
Proceedings of the Natural Legal Language Processing Workshop 2023, pages 113–131
December 7, 2023 ©2023 Association for Computational Linguistics

Connecting Symbolic Statutory Reasoning
with Legal Information Extraction

Nils Holzenberger
Télécom Paris

Institut Polytechnique de Paris
nils.holzenberger@telecom-paris.fr

Benjamin Van Durme
Johns Hopkins University
vandurme@jhu.edu

Abstract

Statutory reasoning is the task of determining
whether a given law – a part of a statute – ap-
plies to a given legal case. Previous work has
shown that structured, logical representations
of laws and cases can be leveraged to solve
statutory reasoning, including on the StAtu-
tory Reasoning Assessment dataset (SARA),
but rely on costly human translation into struc-
tured representations. Here, we investigate a
form of legal information extraction atop the
SARA cases, illustrating how the task can be
done with high performance. Further, we show
how the performance of downstream symbolic
reasoning directly correlates with the quality
of the information extraction.

1 Introduction

Statutory reasoning is the task of reasoning about
legal cases with legal statutes. It is gener-
ally contrasted with case-based reasoning, and
is complementary to it in legal systems based
on common law (Lawsky, 2017). The StAtu-
tory Reasoning Assessment dataset (SARA) is a
benchmark for statutory reasoning for US federal
tax law (Holzenberger et al., 2020).

In some settings, laws and regulations can be
encoded into first-order logic programs to reason
about cases (El Hamdani et al., 2021; Merigoux
et al., 2021a; Bench-Capon et al., 1987). In Holzen-
berger et al. (2020), SARA statutes and cases were
manually translated into Prolog code, solving statu-
tory reasoning in that context, in a process depicted
in Figure 1. Here, we take the standpoint advo-
cated by Merigoux et al. (2021a), and start with
the premise that a structured form of the statutes
is available, while cases are stated in natural lan-
guage. In practice, many governments across the
world use expert systems to compute taxes owed
by taxpayers, maintained by a dedicated team of
experts (Oskamp and Lauritsen, 2002; Merigoux
et al., 2021b). In contrast, translating cases into a

§2. Definitions and special rules

(a) Definition of surviving spouse

(1) In general

For purposes of section 1, the term "surviving
spouse" means a taxpayer-

(A) whose spouse died during either of the two
years immediately preceding the taxable year, and

(B) who maintains as his home a household which…

Statutes
In 2017, Alice was paid
$33200. Alice and Bob have
been married since Feb
3rd, 2017. Alice was born
March 2nd, 1950 and Bob
was born March 3rd, 1955.

S e c t i o n 6 3 (f) (1) (A)
applies to Alice in 2017.

Cases

payment_(“paid”).
patient_(“paid”,”Alice”).
start_(“paid”,”2017-12-31").
amount_(“paid”,33200).
marriage_(“married”).
agent_(“maried”,”Alice”).
…

?- s63_f_1_A(alice,2017).

Prolog KBsProlog program
s2_a(Taxpayer, Spouse, Household,
Dependent, Year) :-
 s2_a_1(Taxpayer, Spouse,
Previous_marriage, Household, Dependent,
Year),
 \+ s2_a_2(Taxpayer, Spouse,
Previous_marriage, Year).

s2_a_1(Taxpayer, Spouse, Previous_marriage,
Household, Dependent, Year) :-
 s2_a_1_A(Taxpayer, Spouse,
Previous_marriage, Year), …

Prolog engine

Figure 1: Statutory reasoning connects statutes and
case descriptions. In previous work, both were manu-
ally translated into Prolog code to enable formal reason-
ing. Here, we illustrate the right portion of the figure:
automated translation of cases into Prolog.

Knowledge Base (KB) requires a large amount of
repetitive labor. Automating this translation task
would be more scalable, and could take advantage
of the high-quality expert system built on statutes.

In this work, we develop a form of Information
Extraction (IE) for legal cases (Filtz et al., 2020),
corresponding to the task highlighted on the right
of Figure 1. We release a new version of the SARA
dataset, with updated annotations for the Prolog
KBs, and establish baseline results in extracting
those KBs from case descriptions. This allows us
to answer the following:

• What representation of Knowledge Base Ele-
ments (KBEs) in Prolog is appropriate for IE?

• How well can IE models perform on SARA?

• How does performance in IE translate to perfor-
mance in statutory reasoning?

113

We report improved scores on statutory reason-
ing, showing the benefit of a structured Prolog
representation for statutes. We further show an
intuitive correlation in IE performance with perfor-
mance in statutory reasoning. This represents an
exciting outcome for IE practitioners: the SARA
dataset can provide a clearly motivated downstream
task that is directly impacted by improved IE.

2 Related work

Statutory reasoning While the present work is
mainly concerned with IE, it is done for the pur-
pose of statutory reasoning (Holzenberger et al.,
2020). This legal NLP task (Chalkidis et al., 2022;
Zhong et al., 2020) is close to that of legal entail-
ment (Rabelo et al., 2022) and case outcome pre-
diction (Branting et al., 2021; Luo et al., 2017).
Large Language Models (LLMs) have recently
set state-of-the-art on statutory reasoning (Blair-
Stanek et al., 2023; Guha et al., 2023).

Legal-domain IE IE has been done extensively
on contracts, as a potentially high-impact applica-
tion (Chalkidis et al., 2018; Glaser et al., 2018;
Liepin, a et al., 2020). The goal is to automate
routine legal tasks, such as legal contract analy-
sis (Hendrycks et al., 2021) and contract manage-
ment (Schneider et al., 2022). IE has also been at-
tempted on regulatory texts: Chalkidis et al. (2019)
released a dataset of legal documents produced
by the EU annotated with a set of legal terms.
There are datasets for classifying paragraphs in
policies (Bartolini et al., 2004), extracting subject-
object relationships (Alohaly et al., 2018), and
identifying cross-references (Boella et al., 2019).
Closer to this paper, IE has been applied to case
law. Yao et al. (2022) introduce a dataset of Chi-
nese court cases annotated with a custom event
ontology. Navas-Loro and Santos (2018) offer a
review of event extraction in the legal domain, both
annotation schemas and computational models, as
well as annotations of European Court of Justice
cases. Filtz et al. (2020) provide a corpus of events
based on the decisions of the European Court of
Human Rights, and compare statistical and rule-
based models for event extraction.

Semantic representations This paper is con-
cerned with the extraction of events and their ar-
guments by mapping the semantic content of lan-
guage into a structured format (Sundheim, 1992).
There are numerous formalisms for that purpose,

and this section is limited to a few examples. Black-
burn and Bos (2005) describe the role of first-order
logic in representing the semantics of natural lan-
guage. The book reviews fundamental issues in
semantic representations, with the goal of mak-
ing inferences. Abstract Meaning Representation
(AMR) (Banarescu et al., 2013) represents the se-
mantic content of sentences, without alignment to
the syntax of the source text. Universal Conceptual
Cognitive Annotation (Hershcovich et al., 2017)
is aimed at more flexibility than AMR, especially
cross-linguisticality, and its graphs feature more
challenges for parsing than AMR graphs. Univer-
sal Decompositional Semantics (White et al., 2020)
provides multiple layers of annotations, separating
syntactic and semantic information, and decom-
positional semantics. There are semantic repre-
sentations that aim to reflect the full content of
language, such as Episodic Logic (Kim et al., 2021;
Schubert et al., 2010). Closer to this work, the
PropBank dataset (Palmer et al., 2005; O’Gorman
et al., 2018) adds predicate-argument relations on
top of the Penn Treebank parse trees (Marcus et al.,
1993). This effort has been extended to more lan-
guages (Moeller et al., 2020; Anwar et al., 2016;
Wu and Palmer, 2015). The structures considered
here are represented using Neo-Davidsonian se-
mantics (Castañeda, 1967; Davidson, 1967; Par-
sons, 1990). In particular, they only capture the
content relevant for interpreting the SARA statutes.
Previous work on semantic representations for the
legal domain, including the tax-law domain, have
made use of ad-hoc ontologies, depending on the
application domain (Bench-Capon et al., 1987;
Sherman, 1987; Merigoux et al., 2021a).

Task-oriented representations When perform-
ing semantic parsing for a specific task, it is possi-
ble to sacrifice expressivity for performance (Kollar
et al., 2018). Zelle and Mooney (1996) introduce
CHILL, a shift-reduce parser producing queries ex-
ecutable against the Geoquery database. With the
same benchmark dataset, Zettlemoyer and Collins
(2005) induce a grammar and a log-linear model to
map questions to queries. Similarly, Berant et al.
(2013) answer questions stated in natural language
to a KB. They translate the question into a query
that can be executed against the KB. Beltagy et al.
(2014) use semantic parsing for the tasks of Rec-
ognizing Textual Entailment and Semantic Tex-
tual Similarity. Zhang et al. (2019) and Weir et al.
(2020) generate SQL queries from natural language

114

questions. Here too, compositionality can play a
role (Pasupat and Liang, 2015). Campagna et al.
(2019) focus on parsing language for virtual as-
sistant commands. Goldwasser et al. (2011) intro-
duce a method to train a semantic parser with self-
supervision, using a model’s own high-confidence
predictions on the Geoquery dataset as training
examples. Liang et al. (2011) offer an alternate
approach, treating the semantic parse as a latent
variable. We are not aware of any prior work on
legal-domain task-oriented semantic parsing.

3 Annotation of SARA

In Holzenberger et al. (2020) and again in Holzen-
berger and Van Durme (2021), the semantics of
each SARA case have been translated into a set
of KBEs. These annotations, based on a custom
ontology in Prolog, effectively make it possible to
solve SARA with a Prolog program that reflects
the semantics of the statutes. However, with IE in
mind, the ontology has several design flaws. We
will focus on two of them. First, the events are rep-
resented using strings and integers, without clear
reference to the text of the case description. Second,
the use of the ontology is somewhat inconsistent.
We improve over this annotation scheme to enable
the training of IE models.1

3.1 SARA semantics

The existing ontology relies on a set of pre-
defined predicates, denoted using strings end-
ing in “_”. Those roughly 60 predicates are
used to specify event and argument types. In-
stances of entities and events are referred to us-
ing strings and integers. For example, line 1 in
Figure 2 expresses that "gross income" is
an event of type income_.2 Line 2 expresses
that the event "gross income" occurred on
January 1st, 2017. Line 3 expresses that the
entity "Alice" is the agent_ of the event
"gross income". Predicates that specify event
types take a single argument, which is an instance
of an event. Predicates that specify arguments take
two arguments: the first one is the instance of an
event, and the second one is an entity or, occa-
sionally, an event. This follows Neo-Davidsonian
semantics (Davidson, 1967).

1The data can be found at https://nlp.jhu.edu/
law/sara_v3.

2We use Prolog syntax highlighting, and occasionally
omit final periods, which are normally part of Prolog syntax.

Some case descriptions state facts that are re-
peated across multiple instances — see Appendix A
for an example. Some cases explicitly state that
a given part of the SARA statutes applies: “Al-
ice’s taxable income for the year 2017 is $22895.”
(case s1_c_iii_neg). These are expressed
in terms of the corresponding Prolog predicates:
s63("Alice",2017,22895,_).

3.2 Design choices

Events and entities Our main improvement
over Holzenberger and Van Durme (2021) is
that we represent entities and events with a di-
rect reference to the text of the case descrip-
tion. This is common practice in IE annota-
tions (Walker et al., 2006). For that, entities and
events are represented as structured span objects:
span(Value, Start_index, End_index).
Start_index and End_index are inclusive

character indices into the case description, provid-
ing an anchor in the text for the entity or event.
Value is a string or integer meant to be used inter-
nally by the Prolog program. For events and people,
this is a string, which is often the same as the an-
chor, e.g. "Alice". As much as possible, we use
single words to represent events, as can be seen in
the bottom left of Figure 4. For dates, Value is
an integer representation of the date, as in lines 2
and 8 of Figure 2. Value can generally be parsed
out of the anchor using rule-based heuristics (see
Appendix B). For dollar amounts, Value is an
integer (inferable from the anchor), as on line 4.

Ontology We enforce constraints on the ontol-
ogy to make it more consistent, and thus improve
the training of the IE system. Events that are con-
sidered instantaneous for the purposes of statutory
reasoning are allowed to have a start_ argument,
but no end_ argument.3 See e.g. lines 17 and 21
in Figure 2, which are present in Holzenberger
and Van Durme (2021), but absent in our annota-
tion. Whenever the day of an event is not specified
but only the year, we enforce that the value for
start_ is the first day of the specified year, and
the last day for end_ — see e.g. line 2.

Prolog program We adjust the Prolog program
to the changes mentioned above. We implement
functions to extract year, month and day from the
integer representations of dates. When comparing

3Those are birth_, death_, deduction_,
income_, joint_return_ and payment_.

115

https://nlp.jhu.edu/law/sara_v3
https://nlp.jhu.edu/law/sara_v3

In 2017, Alice’s gross income was $326332. Alice and Bob have been married since Feb 3rd, 2017, and have had the
same principal place of abode since 2015. Alice was born March 2nd, 1950 and Bob was born March 3rd, 1955. Alice
and Bob file separately in 2017. Bob has no gross income that year. Alice takes the standard deduction.

1 income_("gross income") income_(span("income", 23, 28))

2 start_("gross income", "2017-12-31") start_(span("income", 23, 28), span(20170101, 3, 6))

3 agent_("gross income", "Alice") agent_(span("income", 23, 28), span("Alice", 9, 13))

4 amount_("gross income", 326332) amount_(span("income", 23, 28), span(326332, 35, 40))

5 marriage_("married") marriage_(span("married", 67, 73))

6 agent_("married", "Alice") agent_(span("married", 67, 73), span("Alice", 43, 47))

7 agent_("married", "Bob") agent_(span("married", 67, 73), span("Bob", 53, 55))

8 start_("married", "2017-02-03") start_(span("married", 67, 73), span(20170203, 81, 93))

9 residence_("principal place of abode") residence_(span("abode", 137, 141))

10 agent_("principal place of abode", "Alice") agent_(span("abode", 137, 141), span("Alice", 43, 47))

11 agent_("principal place of abode", "Bob") agent_(span("abode", 137, 141), span("Bob", 53, 55))

12 patient_("principal place of abode",
"the same principal place of abode")

patient_(span("abode", 137, 141),
span("place", 128, 132))

13 start_("principal place of abode",
"2015-01-01")

start_(span("abode", 137, 141),
span(20150101, 149, 152))

14 birth_("Alice was born") birth_(span("born", 165, 168))

15 agent_("Alice was born", "Alice") agent_(span("born", 165, 168), span("Alice", 155, 159))

16 start_("Alice was born", "1950-03-02") start_(span("born", 165, 168), span(19500302, 170, 184))

17 end_("Alice was born", "1950-03-02") [REMOVED]
18 birth_("Bob was born") birth_(span("born", 198, 201))

19 agent_("Bob was born", "Bob") agent_(span("born", 198, 201), span("Bob", 190, 192))

20 start_("Bob was born", "1955-03-03") start_(span("born", 198, 201), span(19550303, 203, 217))

21 end_("Bob was born", "1955-03-03") [REMOVED]

Figure 2: Case description and semantic annotation of tax_case_5. Left column: annotations from Holzen-
berger and Van Durme (2021). Right column: updated annotations. KBEs are aligned. The term [REMOVED]
indicates content deprecated under the new standard introduced here.

events, we compare value, start and end indices.
This enables distinguishing the events on lines 14
and 18 of Figure 2, even though the textual form of
their anchor is identical. When comparing entities,
we only compare values, enabling basic corefer-
ence, as between the agent_ on lines 3 and 15.

Content of cases Further, we modified 4 cases.
The conclusion of s152_a_neg was ambiguous,
and possibly wrong, because Bob did indeed fulfill
the criteria to be a dependent of Alice, as a qual-
ifying child. We found that because of Prolog’s
closed-world assumption, Alice was triggering an
exception, causing the Prolog solver to produce
the expected (but incorrect) conclusion. We min-
imally edited the case to disambiguate it and pro-
duce the expected negative conclusion. We found
cases s152_b_1_pos and s152_b_1_neg to
be somewhat ambiguous, and added a single disam-
biguating sentence. Finally, throughout the world,
Sunday is alternatively considered to be either the
first or the last day of the week. This has an im-
pact on cases involving section 3306. To avoid any
ambiguities, in 3306_a_1_B_neg, we changed
March 19, 2017 to March 18; April 2, 2017 to
April 1; and December 3, 2017 to December 2.

4 Model

Overview We frame the problem of IE as map-
ping the case description (a string) to a tree of
depth 2 or less, like the one on Figure 3. Each
node of the tree is a span in the case description,
and each edge is labeled with an element from
the ontology. The tree is built incrementally from
the root: for each node, we predict its child nodes
and the corresponding labelled edges. The exam-
ple in Figure 3 is predicted in 3 steps, predicting
(1) the nodes with full lines, (2) the top 3 nodes
with dashed lines, and (3) the bottom 3 nodes with
dashed lines. This section details the steps in this
procedure, and line numbers refer to Algorithm 1,
which describes how individual nodes and edges
are predicted. Algorithm 2 describes how trees are
predicted. To put this approach into context: we
use a span-based parser, which incrementally seg-
ments the input text and types each segment (Das
et al., 2014). We use the model described in Sec-
tion 4.5 of Yarmohammadi et al. (2021), which
has state-of-the-art performance for FrameNet pars-
ing (Xia et al., 2021). We make one major change:
we use a multi-layer perceptron instead of a BiL-
STM. Appendix C describes how predicted KBEs
are associated with probabilities.

116

Alice and Bob got married on April 5th, 2012. Alice and Bob were legally
separated under a decree of divorce on September 16th, 2017.

span("married", 18, 24)

ROOT

span("separated", 73, 81)

span("Alice", 0, 4)

span(20120405, 29, 43)

agent_

agent_

start_marriage_

legal_separation_ span("married", 18, 24)

span("decree of divorce", 91, 107)

patient_

agent_

start_

span("Bob", 10, 12)

span(20170916, 112, 131)

marriage_(span("married", 18, 24)).
agent_(span("married", 18, 24), span("Alice", 0, 4)).
agent_(span("married", 18, 24), span("Bob", 10, 12)).
start_(span("married", 18, 24), span(20120405, 29, 43)).
legal_separation_(span("separated", 73, 81)).
patient_(span("separated", 73, 81), span("married", 18, 24)).
agent_(span("separated", 73, 81), span("decree of divorce", 91, 107)).
start_(span("separated", 73, 81), span(20170916, 112, 131)).

Figure 3: Inputs and outputs of the IE task for case
s7703_a_2. Top frame: input case description. Bot-
tom frame: output KB. Bottom: tree representation of
the KB. Events are in orange with full line, and their
arguments in purple with dashed line.

Features We use LLMs as pre-trained encoders
(see Section 5.2). The case description is tokenized
into X = x1, x2, ..., xn using the LLM’s tokenizer.
X is mapped to features H = h1, h2, ..., hn using
the pre-trained encoder (line 2). Given the span
of the parent node, we augment hi with the dis-
tance between the span of the parent node and i.
This distance is expressed in number of tokens,
and represented using learned embeddings. If the
parent node is the root of the tree, then we set
the distance feature to the zero vector. We con-
catenate hi and the distance feature pi to obtain
fi = [hi, pi] (1 ≤ i ≤ n) where [., .] denotes con-
catenation (line 3). Further, we compute x, the
representation of the parent node, as the average
of the tokens that represent the span of the parent
node (line 4). If the parent node is the root, we set
x = v where v is a learnable vector embedding.

Finding nodes Given the parent node, we find its
children as spans in the case description. We map
each gi = [fi, x] (1 ≤ i ≤ n) to BIO logits with
a multi-layer perceptron. We use a Conditional
Random Field (Lafferty et al., 2001) with BIO tags
to predict a set of spans S = {s1, s2, ..., sm}. We
denote this BIO tagger as T (line 5).

Predicting labels We now label the edges con-
necting each child node to the parent. Each span
sj ∈ S has a start index sstartj and an end in-

Algorithm 1: Find the children of a given
node and labels of edges. FINDCHIL-
DREN(X, r)

Require: text X , root span r
Ensure: knowledge base elements K
1: K ← ∅
2: H ← EMBED(X) # embed text with pre-trained

encoder E
3: F ← AUGMENT(H, r) # add distance features
4: x← COMPUTESPANREPRESENTATION(H, r) #

compute contextualized representation of root span r
5: S ← BIOTAGGER(F, x) # extract spans with BIO

tagger T
6: for s in S do
7: z ← COMPUTESPANREPRESENTATION(F, s) #

compute contextualized representation of span s
8: l← PREDICTLABEL(z, x) # predict label with

classifier L
9: K ← K ∪ {(l, r, s)} # add new KBE

10: end for
11: return K

Algorithm 2: Predict the IE tree for a given
case. PREDICTTREE(X)

Require: case description X
Ensure: tree T
1: T ← ∅
2: Q← [ROOT] # queue of nodes to be processed
3: while Q is not empty do
4: q ← POP(Q) # take first node
5: K ← FINDCHILDREN(X, q) # find its children
6: T ← T ∪K # add predicted relations to tree
7: if q is ROOT then
8: for l, r, s ∈ K do
9: Q← Q ∪ {s} # add children of the root

to the queue, to predict one more level of
children

10: end for
11: end if
12: end while
13: return T

dex sendj .4 On line 7, we map each span sj to

its representation qj =
1

sendj −sstartj +1

∑sendj

k=sstartj
fk

i.e. the average of the features in sj .5 We
use a multi-layer perceptron L to map each
uj = [qj , x] (1 ≤ j ≤ m) to label logits lj (line 8).

Training Our model consists of encoder E , BIO
tagger T , label classifier L, distance embeddings
D, and root representation v. We have gold spans
for all nodes in the tree, that we use to generate
gold sequences of BIO tags and to train T . We

4At training time, S is the set of gold spans. At eval time,
S is the set of spans predicted by the BIO tagger.

5For roughly 80% of gold spans, the span is a single token,
so that sstartj = sendj , and this amounts to selecting a single
vector in the sequence f1, f2, ..., fn.

117

use the loss

LT = − 1

|G| log p(G)

where G is the gold sequence of BIO tags, and |G|
its length in tokens. The labels of the edges are
used to train L, with the loss

LL = − 1

|U |
∑

(l,r,c)∈U
log p(l|r, c)

where (l, r, c) is a triplet of (label, parent node,
child node) from the training set U . Finally, E ,
D and v are used to compute features input to
T and L. Information is passed from one mod-
ule to the next in a differentiable way, making
the entire model trainable end-to-end with the
single loss function

L = λLT + (1− λ)LL

where λ ∈ [0, 1] is a tradeoff hyperparameter.

5 Experiments

5.1 Data pre-processing
First, we run Prolog queries against each case
to produce an exhaustive inventory of events
and arguments. For example, the query
?- income_(X). returns all events of type
income_, and the query ?- agent_(X, Y).
returns all X, Y pairs such that entity Y is the
agent of event X. We thus produce a set of cases
containing only KBEs, to avoid the need to extract
the rules shown in Appendix A. This dataset we
refer to as the full dataset.

Some spans cannot be extracted using the IE
framework described in Section 4. First, it cannot
deal with overlapping spans. Out of 2 overlapping
spans we keep the one that appears earliest in the
case description. Second, some values cannot be
inferred from their anchor. For example, some sen-
tences describe repeating events, without explicitly
mentioning all the dates of occurrence. This makes
it impossible to extract those unmentioned dates.
Appendix A describes one such event.

We produce the partial dataset by removing all
unextractable spans and corresponding KBEs. Ta-
ble 1 shows statistics on how many KBEs were
removed in the process. The number of KBEs re-
jected can seem large in comparison to those kept.
However, a fraction of the cases contains most re-
jected KBEs. Ranking the cases by number of

KBEs rejected, the top 10% represent 96%, 98%
and 71% of the rejected KBEs in train, dev and
test, respectively. Figure 4 in Appendix G shows
statistics on the partial dataset.

At training time, we use the partial dataset. At
test time, we report IE scores against both the par-
tial (Table 2) and full datasets (Table 4). To clarify
the difference: the partial dataset contains only
those KBEs from the full dataset that our frame-
work is designed to handle. Both contain the same
SARA cases. Note that this filtering only mildly
affects the overall task of statutory reasoning, as
can be seen in Table 3, TOPLINE: more than 90%
of the cases in the partial dataset can still be solved
by the Prolog program, despite missing KBEs.

Train Dev Test
Kept 2830 664 1305
Rejected 3099 411 1719

Table 1: Number of KBEs kept and rejected, as de-
scribed in Section 5.1.

The SARA dataset only provides a train/test split.
For the purposes of early stopping and hyperparam-
eter search, we split up the train set into a train
and dev set, the same way that the train/test split
was created in Holzenberger et al. (2020). We pair
binary cases by the part of the statutes that they
test: e.g. s2_b_1_pos and s2_b_1_neg are
grouped together. We randomly select 20% of these
groups for the dev set. We also randomly pick 20%
of numerical cases to be used in the dev set. The
result is a train set with 206 cases and a dev set
with 50 cases.

5.2 Results
Information Extraction We use the AllenNLP
codebase (Gardner et al., 2018) version 2.7.0 to
code and train models.6 We use stochastic gradient
descent with early stopping on the dev set.

Performance of a given model is measured as
its F1 score, averaged across cases. We count a
KBE predicted by the model as correct if it appears
exactly in the gold KB. The model receives no
credit for a slightly inaccurate span or label.

We use Optuna (Akiba et al., 2019) to search
for the best set of hyperparameters. Appendix F
reports the range of hyperparameters explored and
best hyperparameters found. We measure perfor-
mance for a given set of hyperparameters as the

6Code for experiments can be found at https://
github.com/SgfdDttt/sara-ie.

118

https://github.com/SgfdDttt/sara-ie
https://github.com/SgfdDttt/sara-ie

mean F1 score across 3 different runs, with 3 dif-
ferent random seeds. This is to mitigate variability
from random initializations.

In Table 2, we report precision, recall and F1
scores, for dev and test sets, on the partial dataset.
We report results on the full dataset in Table 4 in
Appendix D. We compare 5 different pre-trained
encoders (used to map X to H in Section 4):

• LEGALBERT: the legal-domain encoder of
Holzenberger et al. (2020), trained on a subset of
the case.law corpus (caselaw), starting from
bert-base-cased,

• LEGALBERT’: an alternative trained by Zheng
et al. (2021) on more data,

• BERT: BERT-base-cased (Devlin et al., 2019),
which has the same architecture and training ob-
jective as both LEGALBERTs, but was trained
on general-domain English,

• ROBERTA: RoBERTa-base (Liu et al., 2019)
which was shown to achieve higher performance
than BERT on downstream tasks, and

• T5: T5-base (Raffel et al., 2020), which was
shown to achieve higher performance than
RoBERTa on downstream tasks. We only use
the encoder of T5-base in our experiments, dis-
carding the decoder.

Error analysis We compare model outputs on
3 binary cases and 3 numerical cases picked at
random from the test set.7 We report the detail
of the error analysis in Appendix E. From this
sample, it seems that models are generally able
to correctly detect all event anchors, and to fur-
ther type them correctly in at least 90% of cases.
Predicting arguments correctly is still a challenge,
and an important one: a single missing argument
can throw off the Prolog program, especially in
computing tax amounts. For example, missing the
amount_ argument to an income_ event is prac-
tically as bad as not detecting the income_ event
in the first place. When arguments are predicted,
their value tends to be correct, and in any case
of the right type (strings versus integers). For ex-
ample, models rarely mistake the agent_ of an
event: they either predict it correctly, or miss it
entirely. In addition, the more events there are, the

7In binary cases, the outcome to be predicted is either
“Yes” or “No”. In numerical cases, the outcome is an integer,
representing a dollar amount of taxes owed.

harder it is to get all arguments right. To summa-
rize, models mainly struggle with arguments. They
both (1) miss arguments entirely, having generally
higher precision than recall, and (2) occasionally
predict additional arguments, such as predicting
two amount_ arguments by tagging all integers
preceded by a “$” sign.

Statutory reasoning We further measure how
useful model outputs are for statutory reasoning,
and report results in Table 3. We feed the KB
produced with IE to the Prolog program. We
add any statements about statutes of the form
s63("Alice",2017,22895,_) to the KB,
as described in Section 3.1. In addition to the five
models above, we report results on (1) TOPLINE,
which is the partial KB used to train models, and
(2) EMPTY, which corresponds to a model that pre-
dicts no KBEs. Since we evaluated each model by
running training and test with 5 different random
seeds, we pick the model with the highest dev F1
score to produce the KB used for this evaluation on
statutory reasoning.

5.3 Discussion

Focusing on the IE scores, LEGALBERT performs
best out of all encoders, and T5 performs worst,
with large performance gaps between encoders. For
T5, only the encoder was used, and presumably,
more training data is needed to retrain it as a stand-
alone encoder. Legal-domain pre-training clearly
yields performance improvements. As can be seen
by comparing LEGALBERT and LEGALBERT’,
for the SARA dataset, more data does not automat-
ically translate to better performance.

As noted in the caption of Table 3, results from
Holzenberger et al. (2020), Holzenberger and Van
Durme (2021) and Blair-Stanek et al. (2023) are
not directly comparable to ours. Holzenberger
et al. (2020) and Blair-Stanek et al. (2023) apply
NLP models directly to the text of the cases and
statutes, without using any Prolog code. Holzen-
berger and Van Durme (2021) rely on a set of
lightweight semantic annotations of the statutes
and cases to develop a neuro-symbolic model for
statutory reasoning; they also exclude Prolog code.
Contrary to prior work mentioned in this para-
graph, we use a human-curated Prolog representa-
tion of the statutes.

Holzenberger et al. (2020) report that majority
baselines achieve 50% entailment, and 20% nu-
merical accuracies on the test set. Performance of

119

Dev Test
Model Precision Recall F1 Precision Recall F1

LEGALBERT 88.7± 0.6 88.6± 0.6 88.1± 0.3 88.1± 0.2 91.0± 0.5 87.0± 0.3
LEGALBERT’ 87.4± 1.0 83.2± 1.4 84.4± 0.8 85.4± 0.9 84.6± 1.4 82.7± 0.9
BERT 85.9± 2.1 75.1± 2.5 78.7± 1.6 85.2± 2.3 77.0± 2.3 77.4± 1.8
ROBERTA 84.5± 0.6 80.8± 1.5 81.9± 0.9 86.4± 0.7 83.9± 1.6 82.0± 1.0
T5 73.2± 0.6 56.2± 2.4 62.1± 1.5 71.6± 1.1 59.0± 1.3 61.4± 1.0

Table 2: Performance metrics on the IE task measured on the partial dataset. Scores are computed across 5 runs
with different random seeds. We format statistics as average ± standard error. Best scores are bolded.

Entailment Numerical
Model Train Dev Test Train Dev Test

Holzenberger et al. (2020) - - 55± 8.3 - - 25± 17.1
Holzenberger and Van Durme (2021) - - 59± 8.2 - - 45± 19.7
Blair-Stanek et al. (2023) - - 71± 7.6 - - -

TOPLINE 93.7± 3.4 97.1± 5.0 97± 2.8 98.4± 2.6 93.8± 11.0 90± 11.9
EMPTY 69.7± 6.4 67.6± 13.8 71± 7.6 26.6± 9.3 18.8± 17.7 25± 17.2

LEGALBERT 88.7± 4.4 88.2± 9.5 89± 5.2 73.4± 9.3 56.2± 22.5 60± 19.4
LEGALBERT’ 86.6± 4.7 91.2± 8.4 86± 5.8 68.8± 9.7 50.0± 22.6 60± 19.4
BERT 79.6± 5.6 73.5± 13.0 81± 6.5 46.9± 10.5 37.5± 21.9 45± 19.7
ROBERTA 79.6± 5.6 79.4± 11.9 79± 6.8 50.0± 10.5 43.8± 22.5 40± 19.4
T5 78.2± 5.8 73.5± 13.0 76± 7.1 31.2± 9.7 25.0± 19.6 25± 17.2

Table 3: Statutory reasoning accuracies (in %) with 90% confidence interval, obtained by applying the Prolog
solver to the predicted KBs. Accuracies are measured using the metrics described in Holzenberger et al. (2020);
numerical predictions need not match the ground truth exactly to be correct. Best scores within the IE-based
approaches are bolded. The top three lines are not directly comparable, and are provided for reference.

EMPTY on statutory reasoning is higher than that.
First, with the EMPTY KBs containing no facts, it
is generally hard to prove anything at all, so that
negative cases tend to succeed thanks to Prolog’s
negation as failure. Second, since statements about
statutes are added automatically to the KB, cases
that rely on them have a chance to succeed.

There is overall strong Pearson correlation be-
tween F1 and statutory reasoning scores: on the
test set, 80% for entailment accuracy, and 88%
for numerical accuracy. This shows that, for the
SARA dataset, improvements in IE translate to im-
provements in statutory reasoning. This suggests
that IE is important for statutory reasoning, and
encourages progress on this task. IE models tend
to perform better than EMPTY on statutory reason-
ing, so that even imperfect IE is useful for statutory
reasoning. Still, there is room for improvement,
both for IE and for statutory reasoning.

Here, the choice of ontology limits the informa-
tion that the IE model can effectively extract from
the SARA cases. In particular, the current ontology
expresses time with two relations, start_ and
end_. In contrast, natural language can express
time in many different ways, which can occasion-
ally be hard to parse into a structured form (Filtz

et al., 2020). SARA cases may contain the infor-
mation that an event is ongoing, or happening at a
certain point in time, without explicitly referring to
a start or end time. Event calculus (Kowalski and
Sergot, 1986; Miller and Shanahan, 2002) could
be used to represent a wider spectrum of time ex-
pressions, reducing the amount of rejected KBEs.
It would also make it possible for the logical rep-
resentation to align more closely to the language
of the case description. This would yield a better
inductive bias for the IE models while not sacrific-
ing expressivity. More generally, progress on IE
could be made by picking a more expressive, more
general ontology, such that the translation between
language and logical form would be more straight-
forward. But this would require re-writing the Pro-
log solver, to accommodate the new ontology, and
to encode relevant commonsense knowledge.

Finally, the use of explicit KBEs introduces in-
terpretability and auditability in the model’s output,
since it becomes clear what facts are used to per-
form statutory reasoning. This is generally absent
from the direct application of LLMs to statutory
reasoning, even if this can be mitigated with prompt
engineering (Blair-Stanek et al., 2023).

120

6 Conclusion

We improve the SARA ontology and re-annotate
cases for their semantics. Compared to the previ-
ous iteration of the SARA dataset, the KBEs and
overall structure are now richer and more complete.
We also take a step towards more consistent an-
notations, and more extractable KBEs. We adapt
state-of-the-art IE models to extract KBEs from
case descriptions. With empirical results on the
SARA dataset, we find that good performance with
a strict metric can be reached on this small dataset,
and that performance in IE translates directly into
performance in statutory reasoning.

We see three main directions for future work.
First, as stated in Section 5.1, the current ontology
is not flexible enough to both (1) allow for KBEs
closely aligned to the case description, and (2) ex-
press complex relationships, in particular time rela-
tionships. This is one major limitation that could be
addressed, and would likely require overhauling the
expert system representing the statutes. Second, we
have so far assumed that the statutes were parsed
into a logical form ahead of time. A meaningful
step would be to augment the approach presented
here with the automated extraction of the logical
form of statutes, effectively performing semantic
parsing. Finally, cases in SARA are not represen-
tative of the full scope and diversity of legal cases.
Real-world legal cases are generally much longer,
the language is denser, and the phrasing is more
diverse. We see the choice of an ontology and the
annotation of data as two crucial challenges.

7 Limitations

In this paper, we performed experiments on the
SARA dataset, a semi-synthetic dataset for US fed-
eral tax law. The conclusions drawn about legal-
domain IE and about statutory reasoning should
take care to understand that this dataset is not rep-
resentative of the full scope of legal data.

Acknowledgments

This work has been supported by the U.S. National
Science Foundation under grant No. 2204926. Any
opinions, findings, and conclusions or recommen-
dations expressed in this article are those of the
authors and do not necessarily reflect the views of
the National Science Foundation.

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase,

Takeru Ohta, and Masanori Koyama. 2019. Op-
tuna: A next-generation hyperparameter optimiza-
tion framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchor-
age, AK, USA, August 4-8, 2019, pages 2623–2631.
ACM.

Manar Alohaly, Hassan Takabi, and Eduardo Blanco.
2018. A deep learning approach for extracting at-
tributes of ABAC policies. In Proceedings of the
23nd ACM on Symposium on Access Control Mod-
els and Technologies, SACMAT 2018, Indianapolis,
IN, USA, June 13-15, 2018, pages 137–148. ACM.

Maaz Anwar, Riyaz Ahmad Bhat, Dipti Misra Sharma,
Ashwini Vaidya, Martha Palmer, and Tafseer Ahmed
Khan. 2016. A proposition bank of urdu. In Pro-
ceedings of the Tenth International Conference on
Language Resources and Evaluation LREC 2016,
Portorož, Slovenia, May 23-28, 2016. European Lan-
guage Resources Association (ELRA).

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, LAW-ID@ACL 2013, August 8-9, 2013,
Sofia, Bulgaria, pages 178–186. The Association for
Computer Linguistics.

Roberto Bartolini, Alessandro Lenci, Simonetta Mon-
temagni, Vito Pirrelli, and Claudia Soria. 2004. Se-
mantic mark-up of italian legal texts through nlp-
based techniques. In Proceedings of the Fourth In-
ternational Conference on Language Resources and
Evaluation, LREC 2004, May 26-28, 2004, Lisbon,
Portugal. European Language Resources Associa-
tion.

Islam Beltagy, Stephen Roller, Gemma Boleda, Katrin
Erk, and Raymond J. Mooney. 2014. Utexas: Nat-
ural language semantics using distributional seman-
tics and probabilistic logic. In Proceedings of the
8th International Workshop on Semantic Evaluation,
SemEval@COLING 2014, Dublin, Ireland, August
23-24, 2014, pages 796–801. The Association for
Computer Linguistics.

Trevor J. M. Bench-Capon, G. O. Robinson, Tom
Routen, and Marek J. Sergot. 1987. Logic program-
ming for large scale applications in law: A formali-
sation of supplementary benefit legislation. In Pro-
ceedings of the First International Conference on Ar-
tificial Intelligence and Law, ICAIL ’87, Boston, MA,
USA, May 27-29, 1987, pages 190–198. ACM.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on freebase
from question-answer pairs. In Proceedings of the
2013 Conference on Empirical Methods in Natural

121

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3205977.3205984
https://doi.org/10.1145/3205977.3205984
http://www.lrec-conf.org/proceedings/lrec2016/summaries/813.html
https://aclanthology.org/W13-2322/
https://aclanthology.org/W13-2322/
http://www.lrec-conf.org/proceedings/lrec2004/summaries/709.htm
http://www.lrec-conf.org/proceedings/lrec2004/summaries/709.htm
http://www.lrec-conf.org/proceedings/lrec2004/summaries/709.htm
https://doi.org/10.3115/v1/s14-2141
https://doi.org/10.3115/v1/s14-2141
https://doi.org/10.3115/v1/s14-2141
https://doi.org/10.1145/41735.41757
https://doi.org/10.1145/41735.41757
https://doi.org/10.1145/41735.41757
https://aclanthology.org/D13-1160/
https://aclanthology.org/D13-1160/

Language Processing, EMNLP 2013, 18-21 Octo-
ber 2013, Grand Hyatt Seattle, Seattle, Washington,
USA, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1533–1544. ACL.

Patrick Blackburn and Johan Bos. 2005. Representa-
tion and Inference for Natural Language - a First
Course in Computational Semantics. CSLI Studies
in Computational Linguistics. CSLI Publications.

Andrew Blair-Stanek, Nils Holzenberger, and Ben-
jamin Van Durme. 2023. Can GPT-3 perform statu-
tory reasoning? CoRR, abs/2302.06100.

Guido Boella, Luigi Di Caro, and Valentina Leone.
2019. Semi-automatic knowledge population in a
legal document management system. Artif. Intell.
Law, 27(2):227–251.

Luther Karl Branting, Craig Pfeifer, Bradford Brown,
Lisa Ferro, John S. Aberdeen, Brandy Weiss, Mark
Pfaff, and Bill Liao. 2021. Scalable and explainable
legal prediction. Artif. Intell. Law, 29(2):213–238.

Giovanni Campagna, Silei Xu, Mehrad Moradshahi,
Richard Socher, and Monica S. Lam. 2019. Genie:
a generator of natural language semantic parsers for
virtual assistant commands. In Proceedings of the
40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019, pages 394–
410. ACM.

caselaw. 2019. Caselaw access project.

Hector Neri Castañeda. 1967. Comment on D. David-
son’s “The logical forms of action sentences”. The
Logic of Decision and Action.

Ilias Chalkidis, Ion Androutsopoulos, and Achilleas
Michos. 2018. Obligation and prohibition extrac-
tion using hierarchical rnns. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2018, Melbourne, Aus-
tralia, July 15-20, 2018, Volume 2: Short Papers,
pages 254–259. Association for Computational Lin-
guistics.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, and Ion Androutsopoulos. 2019. Large-scale
multi-label text classification on EU legislation. In
Proceedings of the 57th Conference of the Asso-
ciation for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume
1: Long Papers, pages 6314–6322. Association for
Computational Linguistics.

Ilias Chalkidis, Abhik Jana, Dirk Hartung, Michael
J. Bommarito II, Ion Androutsopoulos, Daniel Mar-
tin Katz, and Nikolaos Aletras. 2022. Lexglue: A
benchmark dataset for legal language understanding
in english. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2022, Dublin, Ire-
land, May 22-27, 2022, pages 4310–4330. Associa-
tion for Computational Linguistics.

Dipanjan Das, Desai Chen, André F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014. Frame-
semantic parsing. Comput. Linguistics, 40(1):9–56.

Donald Davidson. 1967. The logical forms of action
sentences. The Logic of Decision and Action.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Rajaa El Hamdani, Majd Mustapha, David Re-
strepo Amariles, Aurore Clément Troussel,
Sébastien Meeùs, and Katsiaryna Krasnash-
chok. 2021. A combined rule-based and machine
learning approach for automated GDPR compliance
checking. In ICAIL ’21: Eighteenth International
Conference for Artificial Intelligence and Law, São
Paulo Brazil, June 21 - 25, 2021, pages 40–49.
ACM.

Erwin Filtz, María Navas-Loro, Cristiana Santos, Axel
Polleres, and Sabrina Kirrane. 2020. Events mat-
ter: Extraction of events from court decisions. In
Legal Knowledge and Information Systems - JURIX
2020: The Thirty-third Annual Conference, Brno,
Czech Republic, December 9-11, 2020, volume 334
of Frontiers in Artificial Intelligence and Applica-
tions, pages 33–42. IOS Press.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew E.
Peters, Michael Schmitz, and Luke Zettlemoyer.
2018. Allennlp: A deep semantic natural language
processing platform. CoRR, abs/1803.07640.

Ingo Glaser, Bernhard Waltl, and Florian Matthes.
2018. Named entity recognition, extraction, and
linking in german legal contracts. In IRIS: Inter-
nationales Rechtsinformatik Symposium, pages 325–
334.

Dan Goldwasser, Roi Reichart, James Clarke, and Dan
Roth. 2011. Confidence driven unsupervised seman-
tic parsing. In The 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Proceedings of the Conference,
19-24 June, 2011, Portland, Oregon, USA, pages
1486–1495. The Association for Computer Linguis-
tics.

Neel Guha, Julian Nyarko, Daniel E. Ho, Christo-
pher Ré, Adam Chilton, Aditya Narayana, Alex
Chohlas-Wood, Austin Peters, Brandon Waldon,
Daniel N. Rockmore, Diego Zambrano, Dmitry Tal-
isman, Enam Hoque, Faiz Surani, Frank Fagan,
Galit Sarfaty, Gregory M. Dickinson, Haggai Po-
rat, Jason Hegland, Jessica Wu, Joe Nudell, Joel

122

http://www.stanford.edu/group/cslipublications/cslipublications/site/1575864967.shtml
http://www.stanford.edu/group/cslipublications/cslipublications/site/1575864967.shtml
http://www.stanford.edu/group/cslipublications/cslipublications/site/1575864967.shtml
https://doi.org/10.48550/arXiv.2302.06100
https://doi.org/10.48550/arXiv.2302.06100
https://doi.org/10.1007/s10506-018-9239-8
https://doi.org/10.1007/s10506-018-9239-8
https://doi.org/10.1007/s10506-020-09273-1
https://doi.org/10.1007/s10506-020-09273-1
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
https://doi.org/10.1145/3314221.3314594
http://case.law
https://doi.org/10.18653/v1/P18-2041
https://doi.org/10.18653/v1/P18-2041
https://doi.org/10.18653/v1/p19-1636
https://doi.org/10.18653/v1/p19-1636
https://doi.org/10.18653/v1/2022.acl-long.297
https://doi.org/10.18653/v1/2022.acl-long.297
https://doi.org/10.18653/v1/2022.acl-long.297
https://doi.org/10.1162/COLI_a_00163
https://doi.org/10.1162/COLI_a_00163
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.1145/3462757.3466081
https://doi.org/10.1145/3462757.3466081
https://doi.org/10.1145/3462757.3466081
https://doi.org/10.3233/FAIA200847
https://doi.org/10.3233/FAIA200847
http://arxiv.org/abs/1803.07640
http://arxiv.org/abs/1803.07640
https://aclanthology.org/P11-1149/
https://aclanthology.org/P11-1149/

Niklaus, John J. Nay, Jonathan H. Choi, Kevin To-
bia, Margaret Hagan, Megan Ma, Michael A. Liv-
ermore, Nikon Rasumov-Rahe, Nils Holzenberger,
Noam Kolt, Peter Henderson, Sean Rehaag, Sharad
Goel, Shang Gao, Spencer Williams, Sunny Gandhi,
Tom Zur, Varun Iyer, and Zehua Li. 2023. Legal-
bench: A collaboratively built benchmark for mea-
suring legal reasoning in large language models.
CoRR, abs/2308.11462.

Dan Hendrycks, Collin Burns, Anya Chen, and
Spencer Ball. 2021. CUAD: an expert-annotated
NLP dataset for legal contract review. In Pro-
ceedings of the Neural Information Processing Sys-
tems Track on Datasets and Benchmarks 1, NeurIPS
Datasets and Benchmarks 2021, December 2021,
virtual.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1127–
1138, Vancouver, Canada. Association for Computa-
tional Linguistics.

Nils Holzenberger, Andrew Blair-Stanek, and Ben-
jamin Van Durme. 2020. A dataset for statutory rea-
soning in tax law entailment and question answer-
ing. In Proceedings of the Natural Legal Language
Processing Workshop 2020 co-located with the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining (KDD 2020), Vir-
tual Workshop, August 24, 2020, volume 2645 of
CEUR Workshop Proceedings, pages 31–38. CEUR-
WS.org.

Nils Holzenberger and Benjamin Van Durme. 2021.
Factoring statutory reasoning as language under-
standing challenges. In Proceedings of the 59th
Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International
Joint Conference on Natural Language Processing,
ACL/IJCNLP 2021, (Volume 1: Long Papers), Vir-
tual Event, August 1-6, 2021, pages 2742–2758. As-
sociation for Computational Linguistics.

Gene Kim, Mandar Juvekar, and Lenhart Schubert.
2021. Monotonic inference for underspecified
episodic logic. In Proceedings of the 1st and
2nd Workshops on Natural Logic Meets Machine
Learning (NALOMA), pages 26–40, Groningen,
the Netherlands (online). Association for Computa-
tional Linguistics.

Thomas Kollar, Danielle Berry, Lauren Stuart,
Karolina Owczarzak, Tagyoung Chung, Lambert
Mathias, Michael Kayser, Bradford Snow, and Spy-
ros Matsoukas. 2018. The alexa meaning represen-
tation language. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT 2018, New Or-
leans, Louisiana, USA, June 1-6, 2018, Volume 3
(Industry Papers), pages 177–184. Association for
Computational Linguistics.

Robert A. Kowalski and Marek J. Sergot. 1986. A
logic-based calculus of events. New Gener. Comput.,
4(1):67–95.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML
2001), Williams College, Williamstown, MA, USA,
June 28 - July 1, 2001, pages 282–289. Morgan
Kaufmann.

Sarah B Lawsky. 2017. A logic for statutes. Fla. Tax
Rev., 21:60.

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In The 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies, Proceedings of the Conference, 19-24
June, 2011, Portland, Oregon, USA, pages 590–599.
The Association for Computer Linguistics.

Rūta Liepin, a, Federico Ruggeri, Francesca Lagioia,
Marco Lippi, Kasper Drazewski, and Paolo Tor-
roni. 2020. Explaining potentially unfair clauses
to the consumer with the CLAUDETTE tool. In
Proceedings of the Natural Legal Language Pro-
cessing Workshop 2020 co-located with the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining (KDD 2020), Vir-
tual Workshop, August 24, 2020, volume 2645 of
CEUR Workshop Proceedings, pages 61–64. CEUR-
WS.org.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Bingfeng Luo, Yansong Feng, Jianbo Xu, Xiang
Zhang, and Dongyan Zhao. 2017. Learning to
predict charges for criminal cases with legal ba-
sis. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September 9-
11, 2017, pages 2727–2736. Association for Compu-
tational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank. Comput. Lin-
guistics, 19(2):313–330.

Denis Merigoux, Nicolas Chataing, and Jonathan
Protzenko. 2021a. Catala: a programming language
for the law. Proc. ACM Program. Lang., 5(ICFP):1–
29.

Denis Merigoux, Raphaël Monat, and Jonathan
Protzenko. 2021b. A modern compiler for the
french tax code. In CC ’21: 30th ACM SIGPLAN
International Conference on Compiler Construction,
Virtual Event, Republic of Korea, March 2-3, 2021,
pages 71–82. ACM.

123

https://doi.org/10.48550/arXiv.2308.11462
https://doi.org/10.48550/arXiv.2308.11462
https://doi.org/10.48550/arXiv.2308.11462
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/6ea9ab1baa0efb9e19094440c317e21b-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/6ea9ab1baa0efb9e19094440c317e21b-Abstract-round1.html
https://doi.org/10.18653/v1/P17-1104
https://doi.org/10.18653/v1/P17-1104
http://ceur-ws.org/Vol-2645/paper5.pdf
http://ceur-ws.org/Vol-2645/paper5.pdf
http://ceur-ws.org/Vol-2645/paper5.pdf
https://doi.org/10.18653/v1/2021.acl-long.213
https://doi.org/10.18653/v1/2021.acl-long.213
https://aclanthology.org/2021.naloma-1.5
https://aclanthology.org/2021.naloma-1.5
https://doi.org/10.18653/v1/n18-3022
https://doi.org/10.18653/v1/n18-3022
https://doi.org/10.1007/BF03037383
https://doi.org/10.1007/BF03037383
https://aclanthology.org/P11-1060/
https://aclanthology.org/P11-1060/
http://ceur-ws.org/Vol-2645/short4.pdf
http://ceur-ws.org/Vol-2645/short4.pdf
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/d17-1289
https://doi.org/10.18653/v1/d17-1289
https://doi.org/10.18653/v1/d17-1289
https://doi.org/10.1145/3473582
https://doi.org/10.1145/3473582
https://doi.org/10.1145/3446804.3446850
https://doi.org/10.1145/3446804.3446850

Rob Miller and Murray Shanahan. 2002. Some alter-
native formulations of the event calculus. In Com-
putational Logic: Logic Programming and Beyond,
Essays in Honour of Robert A. Kowalski, Part II,
volume 2408 of Lecture Notes in Computer Science,
pages 452–490. Springer.

Sarah Moeller, Irina Wagner, Martha Palmer, Kathryn
Conger, and Skatje Myers. 2020. The Russian Prop-
Bank. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 5995–
6002, Marseille, France. European Language Re-
sources Association.

María Navas-Loro and Cristiana Santos. 2018. Events
in the legal domain: first impressions. In Proceed-
ings of the 2nd Workshop on Technologies for Reg-
ulatory Compliance co-located with the 31st Inter-
national Conference on Legal Knowledge and In-
formation Systems (JURIX 2018), Groningen, The
Netherlands, December 12, 2018, volume 2309 of
CEUR Workshop Proceedings, pages 45–57. CEUR-
WS.org.

Tim O’Gorman, Sameer Pradhan, Martha Palmer, Ju-
lia Bonn, Kathryn Conger, and James Gung. 2018.
The new propbank: Aligning propbank with AMR
through POS unification. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation, LREC 2018, Miyazaki,
Japan, May 7-12, 2018. European Language Re-
sources Association (ELRA).

Anja Oskamp and Marc Lauritsen. 2002. AI in law
practice? so far, not much. Artif. Intell. Law,
10(4):227–236.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Cor-
pus of Semantic Roles. Computational Linguistics,
31(1):71–106.

Terence Parsons. 1990. Events in the Semantics of En-
glish, volume 334. MIT press Cambridge, MA.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers, pages 1470–
1480. The Association for Computer Linguistics.

Juliano Rabelo, Randy Goebel, Mi-Young Kim, Yoshi-
nobu Kano, Masaharu Yoshioka, and Ken Satoh.
2022. Overview and discussion of the competition
on legal information extraction/entailment (COL-
IEE) 2021. Rev. Socionetwork Strateg., 16(1):111–
133.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring

the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Julián Moreno Schneider, Georg Rehm, Elena Montiel-
Ponsoda, Víctor Rodríguez-Doncel, Patricia Martín-
Chozas, María Navas-Loro, Martin Kaltenböck,
Artem Revenko, Sotirios Karampatakis, Christian
Sageder, Jorge Gracia, Filippo Maganza, Ilan Kern-
erman, Dorielle Lonke, Andis Lagzdins, Julia
Bosque-Gil, Pieter Verhoeven, Elsa Gomez Diaz,
and Pascual Boil Ballesteros. 2022. Lynx: A
knowledge-based AI service platform for content
processing, enrichment and analysis for the legal do-
main. Inf. Syst., 106:101966.

Lenhart K. Schubert, Benjamin David Van Durme, and
Marzieh Bazrafshan. 2010. Entailment inference in
a natural logic-like general reasoner. In Common-
sense Knowledge, Papers from the 2010 AAAI Fall
Symposium, Arlington, Virginia, USA, November 11-
13, 2010, volume FS-10-02 of AAAI Technical Re-
port. AAAI.

David M. Sherman. 1987. A prolog model of the in-
come tax act of canada. In Proceedings of the First
International Conference on Artificial Intelligence
and Law, ICAIL ’87, Boston, MA, USA, May 27-29,
1987, pages 127–136. ACM.

Beth Sundheim. 1992. Overview of the fourth message
understanding evaluation and conference. In Pro-
ceedings of the 4th Conference on Message Under-
standing, MUC 1992, McLean, Virginia, USA, June
16-18, 1992, pages 3–21. ACL.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. ACE 2005 multilingual
training corpus (LDC2006T06). Philadelphia: Lin-
guistic Data Consortium.

Nathaniel Weir, Prasetya Utama, Alex Galakatos, An-
drew Crotty, Amir Ilkhechi, Shekar Ramaswamy,
Rohin Bhushan, Nadja Geisler, Benjamin Hättasch,
Steffen Eger, Ugur Çetintemel, and Carsten Binnig.
2020. Dbpal: A fully pluggable NL2SQL train-
ing pipeline. In Proceedings of the 2020 Interna-
tional Conference on Management of Data, SIG-
MOD Conference 2020, online conference [Portland,
OR, USA], June 14-19, 2020, pages 2347–2361.
ACM.

Aaron Steven White, Elias Stengel-Eskin, Siddharth
Vashishtha, Venkata Subrahmanyan Govindarajan,
Dee Ann Reisinger, Tim Vieira, Keisuke Sakaguchi,
Sheng Zhang, Francis Ferraro, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2020. The
universal decompositional semantics dataset and de-
comp toolkit. In Proceedings of The 12th Language
Resources and Evaluation Conference, LREC 2020,
Marseille, France, May 11-16, 2020, pages 5698–
5707. European Language Resources Association.

Shumin Wu and Martha Palmer. 2015. Improving
Chinese-English PropBank alignment. In Proceed-
ings of the Ninth Workshop on Syntax, Semantics

124

https://doi.org/10.1007/3-540-45632-5_17
https://doi.org/10.1007/3-540-45632-5_17
https://aclanthology.org/2020.lrec-1.734
https://aclanthology.org/2020.lrec-1.734
http://ceur-ws.org/Vol-2309/05.pdf
http://ceur-ws.org/Vol-2309/05.pdf
http://www.lrec-conf.org/proceedings/lrec2018/summaries/1074.html
http://www.lrec-conf.org/proceedings/lrec2018/summaries/1074.html
https://doi.org/10.1023/A:1025402013007
https://doi.org/10.1023/A:1025402013007
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.3115/v1/p15-1142
https://doi.org/10.1007/s12626-022-00105-z
https://doi.org/10.1007/s12626-022-00105-z
https://doi.org/10.1007/s12626-022-00105-z
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1016/j.is.2021.101966
https://doi.org/10.1016/j.is.2021.101966
https://doi.org/10.1016/j.is.2021.101966
https://doi.org/10.1016/j.is.2021.101966
http://www.aaai.org/ocs/index.php/FSS/FSS10/paper/view/2306
http://www.aaai.org/ocs/index.php/FSS/FSS10/paper/view/2306
https://doi.org/10.1145/41735.41750
https://doi.org/10.1145/41735.41750
https://doi.org/10.3115/1072064.1072066
https://doi.org/10.3115/1072064.1072066
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
https://doi.org/10.1145/3318464.3380589
https://doi.org/10.1145/3318464.3380589
https://aclanthology.org/2020.lrec-1.699/
https://aclanthology.org/2020.lrec-1.699/
https://aclanthology.org/2020.lrec-1.699/
https://doi.org/10.3115/v1/W15-1012
https://doi.org/10.3115/v1/W15-1012

and Structure in Statistical Translation, pages 74–
82, Denver, Colorado, USA. Association for Com-
putational Linguistics.

Patrick Xia, Guanghui Qin, Siddharth Vashishtha,
Yunmo Chen, Tongfei Chen, Chandler May, Craig
Harman, Kyle Rawlins, Aaron Steven White, and
Benjamin Van Durme. 2021. LOME: Large ontol-
ogy multilingual extraction. In Proceedings of the
16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations, pages 149–159, Online. Associa-
tion for Computational Linguistics.

Feng Yao, Chaojun Xiao, Xiaozhi Wang, Zhiyuan Liu,
Lei Hou, Cunchao Tu, Juanzi Li, Yun Liu, Weixing
Shen, and Maosong Sun. 2022. LEVEN: A large-
scale chinese legal event detection dataset. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2022, Dublin, Ireland, May 22-27, 2022,
pages 183–201. Association for Computational Lin-
guistics.

Mahsa Yarmohammadi, Shijie Wu, Marc Marone,
Haoran Xu, Seth Ebner, Guanghui Qin, Yunmo
Chen, Jialiang Guo, Craig Harman, Kenton Mur-
ray, Aaron Steven White, Mark Dredze, and Ben-
jamin Van Durme. 2021. Everything is all it takes:
A multipronged strategy for zero-shot cross-lingual
information extraction. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 1950–1967. Association for Computa-
tional Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence and
Eighth Innovative Applications of Artificial Intelli-
gence Conference, AAAI 96, IAAI 96, Portland, Ore-
gon, USA, August 4-8, 1996, Volume 2, pages 1050–
1055. AAAI Press / The MIT Press.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In UAI ’05, Proceedings of the 21st Conference
in Uncertainty in Artificial Intelligence, Edinburgh,
Scotland, July 26-29, 2005, pages 658–666. AUAI
Press.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caiming
Xiong, Richard Socher, and Dragomir R. Radev.
2019. Editing-based SQL query generation for
cross-domain context-dependent questions. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing, EMNLP-IJCNLP 2019, Hong Kong,
China, November 3-7, 2019, pages 5337–5348. As-
sociation for Computational Linguistics.

Lucia Zheng, Neel Guha, Brandon R. Anderson, Pe-
ter Henderson, and Daniel E. Ho. 2021. When does
pretraining help?: assessing self-supervised learning
for law and the casehold dataset of 53, 000+ legal
holdings. In ICAIL ’21: Eighteenth International
Conference for Artificial Intelligence and Law, São
Paulo Brazil, June 21 - 25, 2021, pages 159–168.
ACM.

Haoxi Zhong, Chaojun Xiao, Cunchao Tu, Tianyang
Zhang, Zhiyuan Liu, and Maosong Sun. 2020. How
does NLP benefit legal system: A summary of le-
gal artificial intelligence. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10,
2020, pages 5218–5230. Association for Computa-
tional Linguistics.

A Repeated events

The sentence “Bob earned $300000 every year
from 2015 to 2019.” (case s2_b_3_B_pos) is
represented in Prolog as:

bob_income(Year, Event, Start_day,
End_day) :-

between(2015, 2019, Year),
atom_concat("earned ", Year, Event),
first_day_year(Year, Start_day),
last_day_year(Year, End_day).

income_(span(Event, 286, 291)) :-
bob_income(_, Event, _, _).

agent_(span(Event, 286, 291),
span("Bob", 282, 284)) :-

bob_income(_, Event, _, _).

amount_(span(Event, 286, 291),
span(300000, 294, 299)) :-

bob_income(_, Event, _, _).

start_(span(Event, 286, 291),
span(Start_day, 317, 320)) :-

bob_income(_, Event, Start_day, _).

This makes it possible to generate 4 different
payment_ events and their arguments:

income_(span("earned 2015", 286, 291)).
agent_(span("earned 2015", 286, 291),

span("Bob", 282, 284)).
amount_(span("earned 2015", 286, 291),

span(300000, 294, 299)).
start_(span("earned 2015", 286, 291),

span(20150101, 317, 320)).

income_(span("earned 2016", 286, 291)).
agent_(span("earned 2016", 286, 291),

span("Bob", 282, 284)).
amount_(span("earned 2016", 286, 291),

span(300000, 294, 299)).
start_(span("earned 2016", 286, 291),

span(20160101, 317, 320)).

income_(span("earned 2017", 286, 291)).
agent_(span("earned 2017", 286, 291),

125

https://doi.org/10.18653/v1/2021.eacl-demos.19
https://doi.org/10.18653/v1/2021.eacl-demos.19
https://aclanthology.org/2022.findings-acl.17
https://aclanthology.org/2022.findings-acl.17
https://doi.org/10.18653/v1/2021.emnlp-main.149
https://doi.org/10.18653/v1/2021.emnlp-main.149
https://doi.org/10.18653/v1/2021.emnlp-main.149
http://www.aaai.org/Library/AAAI/1996/aaai96-156.php
http://www.aaai.org/Library/AAAI/1996/aaai96-156.php
http://www.aaai.org/Library/AAAI/1996/aaai96-156.php
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=1209&proceeding_id=21
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.1145/3462757.3466088
https://doi.org/10.1145/3462757.3466088
https://doi.org/10.1145/3462757.3466088
https://doi.org/10.1145/3462757.3466088
https://doi.org/10.18653/v1/2020.acl-main.466
https://doi.org/10.18653/v1/2020.acl-main.466
https://doi.org/10.18653/v1/2020.acl-main.466

span("Bob", 282, 284)).
amount_(span("earned 2017", 286, 291),

span(300000, 294, 299)).
start_(span("earned 2017", 286, 291),

span(20170101, 317, 320)).

income_(span("earned 2018", 286, 291)).
agent_(span("earned 2018", 286, 291),

span("Bob", 282, 284)).
amount_(span("earned 2018", 286, 291),

span(300000, 294, 299)).
start_(span("earned 2018", 286, 291),

span(20180101, 317, 320)).

income_(span("earned 2019", 286, 291)).
agent_(span("earned 2019", 286, 291),

span("Bob", 282, 284)).
amount_(span("earned 2019", 286, 291),

span(300000, 294, 299)).
start_(span("earned 2019", 286, 291),

span(20190101, 317, 320)).

With the model of Section 4, it is not possible to
generate a date in 2016, so that it cannot generate
the fact:

start_(span("earned 2016", 286, 291),
span(20160101, 317, 320))

B Dates in IE

B.1 Encoding

In order to facilitate handling time in Prolog, we
represent a date as a base-10 integer of the form
YYYYMMDD. For example, August 23rd, 2017 is
represented as 20170823. In that, we follow Sher-
man (1987). This makes it straightforward to order
two dates, to extract the day from date d as d%100,
the month as (d/100)%100, and so on. It is also
possible to compute the day of the week, or the
index of the week in the current year. In practice,
whenever the full date is stated in the case text, that
is the anchor for the date. For instance, “Alice and
Bob got married on August 24th, 1970” contains
a clear anchor for the date 19700824. Sometimes,
days are not mentioned explicitly: “In 2020, Alice
earned $33200.” Decomposing this sentence into
events, we get

income_(span("earned", 15, 20)).
agent_(span("earned", 15, 20),

span("Alice", 9, 13)).
amount_(span("earned", 15, 20),

span(33200, 23, 27)).
start_(span("earned", 15, 20),

span(D, S, E)).

By default, here, we set D=20200101. Any date
that is the argument of a start_ relation, and
where only the year is specified, defaults to the
first day of that year. Similarly, any date that is

the argument of an end_ relation and where only
the year is specified, defaults to the last day of that
year. This is enforced at annotation time. It is thus
sufficient to find the string “2020” as the argument
to the start_ relation to get it right. S and E are
set to the start and end of “2020”: S=3 and E=6.

B.2 Decoding

At decoding time, we look for arguments to
start_ and end_ relations, and do our best to
convert them to dates. The model of Section 4
returns spans. First, we get the surface form of
that span, i.e. the string that was selected by the
IE model. Next, we use the datetime package
from Python and its strptime function to parse
the string. We try an ordered list of possible regu-
lar expressions for dates, going from most specific
(“August 24th, 1970”) to least specific (“2020”). If
one of them works, we will have a value at least for
the year, and in the best case, values for year, month
and day. From there, we can deduce missing values
for month and day, following the convention with
start_ and end_ mentioned above. If none of
the regular expressions work, we look for a 4-digit
integer as close as possible to the span, and use that
as the year. Failing that, we set the year to 0. In our
error analysis in Appendix E, we have found that
dates were generally either extracted correctly, or
not extracted at all, which suggests that the above
heuristic is not a limiting factor in the performance.

C Probabilities of Knowledge Base
Elements

As depicted in Figure 3, the tree can be represented
as a set of pairs and triplets. Here, we will use
the language of KBEs, which are either pairs (l, r)
or triplets (l, r, c). Pairs (l, r) contain an event
predicate l and a span r. Triplets (l, r, c) contain an
argument predicate l, a span r, and a span c. Our
model parameterizes their probability as follows.

For a pair, p(l, r) = p(l|r)p(r). The probabil-
ity of the span p(r) is computed as the probability
assigned to r by the BIO tagger T (line 6 of Al-
gorithm 1). This is computed by summing the
probabilities of all BIO sequences that allow r as
a span. The probability p(l|r) is assigned to event
predicate l by the label classifier L (line 8). It is
the probability that r is labeled with l.

For a triplet, p(l, r, c) = p(l|r, c)p(c|r)p(r).
The probability of the span p(r) is given by the
BIO tagger, as above. The probability of the sec-

126

ond span p(c|r) is given by the BIO tagger when
conditioned on r. Here too, p(c|r) is computed
by summing the probabilities of all BIO sequences
that allow c as a span. Finally, the probability of
the argument predicate p(l|r, c) is given by the clas-
sifier.

D Additional results

In Table 4, the target KB is the set of KBEs con-
tained in the original SARA cases. We report pre-
cision, recall and F1 scores, for dev and test sets.
Consequently,

• recall scores are systematically lower in Table 4
as compared to Table 2, and

• precision scores are identical.8

E Error analysis

We compare model outputs on 3 binary cases and 3
numerical cases picked at random from the test set.
We only mention the errors made by the models.
Table 5 shows the answers produced by the Prolog
program and the KB on those 6 cases.

TAX_CASE_78. This case has 6 events.
LEGALBERT misses one argument of the first
out of two residence_ events, and overpredicts
a second start_ date. LEGALBERT mispre-
dicts the patient_ of the second residence_
event, but nonetheless makes a sensible predic-
tion. Together with LEGALBERT’, BERT and
T5, LEGALBERT correctly detects a payment_
event, even though that event had been dis-
carded as part of pre-processing, as described
in Section 5.1. For the first residence_
event, LEGALBERT’ mispredicts Bob as the
agent_ instead of Charlie, predicts 2 start_
dates, and 2 patient_ arguments. For the
second residence_ event, LEGALBERT’ pre-
dicts 2 agent_ and 2 patient_ arguments,
one too many in each case. BERT, ROBERTA

and T5 make similar predictions, getting all the
event anchors right, but missing about half the
arguments per event.

TAX_CASE_34. This case contains a single
income_ event. All 5 models perfectly predict
the gold KB.

8Precision is higher in Table 4 for dev precision for LEGAL-
BERT. This difference comes from one out of the five runs,
where AllenNLP returned precisions of 88.6 and 88.7. This
is unexpected, and can presumably be ascribed to an artefact
in rounding in Python. The remaining four runs have identical
precision, and this single discrepancy led to different means,
88.74 and 88.76.

TAX_CASE_28. This case contains 3 events.
LEGALBERT misses a token when predicting the
amount_ argument of the payment_ event: it
predicts “53” instead of “53200”. LEGALBERT’
perfectly predicts all 3 events and their arguments.
BERT misses the purpose_ of service_,
and predicts 2 amount_ arguments for the
same income_ event, confusing amount_ of
payment_ event and that of income_ event.
ROBERTA predicts the income_ event and its
arguments, but then additionally predicts 3 argu-
ments: an extra agent_ (also Alice, but a different
mention), start_ (some other date in the case),
and amount_ (the amount_ of the income_
event). ROBERTA misses the purpose_ of the
service_ event. Like BERT , ROBERTA pre-
dicts two amount_ arguments for the income_
event. T5 correctly predicts all 3 events, but misses
half the arguments of the payment_ event, and
misses the agent_ of the income_ event.

S68_A_2_POS . This case contains a single
income_ event. All models perfectly predict
the gold KB, except for T5 missing the agent_
argument, and BERT predicting that 2 different
“Alice” spans are both agent_ arguments of the
income_ event.

S3306_C_10_B_NEG . This case contains 4
events. LEGALBERT predicts 2 start_ dates to
the medical_patient_ event. LEGALBERT’
fails to classify a hospital as a hospital, instead clas-
sifying it as an educational institution. It incorrectly
infers start_ and end_ dates to the service_
event. BERT correctly classifies a hospital as a
hospital, but misses an argument of that event. It
fails to predict that Alice is a patient at this hos-
pital, as well as what hospital someone is a pa-
tient at, and incorrectly infers start_ and end_
arguments to the payment_ event, like LEGAL-
BERT’. ROBERTA misses the agent_ of the
hospital_ event, and predicts 2 start_ dates
to medical_patient_. T5 correctly classifies
the hospital, and otherwise misses or hallucinates
one or two arguments per event. For example, it
detects the fact that someone is a patient at a hospi-
tal, but fails to predict the agent_ of that relation,
and predicts two start_ dates.

S152_A_NEG . This case contains a single
event: a brother_ relationship between Al-
ice and Bob. LEGALBERT, LEGALBERT’ and
ROBERTA correctly predict the KB. BERT and
T5 miss the patient_ of the relationship.

127

Dev Test
Model Precision Recall F1 Precision Recall F1

LEGALBERT 88.8± 0.6 83.1± 0.6 83.6± 0.3 88.1± 0.2 79.0± 0.3 77.5± 0.3
LEGALBERT’ 87.4± 1.0 78.3± 1.3 80.2± 0.8 85.4± 0.9 75.4± 0.8 74.4± 0.6
BERT 85.9± 2.1 71.2± 2.4 75.0± 1.5 85.2± 2.3 69.4± 1.7 70.0± 1.4
ROBERTA 84.5± 0.6 76.2± 1.4 77.6± 0.8 86.4± 0.7 74.2± 1.1 73.4± 0.8
T5 73.2± 0.6 52.8± 2.1 58.8± 1.4 71.6± 1.1 52.8± 0.8 55.1± 0.8

Table 4: Performance metrics on the IE task measured on the full dataset. Scores are computed across 5 runs with
different random seeds. We format statistics as average ± standard error. Best scores are bolded.

tax_case_78 tax_case_34 tax_case_28 s68_a_2_pos s3306_c_10_B_neg s152_a_neg

LEGALBERT $15213 $2684 $344428 Yes No No
LEGALBERT’ $15213 $2684 $344848 Yes No No
BERT $0 $2684 $365916 Yes No No
ROBERTA $0 $2684 $365916 Yes No No
T5 $0 $2684 $0 Yes No No

EMPTY $0 $0 $0 Yes No No
TOPLINE $15213 $2684 $344848 Yes No No

Correct answer $14470 $2684 $344848 Yes No No

Table 5: Answers obtained with the Prolog program and the KBs extracted with different encoders. The cases are
those analyzed in Appendix E. Incorrect answers are in red italics.

F Hyperparameters

In Section 5.2, we use Optuna (Akiba et al., 2019)
to find good hyperparameters for each pre-trained
encoder, running 100 experiments per encoder. In
Table 6, we report the range searched over for each
hyperparameter. If there is a single value under
“value range”, it means this hyperparameter was set
and not searched over with Optuna. Each exper-
iment consists of 3 training runs with 3 different
random seeds, using the average micro F1 score on
the validation set.

We also report the hyperparameters of the
best performing models, in Tables 7, 8, 9, 10,
and 11. For each number, we report up to
5 significant digits.

G Data statistics

Figure 4 reports statistics on the dataset used for
IE, as well as some examples.

128

Part of model Hyperparameter Value range

Encoder E Transformer model encoding the case de-
scription X

{bert-base-cased, roberta-base,
t5-base, zlucia/custom-legalbert,
jhu-clsp/LegalBert}

Distance embeddings D Size of the embeddings encoding the dis-
tance of each token to the event anchor

{8, 16, 32, 64,128, 256, 512}

Label classifier L Feature dropout in between the layers of
the MLP

[0, 0.8]

Number of units per layer {32, 64, 128, 256, 512, 1024, 2048}
Number of layers {1, 2, 3, 4}

BIO tagger T Feature dropout in between the layers of
the MLP

Always equal to the dropout of L

Number of units {32, 64, 128, 256, 512, 1024, 2048}
Number of layers {1, 2, 3, 4}

Trainer Batch size {8, 16, 32, 64, 128, 256}
Learning rate [1e-6, 1e-3]
Learning rate scheduler reduce_on_plateau — this scheduler halves

the learning rate when the validation score stops
improving

Optimizer huggingface_adamw
Maximum number of epochs to train for 200
Patience 20
Gradient clipping 1.0

Loss function Loss trade-off — see λ in Section 4 [0, 1]

Table 6: Hyperparameter ranges in the hyperparameter search.

Part of model Hyperparameter Value

Encoder E Transformer model jhu-clsp/LegalBert

Distance embeddings D Size 8

Label classifier L Feature dropout 7.6067 · 10−2

Number of units 2048
Number of layers 3

BIO tagger T Feature dropout -
Number of units 1024
Number of layers 3

Trainer Batch size 8
Learning rate 6.1891 · 10−5

Loss function Loss trade-off 7.5288 · 10−1

Table 7: Hyperparameters of best LEGALBERT model.

Part of model Hyperparameter Value

Encoder E Transformer model zlucia/custom-legalbert

Distance embeddings D Size 8

Label classifier L Feature dropout 4.7806 · 10−1

Number of units 2048
Number of layers 1

BIO tagger T Feature dropout -
Number of units 2048
Number of layers 3

Trainer Batch size 8
Learning rate 3.8743 · 10−5

Loss function Loss trade-off 9.3341 · 10−1

Table 8: Hyperparameters of best LEGALBERT’ model.

129

Part of model Hyperparameter Value

Encoder E Transformer model bert-base-cased

Distance embeddings D Size 8

Label classifier L Feature dropout 1.5865 · 10−1

Number of units 64
Number of layers 1

BIO tagger T Feature dropout -
Number of units 256
Number of layers 4

Trainer Batch size 16
Learning rate 7.7282 · 10−5

Loss function Loss trade-off 4.4946 · 10−1

Table 9: Hyperparameters of best BERT model.

Part of model Hyperparameter Value

Encoder E Transformer model roberta-base

Distance embeddings D Size 8

Label classifier L Feature dropout 3.8621 · 10−1

Number of units 2048
Number of layers 2

BIO tagger T Feature dropout -
Number of units 2048
Number of layers 2

Trainer Batch size 32
Learning rate 1.1132 · 10−4

Loss function Loss trade-off 6.6690 · 10−1

Table 10: Hyperparameters of best ROBERTA model.

Part of model Hyperparameter Value

Encoder E Transformer model t5-base

Distance embeddings D Size 8

Label classifier L Feature dropout 3.7523 · 10−1

Number of units 64
Number of layers 1

BIO tagger T Feature dropout -
Number of units 1024
Number of layers 1

Trainer Batch size 32
Learning rate 5.6507 · 10−4

Loss function Loss trade-off 5.0650 · 10−1

Table 11: Hyperparameters of best T5 model.

130

0-4 5-9
10

-14
15

-19
20

-24
25

-29
30

-34
35

-39 40
+

0.0

0.1

0.2

0.3

0.4
number of KBEs

train
dev
test

1 2 3 4 5 6 7 8 9 10+
0.00

0.05

0.10

0.15

0.20

number of spans

1 2 3 4+
0.0

0.2

0.4

0.6

0.8
span length - words

1-4 5-9
10

-14
15

-19 20
+

0.0

0.1

0.2

0.3

0.4

span length - characters

Examples of spans of length 1, 2 and 3: “Alice”, “Bob”, “marriage”, “joint return”, “Feb 3rd, 1992” and
“decree of divorce”.

Figure 4: Statistics of the data used for IE (partial dataset). Number of KBEs and spans are per case. The large
number of 3-word spans is due to many date expressions being 3-word phrases.

131

