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Abstract

In this paper we describe the participation
of our team, ELICODE, to the first shared
task on Multilingual Grammatical Error De-
tection, MultiGED, organised within the work-
shop series on Natural Language Process-
ing for Computer-Assisted Language Learning
(NLP4CALL). The multilingual shared task
includes five languages: Czech, English, Ger-
man, Italian and Swedish. The shared task is
tackled as a binary classification task at token
level aiming at identifying correct or incorrect
tokens in the provided sentences. The submit-
ted system is a token classifier based on XLM-
RoBERTa language model. We fine-tuned five
different models—one per each language in
the shared task. We devised two different ex-
perimental settings: first, we trained the mod-
els only on the provided training set, using the
development set to select the model achiev-
ing the best performance across the train-
ing epochs; second, we trained each model
jointly on training and development sets for
10 epochs, retaining the 10-epoch fine-tuned
model. Our submitted systems, evaluated us-
ing FO.5 score, achieved the best performance
in all evaluated test sets, except for the English
REALEC data set (second classified). Code
and models are publicly available at https:
//github.com/davidecolla/EliCo
De.

1 Introduction

Grammatical Error Detection (GED) is the task
of automatically identifying errors in learner lan-
guage. Despite its name, the errors to be identi-
fied are not only grammatical errors, but different
error types are considered, e.g. spelling, punctu-
ation, lexical. In Second Language Acquisition
and Learner Corpus Research, indeed, an error is
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defined as “a linguistic form or combination of
forms which, in the same context and under sim-
ilar conditions of production, would, in all like-
lihood, not be produced by the speakers’ native
speaker counterparts” (Lennon, 1991). As can be
noticed, this definition includes different causes,
i.e. grammaticality and correctness, or acceptabil-
ity, strangeness and infelicity (James, 1998). This
difference results in different resources annotating
different errors, with some annotating as grammat-
ical errors also appropriateness errors—i.e. prag-
matics, register and stylistic choices (Liideling and
Hirschmann, 2015, p. 140)—others excluding ap-
propriateness, but including orthographical and
semantic well-formedness together with accept-
ability (Di Nuovo, 2022).

In both GED task and the related Grammati-
cal Error Correction (GEC) task, research has fo-
cused mainly on learner English (as second or
foreign language) (Bell et al., 2019; Ng et al.,
2014; Bryant et al., 2019). Recently, also non-
English error-annotated data sets have been re-
leased (Boyd, 2018; Naplava et al., 2022). Thanks
to these recent trends, the authors of MultiGED
(Volodina et al., 2023) organised this year the
first multilingual GED shared task, hosted at the
workshop series on Natural Language Process-
ing for Computer-Assisted Language Learning
(NLP4CALL).

Both GED and GEC can be seen as low or
mid-resource tasks, because of three main char-
acteristics: requiring time-expensive and highly-
specialised human annotation, annotated data sets
are usually small in size; the incorrect tokens in
a text are significantly scarce if compared to the
correct ones; since errors pertain to different error
categories, each error type in the data sets is rep-
resented unevenly.

The data sets included in MultiGED shared
task are in Czech, English, German, Italian and
Swedish. Some of these data sets have been al-
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ready used for GED or GEC tasks—i.e. Falko
and Merlin corpora (Boyd, 2018), Grammar Error
Correction Corpus for Czech (GECCC) (Naplava
et al., 2022), First Certificate in English (FCE)
corpus (Yannakoudakis et al., 2011)—others have
been released ad hoc for this shared task—i.e.
Russian Error-Annotated Learner English Corpus
(REALEC) (Kuzmenko and Kutuzov, 2014), re-
leased only as development and test data sets,
and learner Swedish SweLL-gold (Volodina et al.,
2019), comprising training, development and test
data sets.

The aim of MultiGED is to detect tokens to be
corrected labelling them as correct or incorrect,
performing a binary classification task at token
level. Training and development data sets were
segmented into sentences and tokens (no informa-
tion at text level was released).

Following previous GED shared tasks, the used
evaluation metric is FO.5, which weights precision
twice as much as recall, carried out on the Codalab
competition platform.!

The authors of the shared task encouraged sub-
missions using a multilingual approach and addi-
tional resources, provided that these resources are
publicly available for research purposes. How-
ever, since different resources can annotate differ-
ent errors, the use of other additional data might
be a double-edged sword. In fact, the additional
data would increase the tool’s ability to identify
a greater variety of errors, but at the same time,
as the tool is evaluated in-domain, it moves away
from the characteristics of the test set.

In this paper, we present the systems submit-
ted by our team, ELICODE, to MultiGED 2023
shared task. Our systems are both based on XLM-
RoBERTa language model (Conneau et al., 2019),
and do not use additional resources. We fine-
tuned five models—one per each language in the
shared task—for ten epochs. We devised two dif-
ferent experimental settings both using early stop-
ping: in the first experimental setting, we trained
the models only on the training data set and used
the early stopping according to the F0.5 score ob-
tained on the development data set (ELICODE);
in the second experimental setting, we trained
each model on both training and development data
sets (ELICODE 417). Since in both experimen-
tal settings the early stopping was based on the

"https://codalab.lisn.upsaclay.fr/com
petitions/9784

development data set, in the second one, being
it part of training, the training continued for all
the ten epochs. We comment the results of the
above-mentioned systems comparing them with a
baseline—a Naive Bayes model—and an XLM-
RoBERTa-based model trained jointly on the
five-language training data sets (ELICODE/r7)
and on both training and development data sets
(ELICODE ) 17,, ), tackling the shared task with
a multilingual approach.

The remainder of this paper is organised as fol-
lows: in Section 2 we present related work; in Sec-
tion 3 we quantitatively describe the multilingual
data set; in Section 4 we describe in detail our sub-
mitted models; in Section 5 we report and discuss
the obtained results; in Section 6 we conclude the
paper highlighting possible future work.

2 Related work

The detection of errors in interlanguage texts
(Selinker, 1972) is a challenging task that has re-
ceived significant attention in the natural language
processing community, since GED systems can
be used to provide feedback and guidance to lan-
guage learners. In this section, we review some
of the most relevant and recent studies in this area
and in the related task of GEC.

Initially tackled using rule-based approaches,
GED systems have evolved from being able to
identify only certain types of errors to being more
and more able to handle the complexity and vari-
ability of natural language, thanks to modern ma-
chine learning techniques which make use of large
annotated text corpora, usually released in the oc-
casion of shared tasks. This switch is evident in
the evolution of the shared task from CoNLL-2013
(Ngetal.,2013) to CoNLL-2014 (Nget al., 2014),
when it changed from annotating only five error
types to all error types.”

In CoNLL-2014 shared task, the majority of the
systems made use of hybrid approaches able to
deal with all error types together, as compared to
previous year’s submissions, where a specific clas-
sifier per each error type was trained. The most
popular approaches made use of one or more of

“Twenty-eight error types are annotated in the CoNLL-
2014 benchmark data set. However, it should be noticed that
this is still far from annotating all error types. For example,
in the English Corpus of Learner English (ICLE) (Granger
et al., 2020) there are 54 error tags, in the error-annotated
learner Italian corpus, VALICO-UD (Di Nuovo, 2022, p. 94),
120 error tags.
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the following: the Language Model (LM) based
approach (using n-gram language models), which
has been used for both GED and GEC; the phrase-
based Statistical Machine Translation (SMT) ap-
proach, used mainly for GEC; and rule-based ap-
proaches to tackle regular error types.

In 2019, the Building Educational Applications
(BEA) shared task on GEC (Bryant et al., 2019)
introduces a new data set, joining the Cambridge
English Write & Improve (W&I) (Yannakoudakis
et al., 2018) and LOCNESS corpus (Granger,
1998), making the test data set bigger than the one
on which CoNLL-2014 systems were tested (from
50 essays on two different topics, to 350 essays
on about 50 topics). Another major change con-
cerns the use of neural machine translation (Bryant
et al., 2022)—being it based on recurrent neural
networks (Bahdanau et al., 2014), convolutional
neural networks (Gehring et al., 2016), or trans-
formers (Vaswani et al., 2017)—instead of SMT
and n-gram-based LMs. BEA reported results
highlighted that the same system had different per-
formances in texts at different CEFR levels (Little,
2006), lexical errors were the most difficult to de-
tect and correct, and multi-token errors were better
handled than in the previous shared task.

Bell et al. (2019) integrate contextual
embeddings—BERT, ELMo and Flair em-
beddings (Peters et al., 2017; Devlin et al., 2018;
Akbik et al., 2018)—in Rei (2017) architecture for
GED (a bi-LSTM sequence labeler at token and
sentence level, making use also of character-level
bi-LSTM, to benefit from morphological informa-
tion). Their best model used BERT embeddings
and proved to better generalise in out-of-domain
texts. Their analyses show that missing tokens are
the most difficult errors to indentify.

Kaneko and Komachi (2019) proposed an ex-
tension of BERT base (Devlin et al., 2018) with
multi-head multi-layer attention, since research
has shown that different layers are best-suited for
different tasks, e.g. lower layers capture local syn-
tactic relationships, higher layers longer-range re-
lationships (Peters et al., 2018).

Recently, Yuan et al. (2021) fine-tuned BERT,
XLNet (Yang et al., 2019) and ELECTRA (Clark
et al., 2020) models to perform GED in English.
The three models obtained the new state of the art
in binary GED training on FCE data set and test-
ing on BEA-dev, FCE-test and CoNLL-2014, with
ELECTRA performing the best overall. Thus,

they used ELECTRA to carry out some multi-
class GED experiments to boost performance on
GEC data sets using it as auxiliary input or for re-
ranking.

Our system treats GED as a binary sequence
labelling task, like all the above-described sys-
tems, and since the best results have been ob-
tained by fine-tuning transformer-based models,
we followed this approach by fine-tuning XLM-
RoBERTa model (Conneau et al.,, 2019). We
decided to use multilingual RoBERTa because
its training focuses on the discrimination of the
masked token, and thus, it is conceptually similar
to GED. In the following section we quantitatively
analyse MultiGED data set, before describing in
detail our submitted systems in Section 4.

3 Data set quantitative analysis

MultiGED data set contains labelled training and
development sets in Czech (GECCC), English
(FCE), Italian (Merlin), German (Falko and Mer-
lin) and Swedish (SweLL-gold). In particu-
lar, for English language an additional data set
(REALEC) has been released only as development
set. In addition, for each data set an unlabelled test
set has been released.

Following the work of Siino et al. (2022), we
quantitatively analyse the 5-language data sets us-
ing established corpus linguistics methods imple-
mented in Sketch Engine (Kilgarriff et al., 2014).3
We report general data set figures in Table 1, as
computed using Sketch Engine.

We used Compare Corpora, the built-in func-
tion of Sketch Engine that applies chi-square (x?)
test (Kilgarriff, 2001), to compare training, devel-
opment and test sets per each language. The re-
sult of this comparison is a confusion matrix per
each language, reported in Figure 1, showing val-
ues greater or equal to 1, with 1 indicating iden-
tity. The higher the value, the larger the differ-
ence between the compared data sets.* For En-
glish we created a comprehensive confusion ma-
trix comparing the two different corpora (FCE and
REALEC).

3 Available here: https://www.sketchengine.eu
(last accessed on 28 March 2023).

*Please consider that correct or incorrect labels are not
taken into account in this comparison. This comparison, in-
stead, gives as an idea of how different the data sets are ac-
cording to the different words used. Compare Corpora tool
is affected by set size: this is why development and test sets,
being the smallest, have a higher similarity score than when
compared individually to the bigger training sets.
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Source corpus  Language Split # Tokens # Unique
words

train 333,995 37,228

GECCC Czech dev 32,071 8,145
test 35,075 8,764

train 465,038 13,972

FCE English dev 35,463 3,569
test 42,545 3,800

train - -

REALEC English dev 88,698 6,208
test 90,391 6,300

train 306,847 20,561

Falko-MERLIN  German dev 39,627 5,606
test 36,763 5,478

train 82,040 6,957

MERLIN Italian dev 9,326 2,041
test 10,300 2,176

train 115,547 10,791

SweLL-gold Swedish dev 15,713 3,225
test 14,666 3,141

Table 1: MultiGED data set in figures. # stands for number of.

NS
ng& Qi:&c;if’ioe}eio @
Y Y oY oYY
EN-REALEC_dev 1.00 149 521 5.39 4.87
EN-REALEC_test 1.49 1.00 520 537 4.89
EN-FCE_dev| 521 520 1.00 389 1.72
EN-FCE_test| 589 587 399 1.00 3.67
EN-FCE_train | 487 489 172 367 1.00
(a) EN data sets.
R @ &
Vv NSRS
CS_dev 1.00 240 2.15 DE_dev 1.00 209 1.72
CS_test 240 1.00 2.02 DE test 209 1.00 1.77
CS_train 215 2.02 1.00 DE_train 172 1.77 1.00
(b) CS data set. (c) DE data set.
\/\904\/\}69\\/\}@0 o2 e«@ ’\ec}e* >
IT_dev 1.00 353 240 Sv_dev 1.00 2.64 2.08
IT test| 353 1.00 276 SV_test 264 1.00 212
IT_train 240 276 1.00 SV_train 2.08 212 1.00
(d) IT data set. (e) SV data set.
Figure 1: Confusion matrices obtained with word-

based chi-square test. The value 1.00 indicates identity
between the compared data sets. The greater the value,
the more different the data sets.

Looking at the matrices, we could suppose that
systems should have less trouble in handling the
task in German, Czech, Swedish (in order) than in
Italian and English.

English (EN) data set — Since the big differ-
ence between FCE and REALEC, the lowest re-
sults should be obtained using models trained on
FCE and tested on REALEC. Better results could
be instead obtained fine-tuning in-domain using
REALEC development set and testing it on the
test set (because of the smaller similarity score be-
tween REALEC development and training sets).
It is interesting to notice that REALEC develop-
ment and test data sets have a similarity score (i.e.
1.49) significantly lower than FCE development
and test data sets (i.e. 3.99). FCE training and de-
velopment data sets have a similarity score of 1.72.
FCE training and test data sets of 3.67. These
results might suggest that the English data set is
challenging for the models.

Czech (CS) data set — The lower similarity scores
between the data sets suggest that systems should
perform better on Czech than in English test set.
Also if compared to the similarity scores obtained
in Italian data sets, the lower similarity scores
might indicate that the systems should perform
better on Czech than in the Italian test set.

German (DE) data set — Since the low similarity
score, indicating a bigger similarity between the
sets, should mean that German should be the easi-
est to tackle for the models.

Italian (IT) data set — Here again, since sim-
ilarity scores between the sets are lower than in
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English one, models should perform better on the
Italian data set than in the English. In addition, the
higher similarity score between development and
test data sets suggests that choosing the best per-
formance model according to the results on the de-
velopment set should be avoided. Instead training
on both training and development data sets should
ensure the best performance in this data set.
Swedish (SV) data set — According to the re-
ported similarity scores, Swedish training set is in
an order of similarity with development and test
sets as the Czech sets. This might suggest that
similar performances might be expected.

4 System description

In this section, we describe in detail the specifica-
tions of our submission.

Given the nature of the MultiGED shared task,
we framed the problem as a token classification
task, where systems are required to provide a label
for each token within the input sequence. More
precisely, we employed a sequence labelling strat-
egy using the BIO labelling schema (Ramshaw
and Marcus, 1999). The standard schema is
formed by B-I-O tags, where each token in a sen-
tence is labelled with one of the three tags: B indi-
cates the beginning of the error span, i.e. the first
token of an incorrect use; I is used to label tokens
inside the error unit; O marks tokens that are out
of the error span, hence correct. However, since
in our task we did not have information about the
number of errors nor the error span, we decided
to use always B to mark an incorrect token, even
when preceded by another incorrect token, and O
to mark the correct tokens.

The adopted model allows framing the problem
as token classification task that, given a sentence
W = wyws...w,, amounts to labelling each
word w; with B or O tags because of the above-
mentioned reason. Figure 2 reports an example of
the system output of a sentence from the English
FCE training data. Considering the example, we
can see that the token disappointing is correctly
tagged with B, indicating an incorrect usage, and
then it is followed by another incorrect token a—
marked again with the label B because of the infor-
mation loss from the conversion from error-tagged
corpora to binary token labelling. In the same ex-
ample, the token week is labelled as correct while
the token holiday is labelled as incorrect token.

The model we employed is based on XLM-

RoBERTa large: we stacked a linear classifier—
with input size of 1024 units and the output size
is set to the number of labels—on top of the pre-
trained XLM-RoBERTa model, inserting in be-
tween the two a dropout layer—with a dropout
probability set to 0.1—to avoid overfitting. Fi-
nally, in order to compute the distance between
the actual data and the predictions we adopted the
Cross Entropy loss function. The model architec-
ture is depicted in Figure 3.

To run the experiments, we devised two dif-
ferent experimental settings. In the first one, we
trained the models only on the provided train-
ing set for 10 epochs, using the development
set to select the model achieving the best per-
formance across the training epochs (ELICODE).
In the second setting, we trained each model
jointly on the training and development sets for 10
epochs, and retained the 10-epoch trained model
(ELICODE. ).

To build our models, we started from the
ClinicalTransformerNER framework (Yang et al.,
2020) and we adapted the code so as to deal with
XLM-RoBERTz2 language model.®

Our experiments were performed on machinery
provided by the Competence Centre for Scientific
Computing (Aldinucci et al., 2017). In particu-
lar, we exploited nodes with 2x Intel Xeon Proces-
sor E5-2680 v3 and 128GB memory. The training
time is about 15 hours per epoch for the provided
languages with a large training data—i.e. Czech,
English and German—and drops to 8 hours per
epoch for Italian and Swedish. The time taken in
the prediction phase is about 25 minutes per lan-
guage.

5 Results and discussion

We report in Table 2 the results obtained by all
teams participating to MultiGED shared task (up-
per part of the table),” and additional experimental
results—i.e. a baseline and our submitted models
but trained in a multilingual fashion (bottom part
of the table). As far as the baseline is concerned,
we extracted the token counts from the training
data and adopted the multinomial Naive Bayes

5In both experimental settings we adopted a batch size of
4 and an early stop of 5 epochs.

®The code and the models will be publicly available on
GitHub after the review phase of this paper to ensure blind
review.

"We took the results from the official MultiGED reposi-
tory: https://github.com/spraakbanken/mult
iged-2023.
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I | was | very | disappointing a week holiday for | me | because |
|had | got | a | lot | of | problem | with | the | show | . |
0io0oioioiofi O { 0 ioi{ O {0

Figure 2: The output of the model for the sentence I was very disappointing a week holiday for me because I had
got a lot of problem with the show. Here the token disappointing is marked as the beginning of an error unit. By
the same token, a is marked as beginning of a new error due to the information loss caused by the conversion from
error-tagged corpora to binary token labelling. The token holiday is also marked as an incorrect use. The other
tokens are marked as correct uses.

o [ o || o | o |[ o |[ o |[ o[ o |[ o

f f t t f f f ! t

Linear Classification Layer

f f f f ! f f f f f

Dropout Layer

—tttttttt

XLM-RoBERTa

Embln Embour EmbAcadamy Embwe Embare Embnot Emballowed Embto Embsmoke Emb.
In | our I Acadamy we are not allowed I | to ’ ‘ smoke

Figure 3: Graphic representation of the model. The grey boxes represent the tokens in the example. These tokens
are vectorised and converted into embeddings by XLM-RoBERTa. Tokenisation in XLM-RoBERTa is simplified
in this figure for readability reasons. XML-RoBERTa output is inputted to the linear classifier, after passing a
dropout layer. The classifier predicts the label B or O for each token.
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classifier for sequence labelling (Baseline). As far
as the multilingual models are concerned, we fol-
lowed the same experimental settings of the sub-
mitted monolingual models, training two multilin-
gual models: a first model trained only on the con-
catenation of training data sets (ELICODE ;1 7),
the second concatenating also the development
data sets (ELICODE 1, ,)-

The overall results obtained by both ELICODE
and ELICODE 411, are higher than those obtained
by the other competing systems, except for the En-
glish REALEC test set.

Concerning Precision (P), the baseline and both
our ELICODE and ELICODE,4y;, submissions
perform well overall. However, on the FCE par-
tition of the English data set the scores consis-
tently decrease by about 10% and, as expected,
the REALEC partition is the most challenging data
set: Precision scores drop from about 80% on av-
erage to about 40%. As far as Recall (R) is con-
cerned, the token count-based baseline performs
poorly: the average Recall of the baseline across
languages is about 12% while the average score of
ELICODE and ELICODE 4, is about 58%. Fol-
lowing the same trend as Precision, Recall scores
for both our submitted systems drop from about
62% of average to 40% on the REALEC English
data set. Given the definition of F0.5 metric—i.e.
it puts more importance on Precision with respect
to Recall—, the overall scores reflect the trend of
Precision: the average F0.5 score is about 76%
for both ELICODE and ELICODE 41,7, on all lan-
guages but the English REALEC data set, where
the average F0.5 drops to 43%.

Considering the different languages, as ex-
pected from the quantitative analysis from Sec-
tion 3, the ELICODE 41,1 performance improves
compared to the scores obtained by ELICODE on
Czech, German, Italian and Swedish languages:
training on both training and development set al-
lows accounting for the similarities between de-
velopment set and test set too. Consistently with
the above-mentioned analysis, the performances
achieved on the Swedish and Czech data sets are
comparable and lower than the scores obtained
on the German data set, that recorded the high-
est FO.5 score of 82.32%. Concerning the differ-
ences in the English data, as expected, ELICODE
performs better than ELICODE 417, on both FCE
and REALEC partitions, this is likely due to the
high dissimilarity between the English FCE devel-

opment and test data sets, thus training the model
on the development set as well amounts to intro-
ducing noise during the learning phase. Addition-
ally, given the great difference between FCE and
REALEC partitions, the results of models trained
on the FCE data set are consistently lower on
REALEC data compared to the results on the FCE
data.

In order to explore the impact of the difference
between the English data sets, we trained a model
only on the REALEC development set. The model
has been trained for 10 epochs and by maintain-
ing fixed all the other parameters so as to make
the results of such model comparable to the oth-
ers. The model trained only on REALEC data
achieved 58.44 of Precision, 33.19 of Recall and
the FO.5 is 50.72, thus improving the F0.5 of about
7% compared to the ELICODE result; in particu-
lar, the model becomes more precise in predicting
errors, but given the reduced amount of training
data is less incline to label tokens as incorrect.

Concerning the baseline, its poor performance
is likely due to the employed representation:
count-based features consider terms in isolation
rather than in context, in so doing, the model
is able to detect errors based on words fre-
quency only, thus detecting errors related only to
vocabulary—i.e. non-existing words or unseen to-
kens at training time. In this respect, the results
achieved by the baseline on the REALEC partition
of the English data set are lower than those for the
FCE data set—especially on Precision—, thus re-
flecting the difference between such two data sets.
Conversely, the representations employed by lan-
guage models such as XLM-RoBERTa are con-
text sensitive—i.e. each token representation ac-
counts for the whole sequence information—and
this is reflected in a consistent improvement in Re-
call scores.

In order to assess the multilingual competence
of the language model, we trained a model on the
concatenation of the training sets of all the dif-
ferent languages: typologically similar languages
may mutually improve the model representations,
while languages with different structures may neg-
atively impact the error detection in both lan-
guages. The trained multilingual models, as said,
follow the same experimental setting than the sub-
mitted monolingual models. Differently than the
monolingual models which were trained for 10
epochs, the multilingual models have been trained
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Czech

English - FCE

English - REALEC

System p R FO5 || P R FO5| P R FO5
DSL-MIM-HUS 58.31 55.69 57.76 || 72.36 37.81 61.18 || 62.81 28.88 50.86
Brainstorm Thinkers || 62.35 23.44 46.81 || 70.21 37.55 59.81 || 48.19 31.22 43.46
VLP-char 3493 63.95 3842 | 20.76 29.53 22.07 - - -
NTNU-TRH 80.65 6.49 2454 || 81.37 1.84 8.45 5134 1.13 5.19
su-dali - - - - - - - - -
ELICODE 82.29 50.61 73.14 || 73.64 50.34 67.40 || 44.32 40.73 43.55
ELICODE 41,1, 82.01 51.79 7344 || 71.67 50.74 66.21 || 43.69 40.74 43.07
Baseline 85.69 21.19 5326 | 72.81 7.55 26.69 || 36.40 5.67 17.46
ELICODE /11 83.06 50.72 73.66 || 73.85 50.08 67.45 || 4436 4229 43.93
ELICODENM T4, 82.79 49.56 73.01 || 75.01 4894 67.79 || 45.34 40.29 44.23
System German Italian Swedish
P R FO0.5 P R FO0.5 P R FO.5
DSL-MIM-HUS 77.80 51.92 70.75 || 75.72 38.67 63.55 | 74.85 4492 66.05
Brainstorm Thinkers || 77.94 47.55 69.11 || 70.65 36.46 59.49 || 73.81 3994 63.11
VLP-char 25.18 4427 27.56 || 25.79 4424 28.14 || 26.40 55.00 29.46
NTNU-TRH 83.56 15.58 44.61 || 93.38 19.84 53.62 || 80.12 5.09 20.31
su-dali - - - - - - 82.41 27.18 58.60
EL1CODE 83.87 71.89 81.16 || 85.63 66.69 81.03 || 80.56 67.50 77.56
ELICODE 41,1, 84.78 73.75 82.32 || 86.67 67.96 82.15 || 81.80 66.34 78.16
Baseline 80.99 10.25 34.02 || 85.11 10.72 35.65 || 78.09 13.65 40.16
ELICODE y/ 1.1 83.47 7252 81.02 || 85.30 69.64 81.63 || 82.24 65.94 78.36
ELICODEN 174, 84.80 71.09 81.65 || 85.71 65.95 80.87 || 83.34 64.37 78.70

Table 2: Results of experiments in the token classification task. To increase readability, we partitioned the re-
sults on two tables grouped by language. We reported the results for all the systems submitted to the MultiGED
competition—in the upper part of each sub-table—together with the results of our submission (ELICODE and
ELICODE 411). The bottom part of each sub-table report the Naive Bayes-based baseline and the multilingual
models (ELICODE,;r and ELICODE 1 7,,, ) results. For each system we report the scores obtained on all
the languages included in the competition; for each language, the corresponding columns report the Precision (P),
Recall (R) and FO0.5 scores. The highest F0.5 scores are in bold.
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for 7 epochs: in this setting the training took on av-
erage 55 hours per epoch for ELICODE,,;; and
62 hours for ELICODEy 7, , -2

The multilingual models perform similarly on
the shared task test sets compared to monolingual
models. If we consider the two languages with a
smaller training and development sets, i.e. Ital-
ian and Swedish, we might notice that the perfor-
mance on the Italian test set does not improve us-
ing the multilingual approach. This might be due
to the fact that the other languages included in the
shared task are not typologically similar to Italian.
On the contrary, the performance on the Swedish
language, which is slightly higher than the mono-
lingual model performance, might benefit from the
German training and development data sets, being
both Germanic languages.

6 Conclusion and future work

In this paper, we presented the ELICODE sys-
tem submitted to the first shared task on Multi-
lingual Grammatical Error Detection (MultiGED).
We studied the effect of fine-tuning the pre-trained
XLM-RoBERTa language model on the multilin-
gual grammatical error detection framed as se-
quence labelling task. The submitted system
achieved the highest scores on five out of six dif-
ferent data sets in a multilingual setting: the pro-
vided data are in five languages, namely Czech,
English, German, Italian and Swedish.

We compared our system with a simple Naive
Bayes classifier based on token counting. The
comparison shows that a system based on local
representations is able to detect a small subset of
errors (good Precision and low Recall) such as ty-
pos or out-of-vocabulary words; conversely, a sys-
tem exploiting contextual representations detects
a larger number of error types (increased Recall).
Additionally, we compared our monolingual sys-
tem with a multilingual model trained jointly on
the five-language training data sets. We found that
the results achieved by the multilingual model are
comparable to those obtained by the monolingual
models, thus indicating that the token representa-
tions built by the language model are suited to gen-
eralise over different languages.

As part of future work, we plan to qualitatively
analyse the error types recognised by the presented

8The multilingual model trained only on the training data
sets (ELICODE s, 1) for 7 epochs achieved the same results

of the 8-epoch model. Thus, we assume that ELICODE ) 7
reached the learning upper bound at the 7 epoch.

models, to find possible ways to improve gram-
matical error detection, e.g. by creating hybrid or
ensemble models, but also to verify that models
based on local representations are able to recog-
nise mainly error categories based on the signi-
fier, which do not need to take context into ac-
count. Another interesting solution could be that
described in Omelianchuk et al. (2020), in which
the authors address the GEC task iteratively.

Concerning error types and interlanguage, it
would be interesting to train Second Language
Acquisition theory-aware models taking interlan-
guage stages into account by grouping data ac-
cording to CEFR level information. Indeed, learn-
ers at the same learning stage share the same er-
ror types, irrespective to their mother tongue (Gi-
acalone Ramat, 2003). These models might per-
form better in applicative cases in which we know
learners’ language level (Bryant et al., 2019).

In addition, it would be interesting to analyse
the embeddings generated by models fine-tuned
on this task, using visualisation techniques as prin-
cipal component analysis, to verify if embeddings
representing the same word are localised in differ-
ent space areas according to their correct or incor-
rect usage.

Furthermore, we plan to explore the perfor-
mance of other language models already tested
in GEC and GED tasks to compare RoBERTa
and other transformer-based models trained using
a different technique (e.g. ELECTRA trained to
discriminate the wrongly generated token in a se-
quence).
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