further activity types may be-
come possible such as judgment tasks (Which texts
have a suitable concluding sentence?) or com-
parison tasks (Which salutation is more appropri-
ate in terms of register?). A crucial advantage
of generating such activities from automatically
segmented texts is that arbitrary emails could be
integrated into language-learning tasks, including
emails the learners themselves have written.

6 Conclusion

We showed in this study that the individual seg-
ments of a formal email can be predicted with high
accuracy, making segmentation a suitable instru-
ment to give feedback in an EFL context. We have
outlined ways how segmentation could be used
to generate language learning tasks and - together
with automatic scoring - could be used to generate
formative feedback for language learners. We will
explore these directions further in future work.
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Abstract 

We present the AiRO learning 

environment for kindergarten children at 

risk of developing dyslexia. The AiRO 

frontend, easy to use for pupils down to 5 

years old, introduces each spelling task 

with pictural and auditive cues. AiRO 

responds to spelling attempts with 

phonetic renderings (synthetic voice). 

Below, we introduce the didactic and 

technical principles behind AiRO before 

presenting our first experiment with 49 

kindergarten pupils. Our subjects were 

pre- and post-tested on reading an 

spelling. After four weeks of AiRO-

based training the experimental group 

significantly out-performed the control 

group, suggesting that a new CALL-

based pedagogical approach to prevent 

dyslexia for some children may be within 

reach. 

1 Background 

An early, but influential study1 found that 12% 

of adult Danes had reading difficulties inhibiting 

their professional life. Dyslexia is a well-

described cause of reading difficulties but until 

recently, dyslexia was studied only superficially 

 

This work is licensed under a Creative Commons 

Attribution 4.0 International Licence. Licence details: 

http://creativecommons.org/licenses/by/4.0/. 

1 Elbro et al (1995). Similar figures have been reported from 

other Western countries. 

in the Danish education system, leaving teachers 

little prepared to engage proactively (Pihl and 

Jensen, 2017). It is problematic if difficulties in 

reading are not met with appropriate support 

because adults with poor reading and writing 

skills are strongly overrepresented among those 

who have low-paid jobs and short educations 

(Rosdahl et al., 2013). Among dyslectic 25/26-

year-olds, only 69% completed secondary 

school, compared to 81% among peers (Egmont, 

2018). However, early intervention can lessen 

the problem significantly. Vellutino and Scanlon 

(2002) report that special training programs for 

pupils from the age of 7 years reduced the 

proportion of bad readers from 9% to 1.5%. 

Effective intervention should be based on 

intensive, sustained, and individually tailored 

courses focused on the relations between letters 

and sounds (Elbro and Petersen, 2004; Elbro, 

2021). A solid grip of phonics is a necessary 

precondition to solid reading and spelling skills 

(Ehri, 2005; National Reading Panel, 2000; 

Share, 1995). Early intervention, more than 

anything else, holds a strong potential for 

societal and personal gains with dyslexia (Gellert 

et al., 2018). "We believe that CALL might hold 

a potential as a supplement to teacher's 

instruction in a didactic programme of early 

intervention. As will be clear in the following, 

our approach concerns a specific CALL setup 

with a pronounced focus on the writing situation. 

More specifically, we have developed a didactic 

tool for use in classrooms, exploiting a very 

close stimulus-response cycle from student 

Stine Fuglsang Engmose and Peter Juel Henrichsen. Speech Technology to Support Phonics Learning for Kindergarten
Children at Risk of Dyslexia. Proceedings of the 12th Workshop on Natural Language Processing for Computer

Assisted Language Learning (NLP4CALL 2023). Linköping Electronic Conference Proceedings 197: 63–70.
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production ("spelling") to system response 

("correction" or "confirmation") with a level of 

granularity down to the individual letter/phone 

combination. To our knowledge, no other 

interactive training tool on the market for 

children at risk of dyslexia (such as Gissel & 

Andersen, 2021, Messer & Nash, 2018, and 

Solheim et al., 2018) use the same level of 

granularity." 

2 Introduction to AiRO 

The project AiRO2, that we present results from 

in this paper, seeks to meet some of these 

societal and personal challenges. We expect that 

kindergarten children at risk of dyslexia can 

benefit from an early intervention characterized 

by a learning environment with positive 

interaction and corrective feedback. More 

specifically, a child with poor command of 

phonics will benefit from a quick and simple 

response (affirming or correcting) to their 

spelling attempt. A dedicated teacher can of 

course provide ideal feedback, but teachers' 

attention is limited in a classroom with more than 

20 kindergarten children. AiRO is developed as 

an interactive learning tool to supplement 

ordinary teacher lead instruction.  

 

 

 

 

 

 

Figure 1. AiRObot greets the kindergarten children at 

the AiRO frontpage 

 

 

2 AiRO ≈ CALL-based pedagogical approach for children at 

risk of dyslexia (In Danish Adaptiv it-baseret støtte til 

børn i Risiko for Ordblindhed 

2.1 AiRObot - your classroom assistant 

Seen from the kindergartener’s point of view, 

AiRO is a friendly robot (see the AiRObot in 

figure 1) presenting manageable spelling tasks, 

beginning from simple one-letter words and 

continuing slowly but steadily (depending on the 

pupil's profile and performance) with ever more 

demanding words. 

AiRO is intended for use in classrooms or 

small groups. Individual pupils or a small group 

can use AiRO while the rest of the class are 

following the regular education. When using 

AiRO in school, headphones are mandatory; the 

application is however also available to the 

pupils at home.  

In the following sections, we present AiRO's 

underlying didactive, linguistic, and 

computational principles. We also report on our 

recent experiments with pupils in the Danish pre-

primary school (49 subjects). Finally we discuss 

some future perspectives. 

 

3 Linguistic principles and technical 

design 

To develop spelling and reading skills children 

must among others acquire and be able to use 

phonics rules. This is the objective of the CALL-

based pedagogical approach for children at risk 

of dyslexia, AiRO.  

Looking at the research of phonics instruction 

as an early intervention, Danish professor in 

reading sums up generations of research (Elbro, 

2021) in the following headings. For phonics 

instruction to be helpful for children at risk of 

dyslexia it should be characterized by being:   

• Systematic, e.g. introducing letter-sound-

connections that are stable and frequent 

before connections that are less stable or 

rare 

• Direct, e.g. instruction where words are 

chosen, in such a manner that the letter-

sound-connections introduced can be 

practiced 
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• Applied, using phonics for reading and 

spelling words with support and feedback 

• Intensive and extensive, small groups of 

3-4 students or 1 on 1, daily 30 min. of 

practice, lots of time spend on the students 

practicing 

• Motivating, making the progress of the 

student visible to the student and 

providing lots of task variation to deal 

with the students slow progress 

• At the students instructional level, and 

progressing slowly 

The CALL-based pedagogical approach is 

designed to create a learning situation with the 

above characteristics.  

In AiRO the user are presented to 3 new and 3 

earlier practiced target words at each level. At 

the initial level, target words are short (1-2 

letters) with V, CV and VC structure (e.g. "å" 

stream, "is" ice cream) and straightforward 

pronunciation (see how target words are 

presented in figure 2). Only letters E, I, L, S, Å 

are used, and only the most basic letter-to-sound 

rules are in play. In general, rules trained at one 

level carry over to the next so that easier rules 

are practiced before more difficult ones. A total 

of 20 letter-to-sound rules are covered. The 

entire course comprises 16 levels, first focusing 

on the vowels and fricatives, then gradually 

introducing the plosives. The purpose is to create 

a learning situation that systematically and 

directly introduces the user to phonics applied in 

spelling with abundant opportunity for the user 

to practice at the appropriate level of instruction 

and progression.  

 

 

 

Figure 2. How target words are presented in AiRO 

 

The target words are accompanied with a 

picture, and the pronunciation of the specific 

word. To ensure that the child practices the 

intended word and also, has the possibility to 

access the pronunciation an unlimited number of 

times, a play bottom is provided. 

The user responds by spelling the target word 

as best they can, letter by letter. For each 

keystroke, AiRO responds with an auditive 

rendering of the word-so-far (pronounced by a 

synthetic voice). Each letter entered by the user 

is immediately analyzed for correctness, 

response time, and other metrics. A sound file 

(synthetic speech) is generated in response, 

returned to the frontend and played without delay. 

In order to stimulate the learning process, the 

system responses must of course support the 

correct use of letter-sound-correspondances and 

discourage wrong ones. Later in the development 

of spelling it must support correct spellings and 

discourage spelling errors, in other words, be 

effective cues of promotion and inhibition and 

thus provide a relevant feedback that supports 

and encourages the user to apply their knowledge 

of letter-sound-connections when spelling. A 

speech generation algorithm was therefore 

designed with a close look to orthographic, 

phonetic and didactic theory. The algorithm, 

called Aspera 3  (Articulated Spelling Response 

Algorithm), is presented in some detail below. 

With the word completed, an encouraging 

greeting is given, and a new word presented. The 

process is spiced up with a little game logic 

(points and praise).  The purpose is to visualize 

the progress of the student. 

3.1 A challenging phonetics 

Among the European languages, Danish is often 

considered to be the most vowel-rich. 

Approximately 39 phonetic symbols are needed 

 

3The name Aspera is inspired by the proverb per Aspera ad 

Astra, "through hardships to the stars" 

Proceedings of the 12th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2023)

65



to represent the distinctive vowel sounds 

(compared to ≈18 for Swedish and ≈20 for 

Norwegian). This unusual diversity has to do 

with two historical developments, (i) early 

influence from Low German replaced the 

Scandinavian rolled [r] by the German velar, 

thereby introducing several new phonetic 

vowels, (ii) the tonal system (still preserved in 

Swedish and Norwegian) was replaced in Danish 

by the 'stød'-feature, also adding to the inventory 

of vowels (Jespersen, 1897-99, 478; Brink and 

Lund, 1975, I §§8-26, II §36). Even with the 

extra alphabetic letters Æ Ø Å, Danish 

orthography still has only 9 vowel letters for 39 

vowel sounds. Not surprisingly, the Danish 

graphemes are heavily overloaded with phonetic 

renderings. Some examples are given in table 1.  

For these reasons, among others, Danish letter-

to-sound rules are unusually hard to master (for 

humans and NLP-applications alike). This is not 

good news for children at risk of developing 

dyslexia who often have difficulties with the so 

called 'phonological attention'. AiRO's didactic 

design pays special attention, therefore, to the 

vowel-related intricacies. 

 

"rejsefeber"    [rAJs0fe:!bC] 

E → [A][0][e:!][C] 

"trestjernet"    [trzsdjaR!n0D] 

E → [z][a][0] 

"tempererede"[tEmp0rz:!CD0]  

E → [E][0][z:!][C][0] 

 

Table 1. Frequent phonetic renderings of letter E.4 

 

4Word translations: three starred; travel fever; tempered. 

Phonetic forms are shown in brackets. [:] is 

prolongation, [!] is stød (cf. the full SAMPA table at 

www.dsn.dk). SAMPA is IPA compatible but more 

keyboard friendly. 

3.2 The well-formed syllable - and 

beyond 

The Danish syllabic structure is governed by 

principles of phonology restricting the scope and 

location of the individual language sounds, very 

similar to the other Germanic languages (e.g. 

English; cf. Grønnum, 1998, chap.13). These are 

typical examples: 

• The nasal [N] occurs only post-

vocalically, as in "ping" [peN] ping; 

"vinge" [veN0] wing; "ting" [teN!] thing 

• [h] occurs only syllable-initially, as in 

"hø" [hø:!] hay; "påhit" [pÅhid] whim 

• Plosives [p][t][k] weaken to [b][d][g] in 

all positions except syllable-initially: "tip" 

[tib] hint; "skat" [sgad] treasure; "stærk" 

[sdaRg] strong 

 

Certain sound combinations never occur in 

Danish syllables, and this fact makes them 

particularly suitable in the inhibitory function 

mentioned above. For instance, if the pupil 

targets the word "gnaven" (grumpy) by 

producing the letters 'N' - 'G' - 'A', the system can 

respond by uttering the 'impossible' syllable 

[Na], signalling the anomaly long before the 

word is completed. The 'unnatural' sound thus 

becomes an effective stimulus utilising the 

language knowledge that the child already 

possesses. In order to fully exploit the didactic 

potential of 'forbidden sounds', our speech 

synthesizer must of course be phonetically 

complete, in the sense of being able to pronounce 

any phone combination accurately, including 

those never occurring in Danish words. We call 

this capability hyper-articulation. At this time, 

there is no hyper-articulating speech synthesis 

for Danish on the market, so the AiRO project 

has had to develop its own voice, HYPERDAN, 

based on the principle of diphone resynthesis (a 

technology particularly suited to hyper-

articulation; Henrichsen 2004).  

3.3 Progressive response 

Each spelling session begins with AiRO selecting 

a fresh target word T with the phonetic form P 
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(say "sofa" pronounced [so:fa]). T is presented to 

the pupil (with picture and sound). The pupil  

begins spelling (by typing 'S'), and AiRO 

responds with the corresponding sound ([s]).  

 

Input Auditive response  

”S” [s] 

”O” [so:] 

”F” [so:f] 

    ”A” [so:fa] 

 

Table 2: Illustration of progressive response 

In flawless sessions (such as in table 2) the 

spoken feedback progresses continuously, in the 

sense that each speech production repeats and 

extends the preceding one until P is met. The 

feedback thus provides continuous confirmation 

that the speller remains on the right track. This 

didactive approach we term progressive 

response. 5 

How are the proper input-response patterns to 

be computed in order to support progressive 

response? In the simplest case where T and P are 

of identical length (i.e. consists of the same 

number of symbols), each letter maps to a single 

phone (as in "s-o-f-a"). For |T|<|P| (T shorter than 

P) some of the letters extend the spoken response 

by more than a single phone (e.g. "t-a-x-i" [t-A-

gs-i] taxi). However, for |T|>|P| the mapping is 

less straight-forward (e.g. "ch-au-ff-ø-r" [S-o-f-

ø-R!] driver) as some of the letters do not 

correspond to phonetic increments in any simple 

way, putting the progressive response at risk. 

Our solution is to allow the inclusion of sub-

phones in Aspera's output. Aspera may thus 

choose to reconstrue the phonetic form of a 

target word (say "hvidt" [vid] white) as a string 

of sub-phones ([v1-v2-i-d1-d2]) ensuring that T 

 

5 Observe that the intermediate phonetic feedback (such as 

[so:f] in the example above) may not correspond to any 

known word. Even when the given (intermediate) input 

accidentally matches an existing Danish word Tx (e.g. 'SO' 

[so:!] sow), the phonetic feedback will not in general match 

Tx's pronunciation (compare [so:] and [so:!]). 

and P can still be aligned, maintaining the 

progressive response. 

Consequently, the synthetic voice must be able 

to accurately pronounce sub-phones (e.g. the first 

and second half of phone [v] represented by [v1-

v2]). The AiRO synthesis was developed with 

special attention to this aspect of hyper-

articulation.  

3.4 Polarised feedback  

What happens, or should happen, when the child 

makes a spelling error? Consider a target word T 

consisting of letters t1-t2-t3-..-tn and an 

intermediate input sequence Þ deviating from T, 

e.g. Þ = t1-t2-þ- (where þ ≠ t3). The spoken 

feedback for Þ must then be clearly distinct from 

the feedback for t1-t2-t3- to provide an inhibiting 

effect. Here, for once, the complex Danish word-

to-sound rules come in handy. Due to linguistic 

factors hinted at above, almost every string of 

letters has more than one phonologically 

acceptable pronunciation (if any at all). 6  A 

nonsense word "hog" could thus be faithfully 

pronounced in Danish as [hCg], [håg], [håW], 

[ho:!], [hOW] etc. Aspera exploits this ambiguity 

by always maximizing the phonetic distance 

between responses for correct and incorrect input 

(of course within the limits of phonological well-

formedness). We term this principle polarized 

feedback. The phonetic distance is calculated 

based on the acoustic features of the individual 

phones. We will not pursue the details here; a 

journal article presenting the Aspera algorithm in 

formal detail is in preparation. 

In case the input does not map to any 

phonologically acceptable pronunciation at all 

(say, having no vowels), Aspera's strategy is 

trivial: the input string then maps to the signature 

pronunciation of each letter (e.g. [e] for letter E; 

[gs] for letter X). This will necessarily produce 

an odd-sounding response – an inhibiting cue by 

nature.  
 

6 This fact is a real challenge when developing Danish 

artificial voices, as experienced in trains, cars, call centers, 

home assistants, etc. where delusive pronunciations are 

commonplace. 
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4 Kindergarteners testing AiRO  

AiRO was tested for the first time by 

kindergarteners in the Danish primary school 

during November 2021.  Fifty kindergarteners 

were selected from 9 kindergarten classes. 

Kindergarten pupils are between 5 and 6 years 

old. In Danish kindergarten classrooms children 

are taught linguistic awareness, phonics, and 

reading and spelling of simple words (Juul and 

Elbro, 2005). 

4.1 Design  

We designed this testing as an effect study with 

an experimental group (n=26) and a business as 

usual control group (n=24), following Bryman 

(2016).  

From each kindergarten classroom we selected 

4-6 subjects based on their (low) scores in the 

national screening test (Sprogvurdering: BUVM, 

2019). Parental consent was acquired for each 

participating subject. The reading professional at 

the schools helped us evenly distribute subjects 

with mild and severe spelling difficulties in the 

two conditions of the study. 

Before and after the intervention the 49 

subjects' spelling and reading skills were 

evaluated with customized versions of screening 

tests developed in Engmose (2019). These test 

focuses on phonics applied in spelling and 

reading. Each subject's attention to language 

sounds and knowledge of letters was also 

assessed with standardized tests from Language 

Assessment 3-6 (BVUM, 2019).  

4.2 Description of the intervention 

Before the intervention the participating teachers 

and reading professionals were given a two-hour 

introductory course. They were introduced to the 

design of the study, the purpose of the 

intervention, and how they should instruct and 

assist the pupils during the intervention. 

Only subjects in the experimental group had 

access to AiRO, while the control group received 

ordinary instruction. The experimental group 

worked with AiRO during four weeks, four days 

a week, 10-15 minutes each time. 

The intervention in the experimental group 

began with an individual introduction to AiRO 

and a guided practice of the first two levels. This 

was done by the teachers. The kindergarteners 

worked unattended7 for the remaining levels (3-

16). The participating subjects could ask 

questions to the teacher at all times. Due to too 

much noise in some of the kindergarten 

classrooms some teachers ended up separating 

the children working with AiRO from the 

remaining classroom e.g. in a nearby smaller 

room. 

4.3 Descriptive statistics 

For both spelling and reading we compared the 

control and the experimental group at pre- and 

posttest. Table 3 and 4 show descriptive statistics 

for both groups (experimental and control) at pre 

and posttest. For each measure the number of 

items (#items) and minimal and maximal score 

values (min-max) of the scale are listed. The 

descriptive statistics are the number of 

participants (N), mean performance (M), 

standard deviation (SD) and range of 

performance (Range). Notice, that scores are 

calculated as how far they are from correct, 

meaning that lower scores are better. 

Measure  

(#items;min-max) 

M (SD) Range N 

AiRO group 

Spelling (10;0-28) 18 (9) 41-3 23 

Reading (12;0-72) 53 (9) 64-31 26 

Control group 

Spelling (10;0-28) 16 (7) 29-5 20 

Reading (12;0-72) 45 (18) 72-4 22 

 

 

7 Most of the pupils found it difficult to log on to their 

personalized AiRO-homepage and needed help for this 

step throughout. 
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Table 3: Descriptive statistics from pretest 

Measure  

(#items,min-max) 

M (SD) Range N 

AiRO group 

Spelling (10;0-28) 11(7) 25-1 21 

Reading (12;0-72) 25 (14) 43-1 15 

Control group 

Spelling (10;0-28) 12 (9) 36-0 16 

Reading (12;0-72) 40 (20) 68-6 10 

 

Table 4: Descriptive statistics from posttest 

Notice in table 3 and 4 that not all 49 subjects 

were actually fully tested. This was due to 

corona-related challenges. These missing data 

affects the generalizability of our analysis as 

reported in section 4.4. 

4.4 Results  

For both spelling and reading we compared the 

control and the experimental group at the 

beginning and at the end of the experiment. We 

used paired t-test (two-tailed). In the 

experimental group these analyses showed 

significantly strengthened spelling, t(20) = 5.127, 

p < .001, d = 1.12, and reading, t(14) = 7.566, p 

< .001, d = 1.95. For the control group reading 

was also significantly strengthened, t(9) = 4.312, 

p = .002, d = 1.36, but spelling was not, t(14) = 

1.977, p = .068, d = 0.51.  

We used the two-way mixed ANOVA to 

determine whether there is an interaction effect 

between time of testing (pre- and posttest) and 

group (experimental and control). For reading we 

found a significant interaction effect between the 

two groups and time, F(1, 23) = 8.552, p = .008, 

partial n2 = .271. This interaction was due to 

more progress in the experimental group than in 

the control group. For reading, the experimental 

group thus significantly out-performed the 

control group which received ordinary class 

teaching during the intervention period. For 

spelling the pattern was similar, but there was 

not a significant interaction effect between the 

two groups and time, F(1, 34) = 0.980, p = .329, 

partial n2 = .028. 

 

5 Conclusion 

As mentioned before most Danish teachers 

have received very little formal education about 

dyslexia in young children. This is one of the 

barriers to providing the needed support for 

students at risk of dyslexia or students with 

dyslexia in primary school. In Denmark, every 

second adult dyslectic report that they have never 

received individual offers from the education 

system, such as one-on-one teaching, special 

courses (in or outside class) or indeed 

personalized help of any sort (Mejding et al., 

2017; Egmont 2018).   

The CALL-based pedagogical approach in 

AiRO is a starting point for exploring new ways 

to support the early and later stages of reading 

and spelling acquisition for struggling readers.  

Given the promising results from our first 

small experiment with kindergarten children at 

risk of dyslexia, we feel encouraged to develop 

AiRO further. We are currently making 

preparations for a new and updated AiRO-tool 

(AiRO2), capable of screening its users while 

servicing them, providing the teacher with status 

reports on the performance of the class as a 

whole and of the individual pupils.  
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Abstract

Adaptive exercise sequencing in Intelligent
Language Tutoring Systems (ILTS) aims to
select exercises for individual learners that
match their abilities. For exercises practic-
ing forms in isolation, it may be sufficient for
sequencing to consider the form being prac-
ticed. But when exercises embed the forms in
a sentence or bigger language context, little is
known about how the nature of this co-text in-
fluences learners in completing the exercises.

To fill the gap, based on data from two large
field studies conducted with an English ILTS
in German secondary schools, we analyze the
impact of co-text complexity on learner perfor-
mance for different exercise types and learn-
ers at different proficiency levels. The results
show that co-text complexity is an important
predictor for a learner’s performance on prac-
tice exercises, especially for gap filling and
Jumbled Sentences exercises, and particularly
for learners at higher proficiency levels.

1 Introduction

Exercise difficulty, which constitutes the probabil-
ity of a learner answering the exercise correctly,
plays an important role in intelligent tutoring sys-
tems. Macro-adaptive systems in particular rely
on it to select exercises at the learner’s profi-
ciency level. Assigning a global difficulty score
to an exercise, however, fails to consider the many
facets of factors contributing to exercise difficulty
and the varied learner profiles instantiating them
(Beinborn, 2016). Approaches like Multidimen-
sional Item Response Theory (Park et al., 2019)
and Knowledge Tracing (Liu et al., 2021b) address
this issue by tracking individual skills instead of
a single, accumulated one. Yet they usually fo-
cus on the skills the learner is supposed to acquire

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

through the exercises. More stable skills such as
a learner’s language affinity or their general lan-
guage proficiency are therefore often neglected in
these approaches. Such skills might not be rel-
evant in mechanical drill exercises that practice
the linguistic forms of the learning target in iso-
lation (Wong and Van Patten, 2003). However,
contextualized exercises, which practice linguis-
tic constructions in the broader context of a coher-
ent text, require learners to understand the clues
provided by this co-text in order to give the cor-
rect answer (Walz, 1989). Yet understanding of
how form-specific clues relate to general linguis-
tic properties is still lacking. Approaches aligning
a text’s linguistic complexity with a learner’s gen-
eral language proficiency have so far been limited
to the domain of readability assessment (Chen and
Meurers, 2019). In order to apply it to adaptive
exercise selection, the relationship between an ex-
ercise’s co-text complexity and the learner’s lan-
guage proficiency level must have an impact on the
learner’s performance on an exercise. If the rele-
vance of a relationship between these two factors
can be established, it constitutes a valuable indi-
cator to determine initial parameter settings while
the system lacks learner data for more individual-
ized adaptation.

Approaches trying to determine difficulty based
on exercise parameters, thus allowing to calibrate
exercise difficulty without available learner perfor-
mance data in order to solve the cold start prob-
lem, have indeed found that general language pa-
rameters influence exercise difficulty (Pandarova
et al., 2019). However, these approaches focus on
a specific exercise type each. Since different exer-
cise types elicit different processing of the linguis-
tic co-material and target different skills (Grellet,
1981, p. 5), the relevance of individual linguistic
parameters can be expected to vary from one exer-
cise type to the other.

The cold-start problem is not only an issue with
Tanja Heck and Detmar Meurers. On the relevance and learner dependence of co-text complexity for exercise difficulty.
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new exercises, but also with learners interacting
with the system for the first time or starting to
practice a new learning target. If the learner has
already completed other lessons, overall perfor-
mance data might be used to determine initial ex-
ercise difficulty. Performance metrics for one par-
ticular learning target might, however, not be in-
dicative of performance on another learning target.
If the learner is new to the system, determining
the appropriate exercise difficulty level becomes
a matter of randomness. Many systems rely on
user questionnaires asking about the proficiency
level and in addition offer placement tests (Ves-
selinov and Grego, 2016). While specifically test-
ing a learner’s proficiency in the learning targets
of the particular learning unit would provide the
most representative picture of a learner’s knowl-
edge state, this could turn the first contact with
the system into a frustrating experience for low-
proficient learners. In addition, linguistic co-text
material of exercises always contains linguistic
constructions other than the learning targets. In
order to process the semantic context of the ex-
ercises, learners need to have passive knowledge
of of these constructions. Since text readability
is traditionally linked to general language profi-
ciency (Chen and Meurers, 2019), a measure re-
flecting this learner characteristic in relation to the
complexity of the exercises’ linguistic co-material
might be more suitable to determine the optimal
initial exercise difficulty. C-tests constitute a pop-
ular method of providing such a measure (Drack-
ert and Timukova, 2020).

In this paper, we establish the groundwork to
overcome the shortcomings of previous work on
exercise difficulty calibration in terms of narrow
exercise type coverage and learner-dependence of
global exercise parameters. We determine for
a range of different exercise types whether the
global parameter of co-text complexity impacts
learners’ performance on the exercise. This will
inform macro-adaptive algorithms as to which ex-
ercises warrant adaptive assignment with respect
to co-text complexity. In addition, we analyze
the relevance of the learner’s proficiency to this
parameter in order to determine whether co-text
complexity has a similar impact on exercise diffi-
culty for all learners.

The rest of the paper is structured as follows:
Section 2 presents work on exercise difficulty cal-
ibration in the domain of language learning. Sec-

tion 3 describes the dataset used for the evalua-
tions. Section 4 presents the analyses and their re-
sults before discussing their implications for adap-
tive exercise selection. Section 5 concludes with
a summary, including a discussion of some lim-
itations of the approach and directions for future
research.

2 Related Work

Macro-adaptive systems aim to provide personal-
ized learning experiences by selecting exercises
matching a learner’s abilities (Slavuj et al., 2017).
This has been tackled by a variety of approaches
including the proportion of correct answers, Item
Response Theory (IRT), Elo rating, and learner
and expert ratings (Wauters et al., 2012). Human
rating based approaches are subjective in nature
and require human effort. Data based approaches
are more objective, yet they rely on large amounts
of learner answers in order to provide reliable dif-
ficulty estimates. Aiming to overcome this short-
coming, multiple strategies have been explored to
determine exercise difficulty based on a range of
exercise parameters instead. Hartig et al. (2012)
point out that the relevant parameters vary depend-
ing on the skill targeted by the exercise so that the
set of parameters needs to be determined individu-
ally for any domain. For language exercises, most
work so far has focused on Cloze exercises with
a particular emphasis on C-tests. In an early ap-
proach, Wilson (1994) used co-text readability as
a single determining feature of exercise difficulty,
acknowledging the need to yet establish its corre-
lation with exercise difficulty. Others have iden-
tified a range of linguistic features on the word,
sentence, and text levels that impact exercise dif-
ficulty (e.g. Galasso, 2018; Beinborn et al., 2014;
McCarthy et al., 2021; Settles et al., 2020; Brown,
1989). The effect of exercise format parameters
such as gap size, deletion pattern and deletion fre-
quency on exercise difficulty varied across stud-
ies (Sigott, 1995; Lee et al., 2019; Kamimoto,
1993). Abraham and Chapelle (1992) explored
different input types and found dropdown selec-
tion to be easier than text input. A number of
Single Choice (SC) reading comprehension exer-
cises applied machine learning and statistical ap-
proaches generating predictors of exercise diffi-
culty from the text, the question, and answer op-
tions (Liu et al., 2021a; Huang et al., 2017; Louk-
ina et al., 2016). While Holzknecht et al. (2021)
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found that such exercises were more difficult when
the correct option was in the last position, stud-
ies on SC exercises in other domains found ex-
ercises with the correct option in the first or last
position (Attali and Bar-Hillel, 2003), or next to
the most attractive distractor (Shin et al., 2020) to
be harder. Also not focusing on language exer-
cises, Swanson et al. (2006) explored the number
of distractors, and Kubinger and Gottschall (2007)
the number of correct options as indicators of ex-
ercise difficulty. Since language exercises are of-
ten automatically generated, their complexity is
sometimes already determined and controlled for
at generation time (Kurdi et al., 2020). In this line
of work, Pilán et al. (2017) only considered the
co-text complexity of their SC exercises for vo-
cabulary practice. Generating the same type of ex-
ercises, Susanti et al. (2017) in addition used se-
mantic similarity between the correct option and
the distractors, as well as the word-level complex-
ities of the distractors. In their comparisons of
syntactically, paradigmatically and not related dis-
tractors, Hoshino (2013) found that syntactically
related ones were the most difficult distractors, yet
only in exercises that require semantic parsing of
the co-text. Very little research has focused on
grammar exercises. A noticeable exception con-
stitutes the approach by Pandarova et al. (2019),
which examines the effect on exercise difficulty of
various linguistic properties on the gap, item, and
text levels of Fill-in-the-Blanks (FiB) exercises to
practice tenses.

Almost all of these analyses targeting difficulty
parameters of language exercises use co-text com-
plexity as one of the influencing features. How-
ever, they all consider only a single exercise type.
In order to fill this gap and establish whether the
results of such narrowly focused studies can be
generalized to other exercise types, we present an
evaluation of the impact of co-text complexity on
exercise difficulty for seven exercise types.

Using a feature to predict static exercise diffi-
culty only makes sense if the impact of the fea-
ture is similar for all learners. To the best of our
knowledge, none of the approaches to exercise dif-
ficulty calibration have looked into learner depen-
dence of the features impacting exercise difficulty.
We therefore evaluate whether co-text complexity
can be used as a static exercise complexity feature
or whether it needs to be considered dynamically
based on learner characteristics.

3 Data

The evaluations are based on data obtained in
the context of the Interact4School (I4S) (Parrisius
et al., 2022a,b) and the Digbindiff1 projects. Both
studies collected data from 7th grade learners of
English in German secondary schools who worked
with the Intelligent Language Tutoring System
(ILTS) FeedBook over the course of one school
year. The system offers practice exercises with in-
telligent feedback provided to the learners as they
work on the exercises. The two versions of the
FeedBook used in the studies differ slightly from
one another. While the focus in the I4S study was
on motivational aspects in a task based setting, the
Didi project looked into user-adaptive exercise se-
quencing.

The exercises in the I4S version of the Feed-
Book are organized into task-based cycles that
each contain multiple linguistically and pedagog-
ically motivated learning targets. The Didi study,
on the other hand, groups exercises only accord-
ing to learning targets. In order to use a common
terminology for both projects, we use chapter to
denote cycles of I4S and learning targets of Didi,
and learning target when referring to the learning
targets of both system versions.

In addition to the submissions of learners to the
practice exercises, both studies also collected per-
formance data on C-tests. These were conducted
once at the beginning and once at the end of the
studies, thus framing the practice exercises. The
C-tests used at both test timepoints and in both
studies are identical and consist of six parts. Of
the 1,360 learners consenting to participate in the
studies, 1,102 completed the first and 774 the sec-
ond C-test. 553 learners completed both C-tests.

The practice exercise types in the systems in-
clude FiB, Short Answer (SA), SC, Jumbled Sen-
tences (JS), Mark-the-Words (MtW), Categoriza-
tion, and Memory exercises. The 201 exercises in
the I4S study – excluding listening exercises – at-
tempted by at least one learner were submitted by
a mean of 136.13 learners (σ = 112.58). They are
grouped into four chapters and 9 learning targets
and contain a total of 1,140 actionable elements.
An actionable element can be the blank of a FiB or
SC exercise, a sentence of a JS exercise, a click-
able chunk in a MtW exercise, an element to sort
in a Categorization exercise, a Memory pair, or an
answer to a SA exercise. In the Didi study, a mean

1http://digbindiff.de
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(a) Lemma in parentheses (b) Lemmas as bag of words (c) Distractor lemma in parentheses

Figure 1: Codings of FiB exercises

of 29.19 learners (σ = 46.00) attempted each of
the 470 exercises with overall 2,003 actionable el-
ements. These numbers differ considerably from
those of the I4S study as the macro-adaptive focus
of the Didi study resulted in a more varied practice
environment adapted to the individual learner. The
exercises are grouped into 4 chapters and learning
targets. There is no overlap of learners or practice
exercises between the two studies.

All data on exercises and learner submissions
is stored in a PostgreSQL2 database and managed
through Hibernate3.

4 Evaluation

We conducted a range of experiments to determine
the relevance and learner dependence of co-text
complexity for macro-adaptivity. For these analy-
ses, the data was extracted from the databases with
utility scripts written in Java which use the Hiber-
nate setup to access the data. For further process-
ing, the extracted learner submission and exercise
data was stored in CSV files. Apart from the cor-
rectness of each learner’s answers to the actionable
elements of exercises, meta-information including
the associated learning target, the exercise type,
the length of the actionable elements, and exercise
type specific information was extracted such as the
number of chunks for JS or the number of distrac-
tors for SC exercises.

In addition to the metadata extracted from the
databases, we determined IRT difficulty scores
and co-text complexity scores for all exercises.
IRT difficulty values b were determined for all ac-
tionable elements based on the Rasch model of the
TAM package for R. Since the datasets of the two
studies constitute discrete sets with no overlaps in
learners or exercises, we determined the difficulty
values independently for each dataset. For per-
formance reasons, the data in addition needed to

2http://postgresql.org
3http://hibernate.org

be split by learning targets. In order to determine
co-text complexity of the exercises in the dataset,
we extracted the text material from all exercises.
This includes prompts as well as all actionable el-
ements and surrounding co-text, but not instruc-
tions or any support texts. We approximated co-
text complexity for all extracted texts through a
number of different readability formulas. In lack
of gold standard values for text complexity, we op-
erationalized it as the mean value of normalized4

readability scores obtained from various readabil-
ity formulas. Although IRT scores were estimated
separately for the learning targets, we used the
joint dataset for the readability score determina-
tion as text complexity should be independent of
exercises and learners.

Since we assumed that the effect of co-text com-
plexity might only be relevant to some learning
targets and to some exercise types, we extracted
subsets of exercises for isolated analyses. Each
combination of exercise type and learning target
resulted in a distinct subset of exercises. In addi-
tion, FiB exercises support two possible codings,
as illustrated in Figure 1: (1) Specifying the re-
quired lemma in parentheses behind the blank (1a)
results in mechanical drill exercises. (2) Giving
the lemmas as bags of words for the entire exercise
(1b) or providing an additional distractor lemma
in parentheses (1c) requires top-down skills in the
form of parsing the co-text (Nagao, 2002) in or-
der to successfully answer the exercise. Consider-
ing that co-text complexity might be less relevant
in exercises where correct processing of the text
is not essential (Hoshino, 2013), we extracted the
co-text sensitive exercises into an additional sub-
set. Some data might not be representative due to
the low number of submissions for an exercise. A
further subset of core exercises therefore is based

4We used the StandardScaler of the Python scikit-
learn package for scaling of the readability scores of each for-
mula, and the MinMaxScaler of the same library to scale
the mean readability scores into the range [0,1].
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on the number of learner submissions for the ex-
ercises. It encompasses all exercises which were
submitted by at least 50% of all learners in the
respective study. The next three subsets control
for exercise difficulty. They consist of exercise
items with similar IRT difficulties in the low, in-
termediate, and high difficulty ranges. Since IRT
scores were determined for individual actionable
elements instead of for entire exercises, these sub-
sets contain actionable elements as items. In or-
der to maximize the number of items per subset
while minimizing the range of difficulty scores, in
the intermediate difficulty subset we only included
exercises that deviate from the median value in no
more than 1%. For the low and high difficulty sub-
sets, we used the same number of exercise items
with the lowest and highest difficulty scores re-
spectively. The last three subsets, created in a sim-
ilar manner based on the scores of the first C-test,
control for learner proficiency. They contain only
the submission data for exercises attempted by the
learners associated with the respective proficiency
group.

After thus pre-processing the raw database data
into a format independent of the ILTS and en-
riched with meta-information, we implemented
the analyses in Python and R.

4.1 Relationship between C-test and practice
performance

C-tests are widely used to assess general language
proficiency and have been established to reliably
and validly do so (Klein-Braley, 1996). However,
more recent critical evaluations show mixed re-
sults, ranging from high (e.g. Lei, 2008; Rasoli,
2021) to very low (e.g. Farhady and Jamali, 2006;
Mashad, 2008) validity for English. These dis-
crepancies might stem from differences in the par-
ticipants as Mashad (2008) found C-tests to only
be reliable for certain proficiency groups. In order
to determine the suitability of determining general
language proficiency through C-tests for our tar-
get group, we determined the distributions of the
C-test scores based on histogram plots. Although
Daller and Phelan (2006) point out that C-tests
are not necessarily normally distributed, we ex-
pect similar distributions for all C-test parts. As
a reference point, we determined the overall dis-
tribution of C-test scores for both C-tests of the
dataset, which was found to have a curved shape.
Figure 2 shows that out of the six parts of each C-

test, only the second, third and fourth parts reflect
this form while the other three parts have mono-
tonically increasing distributions. The meta infor-
mation available for the C-tests confirms that these
parts do indeed not provide representative data:
The first part constitutes an example item. The last
two parts were attempted by only a small number
of learners who managed to complete them within
the given time frame, thus presumably being more
proficient than the slower learners. In the subse-
quent evaluations, we therefore only used the re-
sults of the second to fourth parts.

Overall Part 1 Part 2

Part 3 Part 4

Part 5 Part 6

C-test 1 C-test 2

Figure 2: Distributions of C-test scores

The tests can only be indicative of varying per-
formance on exercises if performance on the C-
tests is varied across learners. In order to verify
that our dataset covers learners of diverse profi-
ciency levels, we determined the range of accura-
cies obtained on the C-tests. The values are similar
for both C-tests with minimum scores of .00 and
the highest observed accuracy at .62. When ex-
cluding the learners who did not correctly answer
any item (acc = .00), the lowest score amounts to
.01. The study participants thus indeed comprise
learners of very low English proficiency who nev-
ertheless made an effort to complete the C-tests.
The dataset therefore covers learners with overall
English language proficiencies ranging from very
weak to moderately strong.

Since we aim to match text complexity to
learner proficiency, the scores obtained for both
parameters should be equally distributed across
exercise texts and learners. We therefore com-
pared the histograms representing the distribution
of the text readability scores with that of the over-
all C-test scores per C-test. Figure 3 illustrates that
the curve-shaped distribution of the C-test scores,
even more pronounced when excluding the invalid
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C-test 1
C-test 2
Co-text readability

Figure 3: Distributions of C-test and readability scores

parts, is reflected in the histogram for text read-
ability scores. Our dataset thus represents learners
and exercises whose global language proficiency,
operationalized as C-test scores, and co-text com-
plexity, operationalized as text readability scores,
respectively, have compatible distributions.

After establishing the validity of the C-tests in
themselves as well as the possibility to map the
scores to co-text complexity, we can effectively
use them to operationalize a learner’s general lan-
guage proficiency. This learner characteristic can
only impact exercise difficulty if there is any rela-
tionship between the operationalizations of both.
In order to determine whether this is the case for
our dataset, we calculated Pearson’s correlation ρ
between the learners’ performance on the C-tests
and that on practice exercises. C-test performance
was defined as the accuracy on all items of the
valid C-tests. Practice performance was defined
as the accuracy on the actionable elements of all
practice exercises. In addition to global corre-
lation, we also looked at the correlations within
the subsets representing combinations of exercise
types and learning targets. This allowed us to de-
termine whether C-test performance impacts ex-
ercise difficulty for only certain exercise types or
learning targets. Table 1 gives an overview of the
results. For the first C-test, the Pearson correlation
reveals only a weak relationship between C-test
accuracy and practice accuracy (ρ = .28). It does
not increase when only considering core exercises
(ρ = .28), and only marginally for co-text sensi-
tive exercises (ρ = .29). This suggests that the
data for the overall exercise pool reflects the pic-
ture of the subset most representative of our target
group and that general language proficiency is not

more relevant for exercises that require process-
ing of the text material. When controlling for ex-
ercise difficulty, the relationship is even less pro-
nounced with a weak correlation of ρ = .27 for
intermediate-difficulty exercises and no relation-
ship for low- (ρ = .18) and high-difficulty exer-
cises (ρ = .15). When looking at the different
learning targets and exercise types separately, cor-
relations are higher for a number of sub-groups
covering almost all exercise types and learning tar-
gets. The highest – although weak – correlation
(ρ = .47) is for FiB exercises on Simple past
vs. Present perfect. The gap filling exercise types
FiB and SC, as well as the occasional JS exercise
type, have the highest correlations for a number of
learning targets. Of these, there is no pattern indi-
cating that any learning target generally has higher
correlations between C-test and practice perfor-
mance than others.

Exercise set ρc1 ρc2
All .2811 .4070
Core .2821 .3641
Co-text sensitive .2887 .3882
Low difficulty .1773 .2356
Intermediate difficulty .2674 .2763
High difficulty .1536 .2465
FiB – Simple past vs. Pres. perf. .4688 .3890
SC – Conditionals .4101 .4392

Table 1: Pearson’s correlations of C-test 1 (ρc1) and C-
test 2 (ρc2) with practice performance

Interestingly, the scores of the second C-test cor-
relate much better with the learners’ practice per-
formance, although the relationship is still weak
(ρ = .41). When looking at the subsets, the pat-
tern is similar to that with the first C-test: Core
exercises (ρ = .36) and co-text sensitive exercises
(ρ = .38) have comparable correlations. Correla-
tions for low- (ρ = .24) and high-difficulty ex-
ercises (ρ = .25) are considerably lower again
and exercises of intermediate difficulty correlate
slightly better with the C-test scores (ρ = .28)
than the other two subsets, although much less rel-
ative to the overall exercise set than for the first
C-test. The highest ranked combination of ex-
ercise type and learning target of the first C-test
again shows a weak correlation (ρ = .39), and is
only surpassed by one other combination. The cor-
relation between performance on this C-test and
practice performance is highest for SC exercises

Proceedings of the 12th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2023)

76



on Conditionals (ρ = .44). The patterns for spe-
cific exercise types and learning targets are similar
to those for the first C-test. Since correlations are
higher with the second than with the first C-test for
all learning targets, the temporal proximity of the
test to the practice session does not seem to be the
cause of this observation.

In order to better compare the significance of
the two C-tests with respect to their predictive
power for practice performance, we generated a
partial dependence plot based on an AdaBoost
classifier trained to predict whether an actionable
element is answered correctly depending on the
C-test scores. As the probability increases, the
colouring turns from purple to green. For the
plot given in Figure 4, the colour changes progres-
sively on the vertical axis representing the second
C-test, but not on the horizontal axis representing
the first C-test. This illustrates that while for the
second C-test, the probability of a learner answer-
ing an element correctly increases with higher test
scores, this is not the case for the first C-test.
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Figure 4: Partial dependence plot for the C-tests when
predicting the correctness of a learner’s answer

The approach to match co-text complexity to a
learner’s global language proficiency in order to
improve the learner’s performance on practice ex-
ercises requires valid indicators of learner profi-
ciency from which to calculate the match. As a
learner’s general language proficiency may change
during their involvement with the system, the va-
lidity of the initially elicited proficiency score
might decrease over time. In order to determine
whether this is the case for our learner population,
we trained an AdaBoost classifier5 individually for
each of the four chapters to predict a learner’s per-

5The classification was based on the scikit-learn
(https://scikit-learn.org) implementation for Python.

c1 c2 c1-c2 Relative impact
Chapter 1 .16 .12 .04 1 > 2
Chapter 2 .04 .10 -.06 2 > 1
Chapter 3 .02 .08 -.06 2 > 1
Chapter 4 .14 .10 .04 1 > 2

Table 2: Feature importances of the first (c1) and sec-
ond (c2) C-tests

formance on an exercise from the C-test scores and
co-text complexity. Since the chapter index repre-
sents the exercises’ relative practice timepoint, the
development of the feature importances of the two
C-tests relative to each other over the sequence of
succeeding chapters can give insights into whether
recency of a C-test influences the predictive power
of general language proficiency. While the clas-
sifier’s feature rankings – outlined in Table 2 for
the entire dataset – indicate varying priority of one
of the two C-tests over the other, a C-test’s im-
portance does not monotonically increase with its
temporal proximity to the practice unit. This is
similar for all data subsets as illustrated in Fig-
ure 5, which displays the difference in feature im-
portances between the first and second C-test de-
pending on the chapter. Monotonically decreasing
lines would indicate that the first C-test loses im-
portance with later chapters while the second C-
test’s importance increases. However, this is not
the case for any of the subsets. The test timepoint
therefore does not seem to play a substantial role
in the predictive power of C-tests.
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Figure 5: Importance of the C-test scores relative to
each other over succeeding chapters

When looking at the development of the learn-
ers’ C-test scores from one test timepoint to the
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other, the scatter plot given in Figure 6 reveals
that for a considerable number of learners, rep-
resented in the shaded area underneath the first
bisector, the scores do not show the expected in-
crease, but decrease over time. This also results
in an only moderate correlation (ρ = .5260) be-
tween the two tests. Considering the previous find-
ings that the scores of the second C-test correlate
better with practice performance than those of the
first C-test, this could indicate that C-tests taken
during a learner’s first interaction with the system
are not entirely representative of their general lan-
guage proficiency, possibly due to the novelty of
the system and the test setup. A tentative conclu-
sion assumes that C-tests do not lose validity over
time, at least not within the course of a school year,
but that tests are more representative if learners are
already familiar with the test platform.
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Figure 6: Development of C-test scores between test
timepoints

Overall, these results indicate that C-test scores
have no or only weak linear relationships with per-
formance on exercises. Although correlations are
generally higher for FiB exercises, this is not the
case for the co-text sensitive exercises even though
they constitute a subset of FiB exercises. Espe-
cially for low- and high-difficulty exercises, the
relationship of general language proficiency with
practice performance, if there is one, does not
seem to be linear. C-tests are, however, more pre-
dictive of a learner’s performance on practice ex-
ercises when taken after a period of familiarization
with the system.

4.2 Linear relationship between co-text
complexity and exercise difficulty

If exercise difficulty increases linearly with in-
creasing co-text complexity, there should be a
positive correlation between these two variables.
We therefore determined Pearson’s correlation be-
tween the readability scores and the IRT difficulty
scores. Since there might not be a global relation-
ship for all exercise types and learning targets, we
calculated correlations for the various subsets in
addition to the correlation for the entire dataset.

Exercise set ρ Sample size
All .0991 3,104
I4S .0076 1,101
Didi .1381 2,003
Future Tenses -.0094 127
Modals .7270 34
FiB .0022 1,849
JS .3337 444
FiB – Simple past vs.
Present perfect

-.0231 241

SC – Conditionals .8291 8
Core .0024 131
Co-text sensitive .0804 208

Table 3: Pearson’s correlation ρ of text readability with
exercise difficulty

The results, summarized in Table 3, show that
there is no linear relationship between co-text
readability and exercise difficulty either for all ex-
ercises (|ρ| = .10) or for those of the individual
I4S (|ρ| = .01) and Didi (ρ = .14) studies. The
values vary considerably between learning targets
(|ρ| = .01 for Future Tenses to |ρ| = .73 for
Modals) and exercise types (|ρ| = .00 for FiB
to |ρ| = .33 for JS). For the subsets compris-
ing combinations of learning targets and exercise
types, this variance is equally high (|ρ| = .02 for
FiB exercises on Simple past vs. Present perfect
to |ρ| = .83 for SC exercises on Conditionals6).
There is no relationship for the subsets contain-
ing only core exercises (|ρ| = .00) or only co-
text sensitive exercises (|ρ| = .08). Interestingly,
some correlations are negative, suggesting that ex-
ercises are more difficult when co-text complex-
ity is lower. While this might be due to insuffi-
ciently large sample sizes, it could also indicate

6We excluded those combinations with sample sizes of 2,
although sample sizes may be too small in most other cases
as well (4 - 385) to yield reliable results.
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that exercise creators try to compensate some dif-
ficulty features with others in order to create exer-
cises of overall approximately similar difficulties.
The results, while not entirely conclusive due to
data sparseness considering the multitude of pa-
rameters influencing exercise difficulty, indicate
that co-text complexity does not have the same ef-
fect on exercise difficulty for all learning targets
and exercise types. There is no overall linear rela-
tionship between these two parameters.

For the subsets controlling for exercise diffi-
culty, the difficulty values differ only marginally
by definition. We therefore determined the mean
as well as the minimum and maximum readabil-
ity scores within these subsets and compared them
between the sets. Following the logic that higher
readability scores result in higher exercise difficul-
ties, these metrics should then be lowest for the
subset of low-difficulty exercises and highest for
the subset of high-difficulty exercises. However,
the boxplots in Figure 7 illustrate that readability
scores are very similar for all three subsets, with
values ranging from .0000 to .4632 (µ = .1390),
from .0172 to .3841 (µ = .1503), and from .0074
to 1.0 (µ = .1776) for low-, intermediate-, and
high-difficulty items respectively. It should be
noted, though, that very high readability scores
appear only with high-difficulty exercises, which
could indicate that such high text complexities
might indeed have an influence on overall exercise
difficulty.

low difficulty intermediate difficulty high difficulty
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7: Boxplots of readability score distributions for
difficulty controlled subsets

4.3 Non-linear relationships between co-text
complexity and exercise difficulty

In order to capture non-linear relationships be-
tween co-text complexity and exercise difficulty,

we trained various classifiers to predict whether a
learner answers an actionable element correctly.
The classifiers include a Decision Tree, a Ran-
dom Forest, and an AdaBoost classifier from the
Python scikit-learn7 library, which all pro-
vide predictor rankings. As baseline model, we
used only simple exercise features such as the ex-
ercise type, the number of tokens in the target an-
swer, and the number of other targets in the ex-
ercise. We then analyzed a range of model vari-
ants for various subsets of the data and with differ-
ent combinations of additional features targeting
IRT difficulty, text readability, and C-test scores.
While IRT difficulty scores can be expected to be
the most indicative exercise parameter in terms of
practice performance, this feature is unknown for
new exercises. We therefore analyzed models both
with and without the IRT difficulty predictor. All
features were encoded as Integer values; not ap-
plicable features received the value zero. We de-
termined precision, recall, and F1 scores as per-
formance metrics for all model variants in order
to evaluate whether adding certain features im-
proves model performance. Precision, recall and
F1 scores are comparable for all three classifiers,
although the AdaBoost classifier slightly outper-
forms the others in most experiment settings. For
the entire dataset, precision and recall are almost
always identical and mirror the F1 scores. We
therefore report only F1 scores of the AdaBoost
classifier, which are summarized in Table 4. The
baseline model already achieves a high F1 score
of .72 which increases to .76 when adding the
IRT difficulty predictor. When only using text
complexity as additional feature, there is almost
no increase in performance (F1 = .72) as com-
pared to the baseline model. Adding the C-test
scores to any of the experiment settings results
in a slight increase in F1 scores. Although the
best performing model (F1 = .77) incorporates
all predictors, multiple models with a reduced fea-
ture set perform nearly as well. They all include
the IRT difficulties as well as C-test scores. The
two C-tests result in comparable model perfor-
mances. The model using all features except for
IRT difficulty achieves a F1 score of .73, which
constitutes the best performance without IRT dif-
ficulties. Adding text complexity as a feature
to the best performing models has a small pos-
itive effect on performance. F1 scores are gen-

7https://scikit-learn.org
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Set of
exercises

Predictors base-
line +b +co-text +b+c1 +co-text

+b+c1 +b+c2 +co-text
+b+c2

+co-text
+c1+c2 all µ σ

All .7238 .7599 .7247 .7655 .7661 .7653 .7664 .7251 .7669 .7515 .0203
Core .7510 .7612 .7508 .7709 .7784 .7779 .7751 .7630 .7798 .7676 .0115
Co-text sens. .7070 .7393 .7108 .7431 .7407 .7491 .7505 .7108 .7516 .7337 .0186
bintermediate .7374 .7458 .7408 .7437 .7404 .7429 .7420 .7424 .7437 .7421 .0024
blow .9450 .9450 .9450 .9467 .9467 .9470 .9470 .9470 .9469 .9463 .0009
bhigh .8553 .8538 .8553 .8516 .8516 .8524 .8524 .8545 .8487 .8528 .0021
FiB .7227 .7750 .7214 .7760 .7755 .7775 .7777 .7197 .7767 .7580 .0276
MtW .6585 .6711 .6656 .6985 .6913 .7064 .7082 .7146 .7093 .6915 .0211
JS .8350 .8549 .8362 .8531 .8538 .8587 .8527 .8343 .8549 .8482 .0099
SC .7760 .7820 .7760 .7844 .7830 .7848 .7855 .7741 .7855 .7813 .0046
SA .7277 .7652 .7256 .7562 .7546 .7578 .7620 .7361 .7657 .7501 .0159
Memory .9535 .9535 .9535 .9535 .9535 .9535 .9535 .9581 .9628 .9550 .0033
Categorization .6949 .6949 .6949 .7190 .7190 .6949 .6979 .7160 .7009 .7036 .0110

Table 4: Classifier performance

erally slightly higher for the subsets of core ex-
ercises (µF1 = .77, σF1 = .01) and exercises
of intermediate difficulty (µF1 = .74, σF1 =
.00), and marginally lower for co-text sensitive
exercises (µF1 = .73, σF1 = .02). For high-
difficulty exercises, they are considerably higher
(µF1 = .85, σF1 = .00) and even more so for
low-difficulty exercises (µF1 = .95, σF1 = .00).
The standard deviations show that there are almost
no differences in F1 scores between the model
variants of exercise sets with controlled difficulty,
which highlights the high relevance of the IRT dif-
ficulty feature once again.

In addition, we analyzed the feature impor-
tances provided by the classifiers, which allow to
estimate the relevance of the individual features
to the models’ predictions. While model perfor-
mance metrics indicate that co-text complexity has
only little impact on a learner’s performance on
exercises, the feature rankings, illustrated in the
heatmaps in Figure 8, show that this parameter
holds substantial predictive power. Not surpris-
ingly, exercise difficulty is the overall most pre-
dictive feature. It is, however, followed by co-text
complexity in most models integrating this fea-
ture and ranked highest in models not including
IRT difficulty. The feature rankings for the ana-
lyzed features – IRT difficulty, text readability and
C-test scores – are similar for all subsets of exer-
cises in terms of relative rankings, although abso-
lute values vary. Differences in the rankings con-
cern mostly the simple exercise features and are
quite pronounced between the different exercise
types. However, co-text complexity also features
greater importance for FiB, and most particularly
co-text sensitive exercises, SC, and JS exercises

compared to the other exercise types. This on the
one hand supports the findings of Section 4.2 in
terms of exercise types for which co-text plays a
role, and on the other hand reveals that it is partic-
ularly relevant with co-text sensitive exercises af-
ter all. In addition, the relevance of C-test scores
varies considerably from one exercise type to the
other. According to the predictor rankings, gen-
eral language proficiency is highly relevant – even
more relevant than IRT difficulty – with Memory
and Categorization exercises, and less so with JS,
SC, SA, MtW, and particularly FiB exercises.

Overall, the classification experiments reveal
that co-text complexity does have predictive power
with respect to a learner’s performance on an ex-
ercise.

4.4 Learner dependence of co-text
complexity predictiveness

By comparing the performance of classifiers for
the subsets of controlled learner proficiency us-
ing co-text complexity as a single predictor, we
aimed to determine whether co-text complexity
is a learner dependent or independent parame-
ter. If the predictive power of co-text complex-
ity varies with the learners’ proficiency levels, we
expect performance to differ between the subsets.
The results indeed show differences in model per-
formance, which is best for high learner profi-
ciency (F1 = .7755) and lowest for low pro-
ficiency (F1 = .6627). Co-text complexity is
therefore a good predictor of practice performance
for high-proficiency learners, but less so for low-
proficiency learners. This could indicate that less
proficient learners do not process an exercise’s co-
text, either because they do not attempt to do so or
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Figure 8: Feature importances

because even the easier texts are too challenging
for them, so that this parameter has less impact
on their practice performance. Co-text complex-
ity thus seems to be a learner dependent parameter
which holds more predictive power the higher the
learner’s proficiency.

5 Conclusion

We presented an extensive evaluation of the rel-
evance of co-text complexity to exercise diffi-
culty and its dependence on an individual learner’s
global language proficiency. The analyses cover

seven exercise types that differ in the relevance of
understanding the co-text in order to successfully
answer them. We showed that while there is gen-
erally no linear relationship between co-text com-
plexity and a learner’s performance on the exer-
cise, statistical models can capture the predictive
power of this parameter in combination with other
exercise and learner specific features. This is es-
pecially true for exercises going beyond mechan-
ical drills, where the co-text provides guidance
to successfully answer the exercise. However,
its predictive power varies with a learner’s profi-
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ciency. More proficient learners seem to make use
of top-down skills, while less proficient learners
use more local clues to solve grammar exercises.
Co-text complexity should therefore be considered
as a dynamic parameter in adaptive exercise selec-
tion in conjunction with a learner’s general lan-
guage proficiency.

We also acknowledge some limitations to our
evaluations. Although the C-test scores cover a
considerable range, our learners might still consti-
tute a more homogeneous group than in other ILTS
where learners do not follow the same curricu-
lum and workbook. Similarly, since the exercises
were created from manually composed texts, they
do not represent the variability found in authentic
texts, especially concerning higher complexities.
In addition, readability formulas constitute easy-
to-use measures of linguistic complexity thanks to
their numerical output scores. However, they do
not cover the entire spectrum of linguistic prop-
erties relevant to complexity which can be con-
sidered in more sophisticated approaches. These
should also differentiate between different scopes
of the features since for some exercises it might
be sufficient to consider the linguistic constructs
in the sentence of the actionable element instead
of in the entire exercise’s co-text.

Future work will need to determine the thresh-
old defining high general language proficiency so
that co-text complexity can be considered exclu-
sively for those learners for whom it does make a
difference.
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Abstract

Argument mining typically focuses on identi-
fying argumentative units such as claim, posi-
tion, evidence etc. in texts. In an educational
setting, e.g. when teachers grade students’ es-
says, they may in addition benefit from in-
formation about the content of the arguments
being used. We thus present a pilot study
on the identification of similar arguments in a
set of essays written by English-as-a-foreign-
language (EFL) students. In a manual annota-
tion study, we show that human annotators are
able to assign sentences to a set of 26 refer-
ence arguments with a rather high agreement
of κ > .70. In a set of experiments based
on (a) unsupervised clustering and (b) super-
vised machine learning, we find that both ap-
proaches perform rather poorly on this task,
but can be moderately improved by using a set
of six meta classes instead of the more fine-
grained argument distinction.

1 Introduction

Argumentative essays are frequently written as
part of foreign language instruction. A common
natural language processing (NLP) task on these
kinds of texts is argument mining, the task of au-
tomatically detecting argumentative units in texts
(Lawrence and Reed, 2020). In argument mining,
arguments are typically categorized according to
their function, such as claim, position, evidence
etc., but most argument mining approaches do not
offer methods to categorize the content covered by
a particular argument.

From an educational perspective, however,
knowing which sub-topics of a certain prompt are
addressed where in the essay could be beneficial
both for summative and formative feedback. For
example, while grading an essay, teachers could

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

benefit from knowing how many different argu-
ments or how many pro and con arguments occur
and how they are distributed in the text. The au-
tomatic identification of arguments also allows for
an easier comparison of the content of different es-
says. Students could receive such information as
feedback. Figure 1 shows an example of an argu-
mentative essay and how the information could be
highlighted in the text.

This paper presents a pilot study on the auto-
matic identification of similar arguments in texts
of EFL students. We want to find out (a) how well
human annotators agree when detecting similar ar-
guments and (b) what performance on this task can
be achieved with an automatic model and whether
a supervised approached with limited training data
or an unsupervised clustering approach works bet-
ter. To do so, we conduct an annotation study in
which we first determine a set of reference argu-
ments found in the essays. By ‘reference argu-
ment’ we mean a statement that summarizes in one
sentence the core of an argument found in one or
more essays.

We then use these reference arguments to an-
notate a subset of the dataset for computing inter-
annotator agreement and to be used as gold stan-
dard for evaluating automatic models. In our ex-
periments, we compare variants of k-means clus-
tering using different seed sets and vectorization
methods. We evaluate them according to their
ability to place gold segments with the same clus-
ter ID in the same cluster and unrelated segments
in different clusters and compare them with a su-
pervised Machine Learning (ML) approach. We
either distinguish between fine-grained arguments
or merge different arguments into meta-classes
such as Pro, Contra or Irrelevant.

Thus, our paper contributes to the research
on similar argument identification in two ways.
Firstly, we provide manual annotations of simi-
lar arguments for a set of EFL learner texts. We
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First of all, I would say that it would be difficult to stop televison advertising
which is directed toward young children in the ages from two to five.
Televison advertising could be helpful especialy for parents if they don´t
have an idea concerning to give a present to their child. 
But on the other hand, watching telivison advertising in these ages can lead
to the missing ability to appreciate things which are advertised in the TV, 
such as toys or electronic devises to play with. If they always want more
toys, the parents maybe will follow their wishes to make their children
happy and make these wishes come true, which can lead to the missing
abilities mentioned before. They also wouldn´t know the value of these
things.
My opinion to this topic is, that televsion advertising directed to young
children should be stopped. Furthermore, the parents have to have an eye
on their children if they watch TV. Watching TV in these ages can also be
discussed, whether it´s good for them.

Prohibition not feasible

Ads are a source of information

Children quickly lose interest

Conclusion

Children watching TV in general

NeutralContraPro Introduction/Conclusion Not related to advertisement

Prompt: Do you agree or disagree with the following statement?
Television advertising directed toward young children (aged two to five) should not be allowed.
Use specific reasons and examples to support your answer.

Figure 1: Example of an essay annotated with argumentative units and argument summaries.

make our annotated dataset available under https:

//github.com/andreahorbach/ArgumentClustering. Secondly,
we provide a number of baselines results for au-
tomating the task based on different methods and
for different levels of granularity.

2 Related Work

2.1 Argument Identification

Argument mining usually deals with identifying
certain argument types based on their function in
the text (Wachsmuth et al., 2016; Nguyen and
Litman, 2018; Ding et al., 2022). While most
such approaches work in a supervised way, Pers-
ing and Ng (2020) use an unsupervised approach
to bootstrap argumentative units of different types
based on a seed set obtained from applying sim-
ple heuristics. Our approach is related to argument
mining but has the major difference that the goal
is to classify any identified segment based on its
content. In educational contexts, even when scor-
ing argumentative essays, argumentative content
is rarely explicitly focused on. In datasets such
as the ASAP essay dataset1 argumentative essays
are either scored holistically or according to cat-
egories such as overall content, organization flu-
ency etc. The content of individual arguments,
however, is only rarely explicitly addressed. Hor-
bach et al. (2017), for example, conduct experi-
ments on German essays based on an annotation
scheme indicating the presence or absence of cer-

1https://www.kaggle.com/competitions/asap-aes/overview

tain arguments regarding a topic, but they do not
mark the exact location in the text.

2.2 Text Clustering

In the educational domain, clustering techniques
have been employed to support automatic scor-
ing of learner answers with the basic idea that an-
swers appearing in the same cluster likely convey
the same content and can therefore be graded to-
gether. Proposed approaches rely on surface rep-
resentations (Horbach et al., 2014), semantic rep-
resentation such as LSA (Zehner et al., 2016) or a
combination thereof (Basu et al., 2013).

In essay scoring, clustering techniques have
been used on the text level, such as Chen et al.
(2010), who clustered an essay corpus into the
number of different scores found in the data. On
a more fine-grained level, and probably the clos-
est to our study, Chang et al. (2021) annotate and
cluster sentences in Finnish student essays based
on their argumentative content. Besides cluster-
ing, they use an information retrieval approach but
no supervised machine learning like we do.

3 Dataset and Manual Annotations

3.1 MEWS Dataset

We conduct our experiments on the MEWS
dataset (Measuring Writing at Secondary Level;
Keller, 2016). It consists of English essays written
by 10th grade students in Germany and Switzer-
land who learn English as a foreign language. The
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Method # segments Avg. # tokens

Sentences 38,715 18.79
W/ Connectives 37,505 19.27

Table 1: Average number and length of segments per
essay for each segmentation method.

dataset contains four individual writing prompts,
two for independent and two for integrated essays.
In this paper, we focus on one of the two indepen-
dent argumentative writing prompts, in which the
learners are supposed to state whether they agree
or disagree with a statement and to provide rea-
sons for their answer. The prompt is: Television
advertising directed toward young children (age 2
to 5) should not be allowed. In total, the dataset
contains 2,382 essays in response to this prompt.

3.2 Argumentative Units

We consider different options to automatically
segment the essays into units that can be clustered
or labeled as different arguments. First, we looked
into splitting at paragraph boundaries but as many
learners did not arrange their texts into multiple
paragraphs this approach turned out to be not fea-
sible. Second, we consider sentences, which are
an obvious linguistic unit and easy to extract. The
potential shortcoming is that a sentence may con-
tain more than one argument or an argument may
stretch over multiple sentences. As an alternative,
we split the texts using a comprehensive list of
215 discourse connectives such as furthermore,
on the other hand, in conclusion as separators. In
this segmentation variant, we only split at sentence
boundaries when the next sentence starts with such
a connective to indicate that a new argument is fol-
lowing. We decided not to split at discourse con-
nectives within a sentence because we found that
it too often leads to uninterpretable text snippets.

Table 1 shows the average number and length
of segments found by either variant. We see that
the two variants do not differ much numerically
from each other. Upon manual inspection, we
found that they indeed produced very similar re-
sults. Part of the reason may be that the learn-
ers do not use discourse connectives consistently.
For the sake of simplicity, we therefore decided to
use sentences as units, although in future work a
proper argumentative unit detection based on gold
standard segmentation might be a better alterna-
tive.

3.3 Annotation of Gold Standard Arguments

To create a gold standard, we used a two-step pro-
cess.

Step 1: Determining the Number of Reference
Arguments First, we determined how many dif-
ferent arguments there are in the dataset. To
do this in a time-efficient manner, one annotator
looked at a number of essays and compiled a list
of found arguments and the corresponding sen-
tences in an iterative process until no new argu-
ments were detected in four subsequent essays.
This happened after a total of 14 essays. There
were no specific guidelines for this step. Then,
a second annotator looked at the same set of es-
says and independently collected all different ar-
guments that he found, i.e. he did not see which
arguments annotator 1 had collected before. To-
gether with two additional adjudicators, a final set
of 26 reference arguments was compiled. Each
reference argument consists of a short summary of
the core content of the argument (produced by the
annotators) and a set of sentences from the essays
that correspond to this argument. See Table 2 for
some examples.

There are some ‘special’ types of reference ar-
guments worth mentioning: Introduction and Con-
clusion refer to all introductory or concluding sen-
tences of an essay, which do not contain argu-
ments per se, Non-English refers to all sentences
written in a different language (e.g. when students
copied material from the German instructions) and
Irrelevant, which refers to sentences that are meta-
comments or do not refer to the prompt e.g. Sorry
for not writing anything. Furthermore, we added
one additional category called New Arguments to
account for arguments not detected before.

Step 2: Annotating Arguments in Text In the
next step, the same two annotators were given
the list of reference arguments that were compiled
in step 1 and annotated a set of 235 sentences
from new essays with the reference arguments
they correspond to. We aimed at a set of sen-
tences that would cover all reference arguments.
To approximate this, we automatically clustered
all sentences from the essays as described in Sec-
tion 4.1 (with the reference arguments as centroids
and tf-idf vectorization) and picked five random
sentences from each cluster for the manual anno-
tation. The annotators agreed in 169 out of 235
annotated sentences, reaching an inter-annotator
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Argument summary Corresponding sentences from the essays

Advertisements can have positive
effects on children’s behavior.

Advertisement for children does not have to be a bad thing, it can be used to influ-
ence them so that their behaviour will have a positive effekt on society and nature.

But that argument is quite small since the children might want something for the
outdoor fun like a new special ball and so they want to play outside and stop sitting
in front of the TV and that can´t be bad at all.

It does not really matter because
young children normally do not
watch TV that often or shouldn’t be
allowed to.

I also remember me having fun to go outside and not having to worry about an
television advertisement

Also one has to add that young children aged two to five normally do not watch
TV that often. Therefore it does not really matter

there seems to be no need for a prohibition of especially this type of advertisements
since most of the children aged 2 to 5 are allowed to watch television

Young children are easily
manipulated by advertisements.

The advertisment has an influence on the Children and in this age they don’t know
when they are under an influence

Chlidren form the age of two to five have not been able to develop their own charc-
ter jet, that makes them an easy target for advertisement

Because they are so easy to influence and probably believe the things that are said,
even though they are not true.

Table 2: Examples of manually identified arguments and corresponding sentences from the essays. We refer to
these as reference arguments.

agreement of Cohen’s κ = 0.718. After the anno-
tators were shown where they disagreed, one an-
notator corrected six obvious errors, raising the
inter-annotator agreement to 0.732. This rather
high agreement value shows that despite the large
number of reference arguments and the overall di-
verse texts (resulting from an independent rather
than integrated writing prompt), arguments in stu-
dent essays can be clustered consistently – with
the limitation that only one prompt was analyzed
in this study.

The major sources of disagreements (24 and 20
cases, respectively) were that one annotator tended
to assign arguments to the New Argument or Irrel-
evant category, respectively, while the other anno-
tator would assign them to one of the existing ref-
erence arguments. We chose the annotations of the
annotator who preferred to assign the arguments to
the existing reference arguments as the final gold
standard for our evaluation.

The most frequently occurring argu-
ments/categories are Irrelevant (11.5%), Children
shouldn’t watch TV in general (8.1%) and Chil-
dren are easily manipulated by advertisements.
(8.1%). Two arguments were found only once,
namely Children may adopt undesired behavior
from advertisements and Children want to be
treated like adults.

4 Argument Identification Experiments

4.1 Experimental Setup

In our experiments, we compare several instanti-
ations of k-means clustering with supervised ma-
chine learning.

Clustering algorithm The basic k-means algo-
rithm (Arthur and Vassilvitskii, 2006) iteratively
assigns elements to be clustered to the closest in-
stance from a set of centroids. These centroids
are often randomly chosen in the first iteration,
later the centroid of each cluster from the previous
round is used until the cluster assignment is stable.
We choose the number of clusters k to be 26, i.e.
the number of reference arguments we manually
identified as described in Section 3.3.

One obvious parameter in the setup of k-means
clustering is the choice of a suitable distance met-
ric between items operationalized by the vector-
ization method to be combined with cosine sim-
ilarity. We use four different methods. Cosine
similarity between tf-idf weighted ngram fea-
tures is a baseline relying on surface features. We
compare it with three embedding-based methods,
also using cosine similarity. First we average
word vectors using pretrained word embeddings
from Word2Vec (Mikolov et al., 2013) or Fast-
Text (Joulin et al., 2016) to create sentence vec-
tors. Second, we make use of Sentence-BERT
(SBERT, Reimers and Gurevych, 2019) to create
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an embedding vector per sentence.2

A second parametrization of k-means concerns
the initialization of seed centroids. We either use
random sentences as seeds (random seeds) or use
our manually annotated reference arguments as
centroids (gold centroids) by averaging over sen-
tence vectors for all sentences identified for a ref-
erence argument as described in Section 3.3. We
assume that our gold centroids are already optimal
in a sense that they represent the individual argu-
ments in the essays, therefore we stop after one
round of clustering in the gold centroids setup. In
the random seeds setup, we iterate as usual un-
til the clustering is stable, i.e. until cluster assign-
ments do not change anymore.3

Supervised approach As an alternative, we ex-
plore a supervised machine learning approach us-
ing logistic regression with different feature se-
tups: tf-idf weighted n-grams or SBERT vectors.
We perform 10-fold cross validation on the manu-
ally annotated gold-standard sentences from Sec-
tion 3.3 with cluster ID as the target label. That
means, in each iteration, we train on about 212
sentences, which is a rather small number of in-
stances given the 26 target classes.

Evaluation Metrics As we do not have a fully
annotated gold-standard cluster assignment for
every sentence in the dataset, we rely on the
subset of human annotations described in Sec-
tion 3.3, meaning that most established cluster
evaluation techniques (Amigó et al., 2009) are not
applicable to our evaluation setup in a straight-
forward manner. Furthermore, we cannot eas-
ily say which cluster represents which reference
argument (i.e. which gold-standard label) in or-
der to report instance-based accuracy. Therefore
we adapt pair-counting cluster evaluation methods
(Halkidi et al., 2001) that use only the annotated
subset of sentences in the clusters. From this an-
notated subset, we form pairs of sentences which
belong either into the same cluster or into differ-
ent clusters according to the gold standard. We

2We use the following pre-trained models: https://drive.goog
le.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=sharing
(Word2Vec), https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.
en.300.bin.gz (FastText), all-mpnet-base-v2 from https://www.sb
ert.net/docs/pretrained models.html (SBERT).

3We also tried a mix of both, i.e. starting with gold seeds
and then iterating until the cluster assignments are stable.
However, since the results were overall worse than for the
gold centroids setup, we will not report them in detail for
space reasons.

thus evaluate for every clustering what percentage
of same-cluster pairs was indeed clustered into the
same cluster and how many different-cluster pairs
ended up in different clusters, as well as using the
established Jaccard coefficient J:

J =
SS

SS + SD +DS
(1)

where SS (‘same-same’) is the number of pairs
that belong into one cluster according to the gold
standard and are assigned to the same cluster by
the algorithm, SD (‘same-different’) is the num-
ber of pairs that are in the same gold cluster but
ended up in different clusters in the algorithm and
DS (‘different-same’) the opposite case. The Jac-
card coefficient thus ranges from 0 to 1 with 1 be-
ing the best possible value. In addition, we report
precision and recall, which refer to ‘same’-pairs as
the positive class, and overall accuracy. One has
to be aware that for the pairwise evaluation, accu-
racy is overall high due to the high number of DD
(‘different-different’) pairs.

4.2 Experiment 1 - Fine-Grained Argument
Distinction

Comparison of Clustering Algorithms and Vec-
torization Methods In a first set of experiments,
we compare the different vectorizing approaches
for the two variants (gold centroids vs. random
seeds) of k-means. The results are shown in Ta-
ble 3.

We observe that, against our initial expecta-
tions, there is no clear advantage of using gold
centroids over random seeds. In terms of accu-
racy and Jaccard, the gold centroids work slightly
better than random seeds when tf-idf or FastText is
used for vectorization but overall, the differences
are rather small. When comparing the differ-
ent vectorization methods, SBERT and Word2Vec
outperform the other two methods for most evalu-
ation metrics. The overall best clustering result is
achieved with k-means with random seeds using
SBERT, but only reaching a Jaccard index of .115.

We cannot directly compare the (unlabeled)
clusters to the gold standard but we can compare
the distribution of cluster size. For each cluster-
ing setup, we order clusters by size in descending
order and plot the cluster size. A horizontal line
would mean that all clusters have the same size. A
steeply falling line which then becomes flat would
mean that there are few clusters with many in-
stances and many clusters with only few instances
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Vectorization SS DD DS SD Acc. Prec. Rec. Jaccard

k-means

tf-idf 240 20,497 3,260 979 .830 .197 .069 .054
SBERT 246 22,846 911 973 .925 .202 .213 .115

Word2Vec 258 22,102 1,655 961 .895 .212 .135 .090
FastText 202 20,793 2,964 1,017 .841 .166 .064 .048

gold centroids

tf-idf 185 22,730 1,027 1,034 .917 .152 .153 .082
SBERT 200 22,893 864 1,019 .925 .164 .188 .096

Word2Vec 244 22,243 1,514 975 .900 .200 .139 .089
FastText 181 22,201 1,556 1,038 .896 .148 .104 .065

supervised ML tf-idf 812 9,239 14,518 407 .402 .666 .053 .052
SBERT 589 19,148 4,609 630 .790 .483 .113 .101

Table 3: Results of Experiment 1: Fine-grained argument distinction. Comparison of different clustering tech-
niques and supervised machine learning.

Vectorization SS DD DS SD Acc. Prec. Rec. Jaccard

k-means

tf-idf 2,803 10,571 8,410 3,192 .536 .468 .250 .195
SBERT 1,393 16,209 2,772 4,602 .705 .233 .335 .159

Word2Vec 2,047 12,813 6,168 3,948 .595 .342 .299 .168
FastText 2,108 12,993 5,988 3,887 .605 .352 .260 .176

gold centroids

tf-idf 2,276 14,851 4,130 3,719 .686 .380 .355 .22
SBERT 2,010 15,559 3,422 3,985 .703 .335 .370 .21

Word2Vec 2,267 14,237 4,744 3,728 .661 .378 .323 .21
FastText 2,302 14,339 4,642 3,693 .666 .384 .332 .22

supervised ML tf-idf 3,311 10,065 8,916 2,684 .536 .552 . 271 .222
SBERT 3,241 12,489 6,492 2,754 .630 .541 .333 .260

Table 4: Results of Experiment 2: Distinction of broader argument classes: Comparison of different clustering
techniques and supervised machine learning.

(like a zipf curve). Figure 2 shows the results
for the random seeds setup in comparison with
the gold standard. We see that in the gold stan-
dard (solid red line), most clusters have roughly
the same size. For clusters with tf-idf and Fast-
Text vectorization, however, we see that there are a
few very dominating clusters with many instances.
Overall, the SBERT curve looks most similar to
the gold standard.

Comparison with Supervised ML The results
of the supervised ML experiments based on pair-
wise evaluation is shown in the lower part of Ta-
ble 3. As in the unsupervised clustering setup, we
see that SBERT features outperform tf-idf based
features in terms of accuracy and Jaccard index.
Overall, with a maximum Jaccard index of .10,
the performance of the supervised ML approach is
lower than the best unsupervised clustering setup.
This is probably due to the limited amount of la-
beled training data and the high number of classes.

When we look at the number of correctly as-
signed instances, we achieve a classification accu-
racy of .31 (SBERT) and .23 (tf-idf), respectively.
What is particularly striking about the results is
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Figure 2: Cluster sizes of the gold standard clusters and
the clusters produced by k-means with random seeds
and different vectorization methods.

that SBERT assigns sentences only to 10 out of the
26 reference arguments (tf-idf: 8 out of 26). Un-
surprisingly, most sentences are assigned the la-
bels that occurred most frequently in the manually
annotated training data.
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Class # Ref. Args.

Pro 9
Contra 9
Neutral 4
Irrelevant 2
Intro 1
Conclusion 1

Table 5: Distribution of reference arguments over the
merged classes.

4.3 Experiment 2 - Distinction of Broader
Argument Classes

In the previous experiment, we found that the re-
sults for distinguishing between individual argu-
ments were rather unsatisfactory. Especially for
the supervised ML approach, this may be due to
the imbalance of a high number of classes and
rather few training instances. Therefore, we con-
duct a second set of experiments in which we
merge the 26 reference arguments into six meta-
classes: Pro, Contra, Neutral, Irrelevant, Intro-
duction, Conclusion. Table 5 shows how many
reference arguments fall into which class. We see
that there are as many different pro arguments as
contra arguments in our set of manually identified
arguments.

We repeat our experiments on these broader ar-
gument classes, i.e. setting k to 6 in the clustering
experiments. The results are shown in Table 4.
We see that compared to the fine-grained argu-
ment distinction, the overall accuracy drops in the
pairwise evaluation setup because of the smaller
number of different-different pairs. In terms of
precision, recall and Jaccard index, we see that
the clustering works better in the merged classes
setup than in the fine-grained setup. Furthermore,
the differences between the different vectorization
methods are again rather small but unlike in the
fine-grained setup we see a slight advantage of us-
ing gold centroids over random seeds.

The supervised machine learning approach
again performs worse than the unsupervised clus-
tering, but only in terms of accuracy. With SBERT
features, the supervised ML approach reaches a
Jaccard index of .26, outperforming both the tf-
idf features as well as the unsupervised clustering.
When looking at instance-based classification ac-
curacy of the supervised ML approach, we get an
accuracy of .46 for tf-idf based features and .53 for
SBERT features. However, the overall accuracy
is misleading. Figure 3 shows the distribution of
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Figure 3: Distribution of argument classes in the gold
standard (left), and in the outcome of the clustering and
machine learning experiments.

classes in the gold standard (leftmost bar) and in
the two ML setups (two rightmost bars). We see
that with SBERT features, the algorithm never as-
signs sentences to the Conclusion or Neutral class
and hardly any to Introduction. With tf-idf fea-
tures, almost 60% of the sentences are assigned to
the Contra class, which does not reflect the distri-
bution in the gold standard at all.

For comparison, the four bars in the middle
show the distribution resulting from the unsuper-
vised clustering with gold centroids. We assigned
the labels to the clusters by propagating the major-
ity label of the annotated sentences to the whole
cluster.4 We see that their distributions are much
closer to the gold standard but underestimate the
number of Irrelevant arguments and overestimate
the number of Conclusion sentences.

5 Discussion and Implications for
Practice

Our experiments clearly show that fine-grained ar-
gument distinction is rather hard to perform – both
with unsupervised clustering and supervised ma-
chine learning with rather limited training data
(about 200 sentences – probably still more than
one could expect in a natural classroom situation).

In an ideal teaching scenario, all sentences from
a set of student essays would be clustered auto-
matically, without manual annotation effort. In
our study, we used k-means as clustering algo-
rithm, and found that cluster assignment based on

4Such a procedure was not feasible in the fine-grained set-
ting due to the large number of classes.
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random seeds works as well as explicitly setting
gold centroids, which implies that no manual in-
tervention would be required at this step. How-
ever, for k-means it is required to set the expected
number of outcome clusters. This, in turn, re-
quires that the number of different arguments that
can occur is known. Our approach from Experi-
ment 2, i.e. merging the arguments into six broad
meta-classes, would overcome this issue in that
these classes do not depend on the essay topic.
We found that reducing the number of classes also
improves the performance. However, highlight-
ing these classes in an essay would convey infor-
mation about argumentation structure rather than
about the content of the argumentation.

6 Conclusion and Outlook

We presented a pilot study for the automatic iden-
tification of similar arguments in students’ EFL es-
says. In an annotation study, we found that human
annotators are able to assign sentences to a set of
reference arguments with a rather high agreement
of κ > .70. Our machine learning experiments
showed that for both supervised ML and unsuper-
vised clustering the performance for distinguish-
ing between a set of 26 different arguments was
rather poor. In a second set of experiments based
on broader argument classes, a better performance
could be achieved at the cost of losing informa-
tion about essay content. Our experiments were
based on essays from a single prompt only. In
future work, we want to extend both the manual
annotation study as well as the ML experiments
to a larger set of essays from different topics and
prompts.
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Abstract

DaLAJ-GED is a dataset for linguistic accept-
ability judgments for Swedish, covering five
head classes: lexical, morphological, syntacti-
cal, orthographical and punctuation. DaLAJ-
GED is an extension of DaLAJ.v1 dataset
(Volodina et al., 2021a,b). Both DaLAJ
datasets are based on the SweLL-gold corpus
(Volodina et al., 2019) and its correction anno-
tation categories.

DaLAJ-GED presented here contains 44,654
sentences, distributed (almost) equally be-
tween correct and incorrect ones and is primar-
ily aimed at linguistic acceptability judgment
task, but can also be used for other tasks re-
lated to grammatical error detection (GED) on
a sentence level. DaLAJ-GED is included into
the Swedish SuperLim 2.0 collection,1 an ex-
tension of SuperLim (Adesam et al., 2020), a
benchmark for Natural Language Understand-
ing (NLU) tasks for Swedish.

This paper gives a concise overview of the
dataset and presents a few benchmark results
for the task of linguistic acceptability, i.e. bi-
nary classification of sentences as either cor-
rect or incorrect.

1 Introduction

The DaLAJ dataset has been inspired by the En-
glish CoLA dataset (Warstadt et al., 2019) and,
like the CoLA dataset, is primarily aimed at lin-
guistic acceptability judgments as a way to check
the ability of models to distinguish correct lan-
guage from incorrect. Other members of the
CoLA-family are represented by, among others,

This work is licensed under a Creative Commons
Attribution 4.0 International Licence. Licence details:
http://creativecommons.org/licenses/by/4.0/.

1https://spraakbanken.gu.se/resurser/superlim

RuCoLA for Russian (Mikhailov et al., 2022), No-
CoLA for Norwegian (Samuel and Jentoft, 2023),
ItaCoLA for Italian (Trotta et al., 2021), CLiMP
for Chinese (Xiang et al., 2021) and a few others.
Unlike most of the CoLA datasets that contain ar-
tificially constructed incorrect sentences, DaLAJ
is based on originally written learner essays and
learner errors in SweLL-gold corpus (Volodina
et al., 2019). The DaLAJ approach as a way to cre-
ate datasets for linguistic acceptability judgments
has been introduced in Volodina et al. (2021a). A
follow-up on this approach is presented in Samuel
and Jentoft (2023) for Norwegian based on the
ASK corpus (Tenfjord et al., 2006).

The Swedish DaLAJ – Dataset for Linguistic
Acceptability Judgments – is a part of SuperLim,
the Swedish equivalent of the English SuperGLUE
(Wang et al., 2019) benchmark for NLU tasks.

2 Dataset description

The DaLAJ-GED dataset contains 44,654 sen-
tences, of which 22,539 are incorrect sentences
from the SweLL-gold corpus (Volodina et al.,
2019) and 22,115 are correct ones from both
SweLL-gold and Coctaill (Volodina et al., 2014)
corpora ( Table 1).

Split Correct Incorr. Total Total
sent sent sent tokens

Train 17,472 18,109 35,581 603,625
Dev 2,424 2,278 4,702 77,251
Test 2,219 2,152 4,371 72,349

Total 22,115 22,539 44,654 753,225

Table 1: Sentence and token counts in DaLAJ-GED

Elena Volodina, Yousuf Ali Mohammed, Aleksandrs Berdicevskis, Gerlof Bouma and Joey Öhman. DaLAJ-GED - a
dataset for Grammatical Error Detection tasks on Swedish. Proceedings of the 12th Workshop on Natural Language
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Figure 1: Sample of a DaLAJ-GED sentence in the Huggingface repository for SuperLim.
Literal translation: ‘Are they really most important [thing] in the life?’. Expected: Är de verkligen det viktigaste i
livet? ‘Are they really the most important [thing] in life?’

Column Explanation/values Example

Sentence Är de verkligen
viktigaste i
livet?

Label correct or incorrect incorrect

Error span: start character index, as counted from 0 in the sentence 16

Error span: stop character index, as counted from 0 in the sen-
tence; half-open range

16 (in this case, the range
[16, 16] denotes an empty
string)

Confusion pair:
incorrect span

string representing the error token(s) or empty

Confusion pair:
correction

string representing the correct version det

Error label one or more error labels describing the same er-
ror segment. Values: Punctuation, Orthography,
Lexical, Morphology, Syntax)

M

Education level Nybörjare, Fortsättning , Avancerad
(‘Beginner’, ‘Intermediate’, ‘Advanced’)

Fortsättning

L1 mother tongue(s), full names in Swedish Polska (‘Polish’)

Data source DaLAJ/SweLL or Coctaill DaLAJ/SweLL gold

Table 2: DaLAJ-GED columns using the example from Figure 1

Each learner-written sentence is associated with
the writer’s mother tongue(s) and information
about the level of the course at which the essay
was written. Perhaps unsurprisingly, the num-

ber of fully correct sentences in the learner essays
is lower than the number of sentences that con-
tain some mistake. To compensate for this imbal-
ance, we added correct sentences from the Coc-
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Figure 2: A mock-up translation of an original SweLL-gold sentence. Note the one-to-many (1-to-5) relation
between the number of sentences in the original (the top row) and the number of sentences in the target version
(the second row). Label P-Sent indicates a punctuation correction leading to a sentence split or merge.

taill corpus of coursebooks aimed at second lan-
guage learners of Swedish (Volodina et al., 2014),
keeping the same distribution over beginner-
intermediate-advanced levels as among the incor-
rect sentences. For that, CEFR labels (CoE, 2001)
used in Coctaill, have been grouped into (approxi-
mate) levels:

• beginner: A1-A2 levels;

• intermediate: B1-B2 levels;

• advanced: C1 level (C2 missing in Coctaill).

This version of DaLAJ is an official improved
variant of the previously tested experimental ver-
sion presented in Klezl et al. (2022).

DaLAJ-GED is distributed as part of Super-
lim 2.02 in a jsonl format (primarily), but

2https://github.com/spraakbanken/SuperLim-2

is also available in tab-separated tsv format.
See Figure 1 and Table 2 for a description of
items / columns in the jsonl / tsv representa-
tions. The example sentence Är de verkligen vik-
tigaste i livet? can be literally translated as ‘Are
they really most important [thing] in life?’ and is
missing an obligarory definite article (determiner)
det. A correct Swedish counterpart would be Är
de verkligen det viktigaste i livet? ‘Are they really
the most important [thing] in life?’). The incorrect
token is thus an empty string (i.e. the correct token
det is omitted).

2.1 Source corpora

The SweLL-gold corpus (Volodina et al., 2019),
used as a source of incorrect sentences, is an error-
annotated corpus of learner Swedish. It contains
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Current Replacement suggestion

A-,B-,C-,D- geoplats Fafjällen, Undberget, Baraön, Lokomitt
A-,B-,C-,D- hemland Brasil, Spanien, Irak, Kina
A-,B-,C-,D- institution Volvodrömmen, Linsbiblioteket, Forkecentralen, Bungavård
A-,B-,C-,D- land Danmark, Mongoliet, Sudan, Peru
A-,B-,C-,D- plats Burocentrum, Andeplats, Storetorg, Bungafors
A-,B-,C-,D- skola Buroskola, Andeskola, Storeskola, Bungahjulet
A-,B-,C-,D- region Sydlunda, Undered, Hanskim, Bungalarna
A-,B-,C-,D- stad Oslo, Paris, Bagdad, Caracas
A-,B-,C-,D- svensk-stad Sydden, Norrebock, Rosaborg, Ögglestad
A-,B-,C-,D- linjen buss

Table 3: Pseudonymized strings and suggestion for their replacement

502 essays written by adult learners of Swedish
at different levels of proficiency (beginner, inter-
mediate, advanced) and representing 81 unique
mother tongues in 117 unique combinations of 1-
4 languages. The essays represent different topics
and genres, some examples being ”Describe your
lodging”, ”My first love”, ”Discuss marriage and
other lifestyles”, book and film reviews, etc.3 All
essays have been first pseudonymized, then rewrit-
ten to represent correct language (i.e normalized)
and finally differences between the original and
normalized versions were annotated with correc-
tion labels (aka error labels).

The COCTAILL corpus (Volodina et al.,
2014), used as a source of correct sentences for
DaLAJ-GED, is a corpus of textbooks used for
teaching Swedish to adult second language learn-
ers. Each chapter in each textbook is annotated
with CEFR labels (A1, A2, B1, B2, C1). The
labels are projected to all texts used in each par-
ticular chapter, and subsequently to all sentences
used in those texts. Texts represent various top-
ics and various genres, including narratives, dia-
logues, fact texts, instructions, etc.

2.2 Preparation steps

For DaLAJ, only 1-to-1 mappings between origi-
nal and corrected sentences in SweLL-gold (Volo-
dina et al., 2019) have been used, i.e. where seg-
mentation at the sentence level was unambiguos.
Cases like the one mocked in Figure 2 were ex-
cluded from DaLAJ. Sentences containing labels
X (unintelligible string) and Unid (unidentified

3A summary of corpus characteristics is provided in the
metadata file: https://spraakbanken.github.io
/swell-release-v1/Metadata-SweLL

type of correction) were also excluded. Note that
the sentences are presented in random order to
prevent the possibility to restore original essays
– which is a prerequisite for sharing the dataset
openly.

To generate several one-error DaLAJ sentences
from multi-error original SweLL sentences, we
started from the normalized/corrected sentences
and projected one error from the original sentences
at a time. This means that every incorrect sen-
tence taken from SweLL occurs as many times in
DaLAJ as the number of errors it contains. Some-
times, the same token/segment could be described
by a cluster of error tags, which were then pro-
jected as a group to the single error segment, e.g.
Jag i Stockholm borr (’I in Stockholm leave’),
where leave (correct version ’live’) is both mis-
spelled (label O) and has word order problem with
the placement of a finite verb (label S-FinV). All
resulting incorrect sentences therefore have ex-
actly one error segment with one or more labels
describing that error segment. As such, DaLAJ
sentences are neither original, nor artificial, and
are best described as hybrid ones.

In a post-processing step, we paid special at-
tention to a class of errors called consistency cor-
rections in the SweLL-gold annotation (label: C).
This label was assigned when a correction was
a follow-up of another correction. For example,
when a sentence-initial mistake I slutligen ‘In fi-
nally’ is corrected to Slutligen ‘Finally’, the capi-
talization of Slutligen is in a sense a consequence
of the correction of the erroneous preposition, and
therefore it is marked as a consistency correction.
In out-of-context sentences the C category is not
self-explanatory. Therefore, we excluded in a few
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cases such sentences and replaced the C label with
a label that describes the error more precisely in
others. In case of slutligen → Slutligen, this is the
label O-Cap (orthographical correction of capital-
ization).

Due to anonymization of the learner essays
in SweLL, the dataset contains pseudonyms of
the form D-stad ‘D-city’, A-linje ‘A-line’, etc.
We suspect them to be disruptive for automatic
tools. Before using the dataset for training and
testing, we suggest, therefore, replacing those
pseudonyms with more realistic-looking (some-
times nonsense) names like the ones suggested in
Table 3.

The incorrect DaLAJ sentences are split into
training, development and test sets, the proportion
being approximately 80:10:10 of the whole num-
ber of sentences. The development and test sets
were manually proofread to ensure the quality.

Finally, the incorrect sentences were comple-
mented with correct ones from the COCTAILL
corpus.

3 Tasks

DaLAJ-GED is prepared for several sentence-level
tasks:

Linguistic Acceptability Judgments is the pri-
mary task (and the only official SuperLim task).
Given a sentence, detect whether it contains any
errors (incorrect) or not (correct), i.e. the
task is to perform binary classification on a sen-
tence level.

Grammatical Error Detection (GED) Given a
sentence, detect which token(s) need to be cor-
rected, and provide their start-and-end indices,
e.g., the omission of det with indices [16-16)
in the example in Table 2.

Multi-Class GED Given a sentence, classify
what types of errors need to be corrected, by head
classes (punctuation, orthography, lexical, mor-
phology, syntax [POLMS]), e.g.
[16,16)→ M (Morphological error).

Grammatical Error Correction (GEC) Given
the incorrect sentence, rewrite it to obtain a correct
version, e.g.
Är de verkligen viktigaste i livet?

→
Är de verkligen det viktigaste i livet?

4 Acceptability judgments – official
SuperLim benchmark

The SuperLim benchmark contains various
datasets to evaluate the capability of language
models. In this paper we present results for the
task of acceptability judgments on the DaLAJ-
GED dataset that were produced in the context of
the SuperLim projekt.

Table 4 shows the results of the initial baseline
models on DaLAJ-GED for the task of linguistic
acceptability judgments. The horizontal line sep-
arates transformer models (Vaswani et al., 2017;
Acheampong et al., 2021) from the more tradi-
tional machine learning systems and random base-
lines.

SuperLim by default uses Krippendorff’s α co-
efficient (Krippendorff, 2004) as its metric for
summarizing system performance on the different
tasks. Krippendorff’s α is a measure of agreement
where 1 indicates a perfect score and 0 indicates
that the system’s predictions are at chance level.
Clearly negative scores indicate systematic mis-
predictions. Krippendorff’s α is given in Table 4
together with the standard accuracy metric for rea-
sons of familiarity.

Part of the SuperLim benchmark is a leader-
board website,4 which makes it possible to com-
pare models and opens for an asynchronous com-
petition focused on Swedish. The results for the
baseline models presented here applied to a range
of SuperLim tasks are included on this leader-
board. The website also contains a more detailed
explanation for the choice of Krippendorff’s α.

Each transformer model was fine-tuned as
demonstrated in Devlin et al. (2019) on the train-
ing split with a binary classification learning ob-
jective, using Huggingface with early stopping
and a coarse-grained hyperparameter tuning with
respect to the development split. The hyperparam-
eter space was inspired by RoBERTa (Liu et al.,
2019), see Table 5, with the remaining hyper-
parameters left as the Huggingface default val-
ues. The results indicate that larger models typi-
cally perform better and that Swedish pre-trained
models perform better than multilingual variants.
Moreover, the transformer models significantly
outperform traditional systems. A comparison of
the α and Accuracy metrics shows that they mostly
demonstrate the same picture here, albeit on a dif-
ferent scale. However, for the two worst perform-

4www.example.org (to be supplied)
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Model ααα Acc

KBLab/megatron-bert-large-swedish-cased-165k 0.753 0.877
KBLab/bert-base-swedish-cased-new 0.753 0.876
AI-Nordics/bert-large-swedish-cased 0.745 0.872
KB/bert-base-swedish-cased 0.740 0.870
xlm-roberta-large 0.738 0.869
KBLab/megatron-bert-base-swedish-cased-600k 0.718 0.860
xlm-roberta-base 0.701 0.851
NbAiLab/nb-bert-base 0.644 0.822

SVM 0.518 0.758
Decision Tree 0.269 0.636
Random 0.007 0.503
Random Forest -0.312 0.498
Majority label (incorrect) -0.340 0.492

Table 4: SuperLim results for a selection of models on DaLAJ-GED task, reported in Krippendorff’s alpha coef-
ficient (Superlim’s default measure) and accuracy.

Hyperparameter Value(s)

Learning Rate {1e-5, 2e-5, 3e-5, 4e-5}
Batch Size {16, 32}
Warmup Ratio 0.06
Weight Decay 0.1
Max Epochs 10

Table 5: Hyperparameter configuration for fine-tuning
transformer models

ing systems, we see very low α-scores, whereas
Accuracy hovers around the .5 mark. This is be-
cause these models grossly overpredict one of the
labels, a characteristic that is punished by α.

The results suggest that the dataset is of a size
and quality that is sufficient for neural models. An
interesting further comparison could be with hu-
man baselines, which is a potential future step.

Replicability Each pre-trained language model
is publicly available on Huggingface, with the
model names as presented here. The traditional
baselines are implemented using the scikit-learn
Python library (Pedregosa et al., 2011). Full
source code and instructions for reproducing the
results are made publicly available on GitHub.5

Pre-trained language models Below we pro-
vide additional details and references to a few
of the most prominent language models in the
results. In the official SuperLim benchmark,

5https://github.com/JoeyOhman/SuperLim-2-Testing

the best-performing model in terms of the aver-
age score is KBLab/megatron-bert-large-swedish-
cased-165k.6 This 340M parameter model is
trained and published by KBLab7 and was trained
for 165K steps using a batch size of 8K. It was
trained on about 70GB of textual data, consist-
ing mostly of OSCAR (Suárez et al., 2019; Or-
tiz Suárez et al., 2020) and Swedish newspapers
curated by the National Library of Sweden.

The second best model, AI-Nordics/bert-large-
swedish-cased8 is of the same size and trained for
600K steps with a batch size of 512. The train-
ing data is composed of various sources of internet
data and sums to about 85GB.

Among the smaller pre-trained language mod-
els, KB/bert-base-swedish-cased9 (Malmsten
et al., 2020) is the greatest performing model,
trained on 15-20GB text from a mix of data
deposited at the National Library of Sweden and
internet data. The model’s pre-training consisted
of two steps as presented in the original BERT
article. First, it was trained 1M steps with a
sequence length of 128 and batch size of 512, and
then 100K steps with a sequence length of 512
and batch size of 128.

6https://huggingface.co/KBLab/megatron-bert-large-
swedish-cased-165k

7https://huggingface.co/KBLab
8https://huggingface.co/AI-Nordics/bert-large-swedish-

cased
9https://huggingface.co/KB/bert-base-swedish-cased
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5 Concluding remarks

The contributions of the DaLAJ-GED are twofold.
First, efforts like DaLAJ, SuperLim and similar
stimulate development of models and approaches
to languages other than English, correcting the
existing dominance of English in the NLP field
(Søgaard, 2022). We expect an increased interest
to Swedish NLP following the release of DaLAJ-
GED and other SuperLim datasets. The dataset
can also be used by researchers who do not have
any specific interest in Swedish, but need a high-
quality benchmark in order to evaluate transfer
learning from another language (e.g. English).

Second, DaLAJ-GED supports the area of au-
tomatic method development for Swedish learner
language, since it offers not only the data for
testing models’ general ability to differentiate be-
tween correct and incorrect language, but – ad-
ditionally – offers tasks within second language
learning domain for sentence-level grammatical
error detection (GED), error classification and er-
ror correction (GEC).

DaLAJ-GED complements two other recently
released SweLL-gold derivative datasets relevant
for second language domain, namely, Swedish
MultiGED dataset for error detection on a token
level10 (Volodina et al., 2023) and Swedish Mu-
ClaGED dataset for error classification on a to-
ken level (Moner and Volodina, 2022). Next steps
would be to prepare datasets for feedback gener-
ation and for error correction in a larger context
than a single sentence as well as in authentic con-
text.
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Elena Volodina, Ildikó Pilán, Stian Rødven Eide, and
Hannes Heidarsson. 2014. You get what you anno-
tate: a pedagogically annotated corpus of course-
books for Swedish as a Second Language. In
Proceedings of the third workshop on NLP for
computer-assisted language learning, pages 128–
144.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language
understanding systems. Advances in neural infor-
mation processing systems, 32.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judg-
ments. Transactions of the Association for Compu-
tational Linguistics, 7:625–641.

Beilei Xiang, Changbing Yang, Yu Li, Alex Warstadt,
and Katharina Kann. 2021. CLiMP: A bench-
mark for Chinese language model evaluation. arXiv
preprint arXiv:2101.11131.

Proceedings of the 12th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2023)

101



Automated Assessment of Task Completion in Spontaneous Speech for
Finnish and Finland Swedish Language Learners

Ekaterina Voskoboinik, Yaroslav Getman, Ragheb Al-Ghezi,
Mikko Kurimo, Tamás Grósz
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Abstract

This study investigates the feasibility of auto-
mated content scoring for spontaneous spoken
responses from Finnish and Finland Swedish
learners. Our experiments reveal that pre-
trained Transformer-based models outperform
the tf-idf baseline in automatic task comple-
tion grading. Furthermore, we demonstrate
that pre-fine-tuning these models to differen-
tiate between responses to distinct prompts
enhances subsequent task completion fine-
tuning. We observe that task completion clas-
sifiers exhibit accelerated learning and pro-
duce predictions with stronger correlations to
human grading when accounting for task dif-
ferences. Additionally, we find that employing
similarity learning, as opposed to conventional
classification fine-tuning, further improves the
results. It is especially helpful to learn not just
the similarities between the responses in one
score bin, but the exact differences between
the average human scores responses received.
Lastly, we demonstrate that models applied to
both manual and ASR transcripts yield com-
parable correlations to human grading.

1 Introduction

The assessment of content is an important dimen-
sion of oral proficiency evaluation. It comple-
ments other areas like fluency, pronunciation, and
the range and accuracy of grammar and vocabu-
lary (Brown et al., 2005). This work examines
the automatic evaluation of content by scoring task
completion. A successful response should demon-
strate both comprehension of the prompt and mas-
tery in speech production, making task comple-
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tion an important component of oral proficiency
assessment.

The research in automated scoring of non-native
English speech has shown that it is possible to au-
tomatically evaluate the content relevance of a re-
sponse (Yoon and Lee, 2019). It was demonstrated
that fine-tuning Transformer-based models is es-
pecially beneficial for this task (Wang et al., 2020).

The present study aims to evaluate the poten-
tial of BERT models (Devlin et al., 2019) for con-
tent scoring of non-native Finnish and Finland
Swedish spontaneous speech. Additionally, we
explore the effectiveness of fine-tuning BERT for
task classification to enhance performance in sub-
sequent fine-tuning for task completion. Given
the multi-modal nature of our prompts, we find
it challenging to map them to the same vector
space as our responses for prompt awareness as
in (Wang et al., 2021b). Consequently, we inte-
grate task classification to inform the model about
different tasks. Our choice to experiment with
fine-tuning for an intermediate task is based on
previous findings, which showcased improved ro-
bustness and effectiveness in the resulting target
task model, particularly in low-resource scenarios
(Phang et al., 2019). Our experiments reveal that
this approach accelerates learning for task com-
pletion evaluation and leads to better correlations
with human scores.

Due to the limited size and imbalance of our
datasets, we further explore the use of similarity
learning. We fine-tune BERT in a Siamese manner
in two ways: first, to place responses that belong to
the same task completion score bin closer together
and those that belong to different score bins further
away; second, to learn to position responses pro-
portionately to the distance of their average task
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completion scores. Our results indicate that treat-
ing response scores as continuous numbers instead
of bin categories leads to better correlation with
human scores.

2 Related Work

The progress of research in content scoring of
spontaneous non-native speech was initially hin-
dered by the quality of ASR systems. Early ap-
proaches (Xie et al., 2012; Chen, 2013) explored
techniques developed for automatic essay scor-
ing. Typically, a vector space model like tf-idf,
LSA (Landauer et al., 1998), or PMI (Turney,
2001) would be trained on a set of pre-graded
responses for each prompt. The tasks would be
represented by vectors for every score category.
The to-be-graded response is then mapped to the
same vector space and compared to the score vec-
tors. The similarities between response and score
vectors were used as content features for holis-
tic grade prediction. However, this approach had
several drawbacks. It relied on a large number
of pre-graded responses to build a reliable vec-
tor space and did not take word relations into ac-
count. It was shown in (Loukina et al., 2014) that
for tasks like giving a summary of a prompt mate-
rial, ROUGE (Lin, 2004) would outperform tf-idf
similarity and needed fewer reference responses.
And (Evanini et al., 2013) demonstrated that com-
paring responses and prompts is a viable option
even though it was slightly outperformed by com-
parison to pre-graded responses.

The exploration of more context-aware vector
representations, such as doc2vec, demonstrated a
higher correlation to holistic scores compared to
tf-idf based approaches (Tao et al., 2016). The
work in (Yoon et al., 2018) continued the research
started in (Evanini et al., 2013) by comparing tf-idf
and averaged word2vec embeddings for comput-
ing similarities between responses and prompts.
The pre-trained embeddings proved more advan-
tageous than tf-idf.

More recently, it was demonstrated that neu-
ral and pre-trained approaches are highly effective
in scoring content relevancy. In one study (Qian
et al., 2018), the authors used an attention LSTM-
RNN model to directly score the proficiency level
of a response based on its transcript. They found
that conditioning the model on task prompts led
to even better performance. Similarly, the authors
of (Yoon and Lee, 2019) compared a Siamese

CNN model to a tf-idf based one and found that
the former outperformed the latter when predict-
ing holistic proficiency scores based on the sim-
ilarity between responses and a set of key points
generated by experts for each task. Taking things
further, (Wang et al., 2020) trained multi-task
Transformer-based models that were able to de-
tect missing key points or the spans of present key
points and predict how well each present key point
was communicated in a response. These mod-
els outperformed human agreement on these tasks.
The success of Transformer-based models was fur-
ther supported by experiments in (Wang et al.,
2021b), which showed that fine-tuning BERT and
XLNet for holistic proficiency scoring using only
ASR response transcripts already surpassed hu-
man agreement. Additionally, augmenting the
models with prompt awareness led to even better
results.

Inspired by these findings, this study explores
the capabilities of pre-trained BERT models for
scoring content appropriateness of Swedish and
Finnish learners’ oral responses.

3 Data

This study investigates content relevancy scor-
ing using two corpora of non-native spontaneous
speech: Finnish and Finland Swedish (Al-Ghezi
et al., 2021, 2023). The Swedish data was
collected from upper secondary school students,
while the Finnish data contains responses from
both upper secondary school students and univer-
sity students. The datasets include responses to
semi-structured and open-ended tasks, such as re-
acting to a text or a picture prompt or simulating a
phone call by answering pre-recorded questions.

Originally, the recordings were rated by humans
across the following dimensions: holistic level,
pronunciation, fluency, accuracy, range, and task
completion (Al-Ghezi et al., 2023). The raters
were asked to either assign a score for each dimen-
sion or mark a dimension as ungradable (zero).
In our experiments, we include only the record-
ings that received non-zero scores from all raters
across all criteria. Additionally, one task from the
Swedish dataset was excluded, as it contained only
two responses.

This work is focused on automatically assess-
ing task completion (TC) criterion as a measure
of content relevancy. Task completion was rated
on a scale of 1 to 3, where 1 indicates that the as-
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signment was answered only partially with many
significant gaps in the response, and 3 signifies
that the test-taker fulfilled the assignment excel-
lently with no significant gaps in the response.
The responses that received multiple human as-
sessments were assigned an average of those as-
sessments. We used binning to convert the aver-
age scores back to discrete classes. The range of
scores from 1 to 3 was divided into three equal in-
tervals, and each score was labeled based on the
interval it fell into. In this study, we explore both
continuous and binned scores. The data described
in this study will be published in The Language
Bank of Finland (FIN-CLARIN) 1.

To establish a reference for human agreement,
we compared the scores of all recordings assessed
by at least two raters. We report the Spearman cor-
relation coefficient and Quadratic Weighted Kappa
between two random raters in Table 1. The mea-
sures suggest a fair level of agreement. These
numbers indicate that assigning task completion
scores can be a challenging task for human raters.
The Swedish samples were evaluated by 18 human
raters, with 101 samples rated by one rater, 1358
samples rated by two raters, 42 samples rated by
three raters, and 39 recordings rated by five raters.
The Finnish recordings were rated by 25 raters,
with 302 samples rated by one person, 1790 sam-
ples rated by two people, and 24 samples rated by
three raters.

cor kappa
Swedish 0.372 0.377
Finnish 0.298 0.340

Table 1: Spearman correlation coefficient (cor) and
Quadratic Weighted Kappa (kappa) between two ran-
dom raters for Swedish and Finnish data.

Table 2 describes the overall statistics of the cor-
pora. However, these numbers vary from task to
task. For instance, the duration of responses is
highly task dependent. In the Swedish dataset,
the task that elicits the longest answers has re-
sponses averaging 26.4 seconds, while the task
with the shortest answers has responses averaging
about 4.2 seconds. In the Finnish dataset, the task
eliciting the shortest answers on average has re-
sponses of 3.2 tokens, and the task eliciting the
longest answers has an average response length of
91 tokens. The distribution of scores varies be-

1https://www.kielipankki.fi

Swedish Finnish
# of samples 1540 2112
# of students 178 308
# of tasks 21 25
avg. TC score 2 2.6
total duration (h) 5.6 14.1

# of samples per task
min. 30 6
max. 110 173
avg. 73.3 72.8

Response duration
min. (s) 1.1 2
max. (s) 30.7 91
avg. (s) 13 24

Response length (words)
min. 1 1
max. 49 228
avg. 9.4 31.6

Table 2: Dataset statistics.

tween the tasks as well. In the Swedish data, the
task with the highest-scored responses has an av-
erage score of 2.8, while the task with the lowest-
scored responses has an average score of 1.5. In
the Finnish data, the lowest average score for task
completion in a task is 2.1, and the highest average
score in a task is 2.9.

The distribution of task completion scores is
quite unbalanced. This problem is the most pro-
nounced for the Finnish dataset: the average task
completion score is 2.6, which indicates the preva-
lence of high-scoring responses. Moreover, there
are five tasks with no responses in the lowest score
bin. In total, 17 out of 29 tasks have less than 5%
of responses with the lowest score bin. The dis-
tribution of scores in the datasets can be found in
Table 3.

1 2 3
Swedish 517 368 655
Finnish 134 339 1639

Table 3: Score bin distributions of Swedish and Finnish
data.
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4 Methods

4.1 Baselines
First, we evaluate the ability of out-of-the-box
BERT and tf-idf-based vector spaces to represent
the differences between high and low-scoring re-
sponses. We will use their performance as our
baselines.

For training tf-idf models, we generated task
documents from all the responses to each prompt
and derived the inverse document frequency (idf)
from them. Each response in the dataset was then
mapped to a vector by weighing its word counts
(tf) by the idf. To obtain response representations
using BERT models, we applied mean pooling to
the outputs of the final layer, since (Reimers and
Gurevych, 2019) demonstrated that it produces
better representations than other pooling strate-
gies.

4.2 Task classification fine-tuning
In our first experiment, we fine-tuned the model
to classify the recordings according to the tasks
they were answering using Siamese fine-tuning.
We opted for this approach due to its efficiency,
as it enabled us to leverage the weights already
learned by the model rather than requiring it to
learn the weights for a classification head from
scratch. The goal of this fine-tuning stage is to
place the responses to the same prompt closer to
each other and further away from the responses to
other prompts. While we were not primarily in-
terested in the model’s performance for this prob-
lem, we focused on adjusting the final embed-
dings. We measured the changes in cosine dis-
tances between task centroids and in the proper-
ties of task clusters. To establish how well dif-
ferent categories of responses are represented in a
vector space we use the Calinski-Harabasz score
(Caliński and Harabasz, 1974). It measures the ra-
tio of between-cluster dispersion to within-cluster
dispersion. The score gets higher when data points
are close to each other within the same cluster and
are far from other clusters’ centroids. In other
words, the Calinski-Harabasz score measures the
separation of vector classes in a space. We would
like to have a high Calinski-Harabasz score when
measuring the distance between responses belong-
ing to different tasks.

We trained the models using positive and nega-
tive examples of responses to the same task. Each
response in our dataset was paired with one posi-

tive example and five negative examples. The pos-
itive example was randomly selected, while neg-
ative examples were chosen based on their level
of ”hardness” (closest responses from other tasks
were selected). Similarly to our BERT baseline,
we embed a response in a vector space using mean
pooling.

4.3 BERT with a classification head

To investigate the impact of pre-fine-tuning for
task classification on subsequent task completion
fine-tuning, we compared BERT models trained
for task completion before and after task classi-
fication fine-tuning. We employed a linear classi-
fication head preceded by dropout. The head re-
ceives a vector obtained by mean-pooling, as this
was the representation learned during task classi-
fication.

4.4 BERT Siamese

We further sought to experiment with similarity
learning as an alternative to classic fine-tuning
for our limited and imbalanced datasets, following
previous findings of its potential benefits (Schroff
et al., 2015). Our goal was to adjust the vector
space so it would place higher scored responses
further away from lower scored responses. For
these means, we experiment using both score bins
and average scores to learn similarities between
the responses.

To learn response similarity using score bins,
we generated pairs of samples from each response
within a task. A pair received a label of 1 if both
samples belonged to the same score bin and 0 if
they originated from different bins. To train us-
ing average grades, we assigned the desired cosine
distances in the range of 0-1 based on the differ-
ences between the samples’ scores. For instance,
a pair consisting of a sample with a score of 1 and
a sample with a score of 3 would be assigned a
cosine distance label of 1. On the other hand, a
pair with samples having scores of 1 and 2 would
receive a cosine distance label of 0.5.

5 Experiments and Results

5.1 Speech-to-text

For the experiments, we employed a 4-fold cross-
validation strategy to evaluate our models. In this
approach, each model was trained on three folds
and evaluated on the remaining fold. The folds
were designed by creating four non-overlapping
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student sets. Furthermore, we stratified the folds
by tasks and holistic levels, ensuring that every
task was represented in each split.

In this work, we used wav2vec 2.0 models
(Baevski et al., 2020) to produce ASR transcripts
for the responses. For L2 Finland Swedish, we
used a monolingual Swedish model that was pre-
trained on 11.5K hours of unlabeled speech from
the collections of the National Library of Swe-
den (Malmsten et al., 2022), such as local ra-
dio broadcasts and audiobooks, and fine-tuned on
the Common Voice (Ardila et al., 2020) and the
NST (Birkenes, 2020) corpora. For Finnish ASR
experiments, we used a multilingual model pre-
trained on the Uralic (Finnish, Estonian, and Hun-
garian) subset of the European parliamentary ses-
sion recordings collection called Voxpopuli (Wang
et al., 2021a) and fine-tuned on a 100-hour subset
of the Finnish colloquial speech dataset Lahjoita
Puhetta (Donate Speech) (Moisio et al., 2022).
The models were further fine-tuned on the tar-
get data with 4-fold cross-validation mentioned
above. After aggregating the test set outputs pro-
duced by each of the 4 sub-systems, the total word
and character error rates are 17.71% / 9.08% and
21.89% / 7.06% for the L2 Finland Swedish and
the L2 Finnish data, respectively (Al-Ghezi et al.,
2023).

5.2 Baselines

For tf-idf models, we utilized the TfidfVectorizer
from the scikit-learn Python package (Pedregosa
et al., 2011). As for BERT representations, we
used FinBERT2 trained by (Virtanen et al., 2019)
for the Finnish part of the data and a BERT model
trained by National Library of Sweden3 for the
Swedish part.

We evaluate the models using simple k-NN
classifiers, where a response is assigned a score
based on its similarity to reference vectors. We
compare two approaches for selecting these refer-
ence vectors: either using bin centroids (CTR) or
all historical responses to a task prompt (1-NN). In
the first approach, each score bin in a task is repre-
sented by the mean embedding of its responses.
A new response is then assigned a score based
on its closest score bin vector. In the second ap-
proach, a test response is compared to all prior re-
sponses given to a prompt and assigned the score

2https://hf.co/TurkuNLP/bert-base-finnish-cased-v1
3https://hf.co/KBLab/bert-base-swedish-cased-new

Human ASR
cor kappa cor kappa

Swedish
tf-idf CTR 0.381 0.360 0.392 0.373
tf-idf 1-NN 0.561 0.491 0.537 0.462
BERT CTR 0.451 0.439 0.445 0.431
BERT 1-NN 0.580 0.524 0.560 0.500

Finnish
tf-idf CTR 0.213 0.242 0.253 0.275
tf-idf 1-NN 0.170 0.196 0.199 0.220
BERT CTR 0.286 0.313 0.279 0.305
BERT 1-NN 0.259 0.232 0.277 0.248

Table 4: Spearman correlation coefficient (cor) and
Quadratic Weighted Kappa (kappa) of Baseline Mod-
els.

of the nearest one. Due to data imbalance, we
opted for only one nearest neighbor in this exper-
iment, as selecting more than one neighbor could
prevent our system from recognizing underrepre-
sented score intervals.

We assess performance by comparing the pre-
dicted scores with human scores using two met-
rics: the Spearman correlation coefficient between
average human scores and predicted scores, and
the Quadratic Weighted Kappa between binned
average human scores and binned machine scores.
The results can be found in Table 4. Here, we
see that BERT models outperformed tf-idf mod-
els for both Swedish and Finnish. The strategy of
assigning a score based on a single nearest neigh-
bor proved to be more effective for Swedish, but it
was less successful than using bin centroid vectors
for Finnish. Finally, models applied to ASR tran-
scripts demonstrated results comparable to those
of human transcripts, with the correlations to hu-
man scores being only marginally lower for the
best-performing approaches.

5.3 Task Classification

The models were trained with SentenceTrans-
formers Python package (Reimers and Gurevych,
2019), using Contrastive loss (Chopra et al., 2005)
with a margin of 0.5. To achieve vector spaces
with similar properties in order to keep the mod-
els comparable in the subsequent experiments, the
Swedish model was trained for 4 epochs, and the
Finnish model was trained for 5 epochs. Each fold
was trained with 50 warm-up steps for every new
epoch. We used a batch size of 16. The prop-
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BC distance Task cluster score
SWE 0.11 20
SWE ft 0.66 1676
FIN 0.18 58
FIN ft 0.66 1762

Table 5: Properties of out-of-the-box models vs the
models fine-tuned (ft) for task classification. We report
average cosine distances between bin centroids (BC)
and Calinski-Harabasz score (Task cluster score).

erties of the resulting vector spaces are described
in Table 5. The task cluster scores have signifi-
cantly improved from 20 to 1676 for Swedish, and
from 58 to 1762 for Finnish. The average cosine
distance between the task centroids also went up
from 0.11 to 0.66 for Swedish, and from 0.18 to
0.66 for Finnish.

5.4 Task completion with a classification
head

For this experiment, we either trained the models
described in the previous subsection or used the
models explored as BERT baselines. We then fine-
tuned the models with HuggingFace’s Transform-
ers library (Wolf et al., 2020), using dropout with
0.1 probability, a learning rate of 2e-5, and a batch
size of 4. For the models initialized with a base-
line BERT, we used 15 epochs for Swedish, and 9
epochs for Finnish. For the models that were pre-
trained with task classification, we used 3 epochs
for Swedish and 4 epochs for Finnish. Here and
in the next section the number of reported epochs
indicates the epoch after which the performance
stopped improving with more training. One can
notice that pre-fine-tuning results in fewer epochs
needed for further fine-tuning.

The results of fine-tuning BERT for task com-
pletion classification with (cls task) and with-
out (cls no task) task classification pre-fine-tuning
showed strong favor for task classification pre-
fine-tuning. The results can be found in Table 6.

5.5 Task completion Siamese
In this part, we continue to fine-tune the mod-
els trained on task classification problems. For
learning score bin similarity we have applied Con-
trastive loss with 0.5 margin. For learning dis-
tances between average task completion, mean
squared-error loss was employed as the objective
function. We used a batch size of 16 and 50 warm-
up steps for every fold in every new epoch. All

Human ASR
cor kappa cor kappa

Swedish
cls no task 0.530 0.507 0.507 0.486
cls task 0.603 0.584 0.601 0.583
S bins 0.656 0.617 0.658 0.611
S cosine 0.714 0.650 0.679 0.623

Finnish
cls no task 0.271 0.336 0.242 0.299
cls task 0.295 0.325 0.286 0.308
S bins 0.291 0.328 0.286 0.357
S cosine 0.390 0.365 0.368 0.354

Table 6: Results of task completion fine-tuning. cls
stands for BERT with classification head, task stands
for task classification pre-finetuning, S is short for
Siamese.

models were trained for 2 epochs. For task com-
pletion scoring, we used 1-NN approach.

In Table 6, we demonstrate that employing sim-
ilarity learning further enhances the results of task
completion scoring. It is particularly advanta-
geous to organize the space not only by score bins
of the responses but also by the distance propor-
tional to the difference in task completion scores
between the responses. Again, while the correla-
tion to human scores is higher when using manual
transcripts for the best-performing approach, the
results for ASR transcripts are close.

For a more comprehensive understanding of
the technical aspects involved in our experiments,
we encourage interested readers to examine our
scripts4.

6 Discussion

In this work, we explore different approaches to
content scoring of spontaneous spoken responses
of non-native Finnish and Finland Swedish learn-
ers.

As was expected, pre-trained BERT models
have shown to be more efficient for our data than
tf-idf baseline since they already contain language
knowledge. We demonstrate that training BERT
models to separate responses to different tasks be-
fore fine-tuning directly for task completion brings
similar benefits to prompt awareness. The models
subsequently achieve higher correlations to human
scores while requiring fewer training epochs. This
improvement can likely be attributed to several

4https://github.com/katildakat/NLP4CALL TC
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factors. Firstly, in order to accurately score task
completion, a model must comprehend the typical
responses associated with a specific prompt. Sec-
ondly, the data utilized for task classification fine-
tuning is the same data subsequently employed
for task completion fine-tuning, thereby facilitat-
ing domain adaptation.

We have also shown that similarity learning was
more helpful than fine-tuning with the classifica-
tion head. We believe that it happens because we
can translate our data into a larger labeled set this
way. It was especially beneficial not to limit the
similarities between responses to their score bins,
but to organize the space in accordance with how
different the scores are.

Additionally, we show the applicability of our
approach not only for manual transcripts but for
ASR transcripts as well. Although the results of
ASR transcripts are generally slightly behind the
manual transcripts, they are not far off. This is an
important finding since using human transcripts is
not feasible in real-life applications.

Finally, we should address the differences in
performance between the Swedish and Finnish
models. The predictions of Swedish models cor-
related better with human scores than those of
Finnish models. We believe that there might be
several reasons for this behavior. The first one is
that inter-human agreement between the raters was
lower for Finnish responses than for Swedish as
reported in Table 1. The second reason is that the
Finnish corpus is considerably more imbalanced
than the Swedish one with most of the scores re-
ceiving the highest score. For many tasks, it is
impossible or almost impossible to get a score of
1, so the models, in turn, favor higher score bins.

7 Conclusions

In conclusion, this study demonstrates the effec-
tiveness of pre-trained Transformer-based models
in automated content scoring for spontaneous spo-
ken responses from non-native Finnish and Fin-
land Swedish learners. Our findings show that
pre-fine-tuning these models to differentiate be-
tween responses to distinct prompts significantly
improves task completion fine-tuning, resulting in
faster learning and stronger correlations to human
grading. Additionally, we discovered that similar-
ity learning, compared to traditional classification
fine-tuning, further enhances the results. It is es-
pecially useful to learn not only the similarities

within responses of the same score bin but also
the exact differences between the average human
scores received.

Importantly, our work highlights that the per-
formance of models applied to both manual tran-
scripts and ASR transcripts is comparable, sug-
gesting the feasibility of using this approach in
real-life scenarios. The ability to obtain similar
results with ASR transcripts enables the poten-
tial deployment of automated scoring systems in
various educational contexts without the need for
manual transcription, increasing efficiency and re-
ducing costs.

For future work, we would like to explore the
applicability of similarity learning in text and au-
dio Transformers for automatic scoring of other
dimensions in our assessments.
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