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Abstract

This paper presents two neural models for
multilingual grammatical error detection and
their results in the MultiGED-2023 shared
task. The first model uses a simple, purely su-
pervised character-based approach. The sec-
ond model uses a large language model which
is pretrained on 100 different languages and
fine-tuned on the provided datasets of the
shared task. Despite simple approaches, the
two systems achieved promising results. One
system has the second best F-score; the other
is in the top four of participating systems.

1 Introduction

Grammatical Error Detection (GED) is the task
of detecting different kinds of errors in text such
as spelling, punctuation, grammatical, and word
choice errors. It is one of the key components in
the grammatical error correction (GEC) commu-
nity. This paper concerns with the development of
different methods for subtoken representation and
their evaluation on standard benchmarks for mul-
tiple languages. Our work is inspired by the recent
shared task MultiGED-2023. The aim of this task
is to detect tokens in need of correction across five
different languages, labeling them as either cor-
rect (“c”) or incorrect (“i”), i.e. performing binary
classification at the token level.

Recent GED methods make use of neural se-
quence labeling models, either recurrent neu-
ral networks or transformers. The first exper-
iments using convolutional neural network and
long short-term memory networks (LSTM) mod-
els for GED was proposed in 2016 (Rei and Yan-
nakoudakis, 2016). Later, a bidirectional, atten-
tional LSTM was used to jointly learn token-level
and sentence-level representations and combine
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them so as to detect grammatically incorrect sen-
tences and to identify the location of the error to-
kens at the same time (Rei and Søgaard, 2019).
The bidirectional LSTM model was also used
together with grammaticality-specific word em-
beddings to improve GED performance (Kaneko
et al., 2017). A bidirectional LSTM model was
trained on synthetic data generated by an atten-
tional sequence-to-sequence model to push GED
score (Kasewa et al., 2018). Best-performing GED
systems employ transformer block-based model
for token-level labeling. A pretrained BERT
model has been fine-tuned for GED and shown
its superior performance in (Kaneko and Komachi,
2019). The BERT model has also been shown sig-
nificant improvement over LSTM models in both
GED and GEC (Liu et al., 2021). The state-of-
the-art GED method uses a multi-class detection
method (Yuan et al., 2021).

In this work, we also employ state-of-the-art
sequence labeling methods, which are based on
LSTM or BERT. In contrast to previous work,
we focus on different representations of tokens at
subtoken levels. Our best-performing system can
process multiple languages using a single model.

2 Methods

We use two different token representations, one at
the character level, and one at the subtoken level.

2.1 Character-based Representation

In this representation, the j-th input token of a sen-
tence is represented by the concatenation of three
vectors (bj ,mj , ej) corresponding to its charac-
ters. More precisely, the token is represented by
vector xj = (bj ,mj , ej) where the first vector bj
and the third vectors ej represent the first and last
character of the token respectively. The second
vector mj represents a bag of characters of the
middle subtoken without the initial and final posi-
tions.
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Figure 1: Our character-based model

The dotted frame in Figure 1 depicts this rep-
resentation. For example, the token “Last” is rep-
resented as a concatenation of the following vec-
tors: (1) an one-hot vector for character L; (2) an
one-hot vector for character t, and (3) a bag-of-
character multihot vector for the internal charac-
ters a, s. Thus, each token is represented by a vec-
tor of size 3V where V is the size of the alphabet.
The label yj is predicted by a softmax layer:

yj =
exp(Wj · hj)∑
k exp(Wk · hj)

.

This representation is inspired by a semi-
character word recognition method which was
proposed by Sakaguchi et al. (2017). It was
demonstrated that this method is significantly
more robust in word spelling correction compared
to character-based convolutional networks.

2.2 Subtoken-based Representation
Recent language processing systems have used un-
supervised text tokenizer and detokenizer so as
to make a purely end-to-end system that does
not depend on language-specific pre- and post-
processing. SentencePiece is a method which im-
plements subword units, e.g., byte-pair-encoding
– BPE (Sennrich et al., 2016) and unigram lan-
guage model (Kudo, 2018) with the extension
of direct training from raw sentences. Using this
method, the vocabulary size is predetermined prior
to the neural encoder training. Our system also
uses subtoken representation.

2.3 LSTM and BERT Encoders
The LSTM network is a common type of recur-
rent neural networks which is capable of process-

ing sequential data efficiently. This was a com-
mon method prior to 2017, before Transform-
ers (Vaswani et al., 2017), which dispense entirely
with recurrence and rely solely on the attention
mechanism. Despite being outdated, we devel-
oped a purely supervised LSTM encoder to test
the effectiveness of the character-based method.

We employ the XLM-RoBERTa model as an-
other encoder in our system. RoBERTa (Liu et al.,
2019) is based on Google’s BERT model released
in 2018 (Devlin et al., 2019). It modifies key
hyperparameters, removing the next-sentence pre-
training objective and training with much larger
mini-batches and learning rates. RoBERTa has the
same architecture as BERT, but uses a byte-level
BPE as a tokenizer. The XLM-RoBERTa model
was proposed in 2020 (Conneau et al., 2020),
which is based on RoBERTa. It is a large multi-
lingual language model, trained on 100 languages,
2.5TB of filtered CommonCrawl data. It has
been shown that pretraining multilingual models at
scale leads to significant performance gains for a
wide range of cross-lingual transfer tasks. Unlike
some XLM multilingual models, this model does
not require language tensors to understand which
language is used, and should be able to determine
the correct language from the input ids.

3 Experiments

This section presents the datasets in use, experi-
mental settings and obtained results of our system.

3.1 Datasets

The datasets are provided by the MultiGED-2023
shared task.1 The shared task provides train-
ing, development and test data for each of the
five languages: Czech, English, German, Ital-
ian and Swedish. The training and develop-
ment datasets are available in the MultiGED-2023
GitHub repository, and test sets are released dur-
ing the test phase for participating teams. Table 1
shows the statistics of the datasets.

3.2 Evaluation Metric

Evaluation is carried out in terms of token-based
precision, recall and F0.5, consistent with previ-
ous work on error detection. F0.5 is used instead
of F1 because humans judge false positives more
harshly than false negatives and so precision is
more important than recall.

1https://github.com/spraakbanken/multiged-2023
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Lang. Sents. Tokens Errors Rate
Czech 35,453 399,742 84,041 0.210
English 33,243 531,416 50,860 0.096
German 24,079 381,134 57,897 0.152
Italian 7,949 99,698 14,893 0.149
Swedish 8,553 145,507 27,274 0.187

Table 1: Statistics of datasets in five languages

3.3 Experimental Settings

Our first system, namely VLP-char, uses the
character-based token representation and the
LSTM encoder. Its parameters are initialized with
random vectors in each run. This allows us to es-
tablish results in a pure supervised learning setting
rather than a semi-supervised or transfer learn-
ing setting. The same model is trained sepa-
rately for each language, resulting five models.
All five language-specific models are trained with
the Adam optimizer (Kingma and Ba, 2015), and
with learning rate 5 × 10−4. We use the cross-
entropy loss function for multinomial classifica-
tion as usual. All models are trained in 80 epochs.
The maximum sequence length is set to 60 tokens
– this is enough to cover most sentences in the
provided datasets. Since the data is highly im-
balanced – the error rates are from only 10% (for
English) to 24% (for Czech), we set the incorrect
label weight to 90% and the correct label weight
to 10% when computing the objective function.

This system does not use any external re-
sources; only datasets provided by the organiz-
ers are used to train and validate the models. We
use the BigDL library2 as the deep learning frame-
work. Our code is publicly available on GitHub.3

Our second system, namely DSL-MIM-HUS,
uses the subtoken-based representation and the
pretrained XLM-RoBERTa embeddings.4 This
system uses the library NERDA5 to fine-tune the
pretrained embeddings on all datasets. That is, we
combine all the provided datasets (training and de-
velopment splits) into one large dataset and per-
form the experiment on this combined one. There
is thus only one model for all the five languages.
The combined dataset is divided into training, de-
velopment and test split with the ratios 0.8, 0.1 and
0.1, respectively. There are 82,976 training sam-

2https://github.com/intel-analytics/BigDL
3https://github.com/phuonglh/vlp/con/
4https://huggingface.co/xlm-roberta-large
5https://github.com/ebanalyse/NERDA

Language Precision Recall F0.5

Czech 34.93 63.95 38.42
English (FCE) 20.76 29.53 22.07
English (REA) – – –
German 25.18 44.27 27.56
Italian 25.79 44.24 28.14
Swedish 26.40 55.00 29.46

Table 2: Performance of the VLP-char system on the
private test set. The number in bold font is the best
recall of all participating systems on the Czech dataset.

ples, 10,371 development samples and 10,371 test
samples respectively. We did not keep the propor-
tion of different language data the same when sam-
pling. It had been more beneficial if the proportion
would have been kept since the sizes of languages
are very different – there are three times more Ger-
man sentences than Italian sentences. The hyper-
parameters are tuned on the development set and
selected as follows: the learning rate of 10−5, the
number of training epochs of 20.

3.4 Results

3.4.1 Supervised System
Without using any external datasets or pre-
trained embeddings, the VLP-char system ob-
tained mediocre results. It ranks the fourth place
among participating systems. This sytem consis-
tently gives higher recall than precision on all the
languages, while other systems have better pre-
cision than recall. It achieves 63.95% of recall
on the Czech test set, which is the highest recall
among participating systems for this language, as
shown in Table 2.

Despite mediocre results, this system represents
what we can build with very limited data.

3.4.2 Pretrained System
On our test split, the system DSL-MIM-HUS
achieves a precision of 80.88%, a recall of 64.07%
and F0.5 of 71.50% for incorrect token predic-
tion. The corresponding scores on the training
set is 98.54%, 96.75%, and 97.64%, respectively.
Since this combined dataset contains all the pro-
vided samples of all languages, it does not make
sense to evaluate on each language separately.

On the private test set of the shared task
MultiGED-2023 (Volodina et al., 2023), the sys-
tem DSL-MIM-HUS is the second highest rank-
ing. It achieves the best score among participating
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Language Precision Recall F0.5

Czech 58.31 55.69 57.76
English (FCE) 72.36 37.81 61.18
English (REA) 62.81 28.88 50.86
German 77.80 51.92 70.75
Italian 75.72 38.67 63.55
Swedish 74.85 44.92 66.05

Table 3: Performance of the DSL-MIM-HUS system
on the private test set. The number in bold font is the
best score of all participating systems on the English
REALEC dataset.

systems on the English REALEC dataset. Table 3
shows the performance of this system on the pri-
vate test set, as announced by the organizers.

Although the XLM-RoBERTa system clearly
outperformed the LSTM system, the LSTM sys-
tem was trained on a fraction of the data available
to the XLM-RoBERTa system.

4 Conclusion

We have presented two neural models for multi-
lingual grammatical error detection and their re-
sults in the MultiGED-2023 shared task. One
model uses a purely supervised LSTM network
on a character-based token representation. The
other model uses a pretrained BERT network on
a subtoken representation. The two systems have
achieved promising results in the shared task.

We are going to seek a better way to exploit syn-
tactic and semantic information which comes from
a dependency parser. We believe that explicit syn-
tactic and semantic dependency between tokens of
a sentence will be fruitful in detecting grammati-
cal errors. In a recent study, we have demonstrated
the usefulness of syntactic structures in improving
lexical embeddings (Dang and Le-Hong, 2021).
The idea of incorporating constituent-based syn-
tax has also been shown effective for GED as
well (Zhang and Li, 2022).
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