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Abstract

This paper considers how the kind of formal
semantic objects used in TTR (a theory of types
with records, Cooper, 2023) might be related
to the vector representations used in Eliasmith
(2013). An advantage of doing this is that it
would immediately give us a neural representa-
tion for TTR objects as Eliasmith relates vec-
tors to neural activity in his semantic pointer
architecture (SPA). This would be an alternat-
ive using convolution to the suggestions made
by Cooper (2019a) based on the phasing of
neural activity. The project seems potentially
hopeful since all complex TTR objects are con-
structed from labelled sets (essentially sets of
ordered pairs consisting of labels and values)
which might be seen as corresponding to the
representation of structured objects which Elia-
smith achieves using superposition and circular
convolution.

1 Introduction

Work on TTR, a theory of types with records, for
example Cooper (2023), claims that it can be used
to model types learned by agents in order to clas-
sify objects and events in the world. If this is true,
types must be represented in some way in brains. In
this paper we will explore the possibility of using
Eliasmith’s Semantic Pointer Architecture (SPA)
(Eliasmith, 2013) for this purpose. The question
of neural representations of types arises in connec-
tion with the theory of types proposed by TTR in a
way that it does not in connection with more tradi-
tional type theories. The reason is that TTR aims
to provide the kind of types that agents use in the
perception of objects and events and which they
use in interaction to communicate with each other.
If it were to turn out that the kind of types used
are in principle impossible to represent on arrays
of neurons then this would call this project into
question.
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We chose SPA, since it is a model of a biological
neural network. Notwithstanding their practical
and methodological success, artificial neural net-
works (ANN) trained in deep learning leave open
questions with respect to at least two areas of hu-
man cognition. Firstly, being sub-symbolic, it
is unclear how they relate to ‘Jackendoff’s chal-
lenges’! (Jackendoff, 2002, §3.5) and to higher-
order, symbolic processing as observed, for in-
stance, in sentence processing (Goucha et al., 2017;
Frankland and Greene, 2020a). Secondly, des-
pite being inspired by the human brain and po-
tentially useful for neuro-scientific research (Yang
and Wang, 2020), ANNs differ from biological
neural networks. The first issue is addressed
by Vector Symbolic Architectures (VSA; Gayler,
2003; Schlegel et al., 2022), which define symbolic
operations on high-dimensional numerical vectors.

The second issue is addressed by biological
architectures, where high-dimensional vectors re-
ceive a neural interpretation in terms of spiking pat-
terns (Eliasmith, 2013). Formal semantics provides
symbolic systems for analysing natural languages.
However, as Liicking and Ginzburg (2023, p. 149)
argue, it is questionable whether traditional, ‘anti-
representationalist’ formal semantics, which as-
signs truth conditions directly to sentences (Bezuid-
enhout, 2006) also lends itself to cognitive inter-
pretations.

This is different with a Type Theory with
Records (TTR; Cooper, 2023), which even has
a neural interpretation (Cooper, 2019a). Indeed
there has been a wide range of work in this form-
alism, introduced in section 3, which includes the
modelling of intensionality and mental attitudes
(Cooper, 2005, 2023), quantified NPs (Cooper,
2013; Liicking and Ginzburg, 2022; Cooper, 2023),

"Namely ‘The massiveness of the binding problem’, “The
problem of 2°, ‘The problem of variables’, and ‘Binding in
working memory vs. long-term memory’.
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co-predication and dot types in lexical innovation,
frame semantics for temporal reasoning, reason-
ing in hypothetical contexts (Cooper, 2011), spa-
tial reasoning (Dobnik and Cooper, 2017), en-
thymematic reasoning (Breitholtz, 2020), self-
and other-repair (Purver, 2006; Ginzburg et al.,
2014), negation (Cooper and Ginzburg, 2012), non-
sentential utterance resolution (Fernandez et al.,
2007; Ginzburg, 2012), iconic gesture (Liick-
ing, 2016), multimodality (Liicking and Ginzburg,
2023) and symbol grounding (Larsson, 2015,
2021).

Accordingly, this paper offers a first attempt
to combine TTR with a biologically-based VSA,
namely the Semantic Pointer Architecture (SPA)
of Eliasmith (2013). Sections 2 and 3 provide a
brief overview of semantic pointers and TTR, re-
spectively. How to ‘translate’ TTR objects into
SPA is addressed in Section 4. We conclude in
Section 5.

2 SPA (and NEF)

[...] semantic pointers are neural representations
that are aptly described by by high-dimensional
vectors, are generated by compressing more soph-
isticated representations, and can be used to ac-
cess those more sophisticated representations
through decompression [...]. (Eliasmith, 2013,
p. 83)

Hence, there are three perspectives on or levels
of description for semantic pointers, namely
(i) in terms of neural activation, (ii) as (high-
dimensional) vectors, and (iii) as symbols. In this
paper, we will not be concerned with the neural
level beyond the assumption that there are biologic-
ally plausible neural mechanisms underlying what
happens on the levels of vectors and, most central to
our concerns, the level of symbols. Here, we simply
refer to and make use of the Neural Engineering
Framework (Eliasmith and Anderson, 2003) and
its Python implementation Nengo (Bekolay et al.,
2014).

Schlegel et al. (2022) in their very useful survey
of VSAs offer a comparison of different approaches
in terms of four distinct parameters:

Hypervector selection: When selecting vectors
to represent basic entities one aims to create max-
imally different encodings. Higher dimensional
vector spaces offer sufficient space to maintain a
large class of vectors distinct and moreover, they
have the useful property that two random vectors
are with very high probability quasi-orthogonal. A
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common strategy is to use a real range which is nor-
mally distributed with a mean of 0 and a variance of
1/D where D defines the number of dimensions.

Similarity measurement: VSAs use similarity
metrics to evaluate vector representations, in par-
ticular, to assess whether the represented symbols
have a related meaning. The similarity metric plays
the essential role of selecting the correct denoised
vector from the database and to ensure a robust
operation of VSAs. The dot product of two vec-
tors A, B is standardly computed as the sum of the
product of their components, as in (1a). This is the
basis for defining the cosine between two vectors as
in (1b) in terms of the dot product and the vectors’
lengths:

D—1
(1) a A-B=)> ab
k=0

A-B

b. _—
1Al [1B]

cos O =

Following most VSA approaches, we use cosine as
a measure of similarity. Given (1b), this reduces
to the dot product when the vectors are normalized
(i.e., of length 1). If A- B ~ 1, the vectors are
(nearly) identical. For any vector A,

2 A-A=x1

Bundling: VSAs use a bundling operator to su-
perimpose (or overlay) given hypervectors. Plate
(1997) argues that a bundling operator must sat-
isfy unstructured similarity preservation, namely
A+ B is similar to A and to B and to any bundle
A+ C that contains one of the vectors. Bundling is
typically handled using vector addition, but in the
approach adopted here this requires a normalization
step to a vector length of one.

Binding: Binding X is used to connect two vec-
tors, e.g., role-filler pairs. The output is again a
vector from the same vector space. Plate (1997)
argues that binding needs to satisfy:

 Non-similarity of bindees to output: A x B %
A, B

* Similarity preservation: A ~ A’, B ~ B’

implies A x B~ A’ x B’

e ‘X’ is invertible: if C' = A x B, there exists
A= lsuchthat C x A1 =B



In the current paper we generally follow
the approach known as Holographic Reduced
Representations (HRR), first defined by Plate
(1991), which is the approach utilized by Eliasmith
and implemented in Nengo. However, as Eliasmith
notes, one could make different choices if clear mo-
tivation for these arises. Specifically, with respect
to binding we use circular convolution C' = A® B
defined as follows in a space of dimension D:

(3) Circular convolution
D—1

¢ = Z bk —k(modD)
k=0
forj € {0,...,D —1}

Circular convolution approximates the standard
tensor outer product by summing over all of its
(wrap-around) diagonals. This operator is com-
mutative as well as associative. Circular correla-
tion provides an approximated inverse for circular
convolution used for unbinding. The inverse is
defined in (4a), exemplified in (4b), and its use for
unbinding is given in (4c):2

(4) Inverse for circular convolution

-1
" \?vjhere qui{](g?%o.d.j:j)D -1}
b. Inother words: (ag,ai,...,ap—1) 1=
(ag,ap—1,...,a1)
c. ABe®B l'~A

In what follows, we use B’ for B~ 1.

3 TTR

We give a brief sketch of those aspects of TTR
which we will use in this paper. For more detailed
accounts see Cooper (2023).

s : T represents a judgement that s is of type
T. Types may be either basic or complex (in the
sense that they are structured objects which have
types or other objects introduced in the theory as
components). One basic type that we will use is
Ind, the type of individuals; another is Real, the
type of real numbers.

*In algebra an element A’s multiplicative inverse A~ ! is by
definition an element such that A x A% = 1 (the unit element
of multiplication). An approximate inverse of an element A
ApproxInv(A)~! is one where A x ApprozInv(A)~! =~ 1.
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Among the complex types are ptypes which are
constructed from a predicate and arguments of ap-
propriate types as specified for the predicate. Ex-
amples are ‘man(a)’, ‘see(a,b)’ where a,b : Ind.
The objects or witnesses of ptypes can be thought of
as situations, states or events in the world which in-
stantiate the type. Thus s : man(a) can be glossed
as “s is a situation which shows (or proves) that a
is aman”.

Another kind of complex type is record types.
In TTR records are modelled as a labelled set con-
sisting of a finite set of fields. Each field is an
ordered pair, (¢, 0), where ¢ is a label (drawn from
a countably infinite stock of labels) and o is an ob-
ject which is a witness of some type. No two fields
of a record can contain the same label. Importantly,
o can itself be a record.

A record type is like a record except that the
fields are of the form (¢,T') where / is a label as
before and T is a type. The basic intuition is that
a record, r is a witness for a record type, 7', just
in case for each field, (¢;, T;), in T there is a field,
(i, 0;), in r where o; : T;. (Note that this allows
for the record to have additional fields with labels
not included in the fields of the record type.)

The types within fields in record types may de-
pend on objects which can be found in the record
which is being tested as a witness for the record
type. We use a graphical display to represent both
records and record types where each line represents
a field. Example (5) represents the type of records
which can be used to model situations where a man
runs.

ref Ind
5) Cman man(ref)
Crun run(ref)

A record of this type would be of the form

ref = a

Cman = S
©) -

Crun = €

where a : Ind, s : man(a) and e : run(a).
Some of our types will contain manifest fields
like the cpan-field below:

Ind
man(ref)

) ref

Cman=523



Here, [cman=323:man(ref)] 1S a convenient nota-
tion for [cman:man(ret')523] where man(ref),,, is
a singleton type. If a : T, then T}, is a singleton
type and b : T, iff b = a.3 Manifest fields allow us
to progressively specify what values are required
for the fields in a type.

It is possible to combine record types. Suppose
that we have two record types C and Cy:

x:Ind
® Ci= [cman : man(x)]
x : Ind
Co = [cmn : run(x)]

In this case, C1 A C% is a type; more specifically, a
meet type. In general if 77 and 75 are types then
TiyNTyisatypeand a : 17 ATy iff a : T and
a : Th. A meet type 11 A T3 of two record types
can be simplified to a new record type by a process
similar to unification in feature-based systems. If
T1 and T5 are record types then there will be a
type T1/\T5 equivalent to T A T (in the sense that
something will be of the first type if and only if it
is of the second type). The operation A is referred

to as merge.

x: Ind
Cman . Man(x)
Crun © Tun(x)

9 CinCy=

We will introduce further details of TTR as we
need them in subsequent sections.

4 Relating SPA and TTR

4.1 The basic idea

We define a mapping, o, from types in TTR to
patterns (types) of neural activity represented as
vectors in SPA*. On the basis of this we define
neural judgement conditions of the form “agent A
judges s to be of type T if a particular neural con-
dition involving o (7") holds. The connective here
is a conditional rather than a biconditional because
we allow more than one pattern of neural activity

3Cooper (2023) uses a modification of this characterization
of singleton types: if a is of some type, then 7}, is a singleton
type. b : T, iff b : T and b = a. This allows for there to be
types Ty, where a :/T. Such types have no witnesses.

“In this paper, we are not concerned with the converse
mapping, from SPA to TTR.
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to correspond to the same TTR judgement. For
example, A may judge s to be of T" because of, say
visual perception, or because s has been stored in
memory corresponding to the witness cache dis-
cussed in Cooper (2019b). This is in contrast to the
proposal in Cooper (2019a) which defines a func-
tion from types to patterns (types) of neural activ-
ity but does not take the additional step of giving
neural judgement conditions. The move from rep-
resenting types to representing judgements, which
belong to the theory of action defined on the theory
of types, appears to us to be a conceptual improve-
ment. Essentially, the correspondence we define
characterizes the brain activity of an agent when
engaged in an act of making a type judgement,
rather than simply giving a neural representation of
a type. This seems promising for building a theory
of how an embodied agent perceives its environ-
ment rather than creating a neural representation of
a type without specifying how it would link to the
world.

Another way in which the approach taken here
differs from that of Cooper (2019a) is that the ap-
proach to representing the structure of complex
types relies on the vector operations used in SPA,
such as circular convolution, rather than the phas-
ing of neural activity as in Cooper (2019a) follow-
ing in a tradition of neural modelling stemming
from Shastri (1999). This raises a question of
whether the modelling in terms of vector opera-
tions reveals enough structure which we will leave
open in this paper.

Our aim in this paper is to begin mapping out
a possible correspondence between TTR and SPA.
We do not yet have a complete definition and there
are a number of questions about what we have
so far. Nevertheless, we hope that what we have
represents a promising beginning. Below, we often
use 7" ~ T to mean o(7") = T. We will also often
use T to represent o (1)

We will frequently let equality or near similarity
between two patterns of neural activation in SPA
terms characterize TTR neural judgement condi-
tions. In doing this we will exploit the fact the the
dot product of two (nearly) identical vectors a and
b, a - b is approximately equal to 1 (see Eliasmith,
2013, p. 389).

4.2 Basic types

We will use semantic pointers to correspond to
basic TTR types. For basic types, we assume a



function 3 that provides a unique semantic pointer
corresponding to each basic type and that the func-
tion o is defined relative to 3:

(10) IfT'is a basic type, og(T") = B(T)

We will suppress the 3-subscript on ¢ in what fol-
lows.

4.3 Judgements

In TTR, judgements involving basic perceptual
types can be made either using a classifier or based
on a witness cache (Larsson, 2020). Type judge-
ments based on classifiers take real-valued (e.g.
perceptual) inputs.

In SPA, as exemplified by the MNIST dataset
(Deng, 2012) and perceptual/cortical modelling,
a classifier can be implemented as a hierarchical
statistical model, which constructs representations
of the input, which in turn are mapped into mech-
anistic SPA models (Tang and Eliasmith, 2010).
At the highest level of the hierarchy, we have
compressed representation summarising what has
been presented to the lowest level. Following Elia-
smith (2013), this compressed representation is a
semantic pointer.

To judge whether a situation s is of a (perceptual)
type T, the perception of s by an agent A generates
a representation (in the form of neural activity, e.g.
on V1, the primary visual cortex) sa (A’s take on
s in the terminology of Larsson, 2020). A hier-
archical statistical model, call it x, when fed sa as
input to the lowest level of  (e.g. V1) produces a
compressed representation (neural activity) k[sa |
on the highest level (IT, the inferotemporal cortex)
of k—see Figure 1 for an illustration. The semantic
pointer T specifies a certain type of activity on the
highest level of x, and if this activity is triggered
by A perceiving s, this corresponds to A judging
s to be of type T'. If T' is a perceptual basic type
related to the statistical model , then the neural
judgement condition can be expressed as (11a) or
equivalently (11b) .

(11

s:a Tifk[sa] =T
s:aTifk[sa] - Tx1

a.

b.

Below we will often suppress the A-subscript on
Type judgements can also be based on a witness
cache. The witness cache in TTR is a function I
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A
' stimulus current
Figure 1: Illustration of hierarchical statistical model &.

To the left of each layer is the name of the layer, and to
the right is the activity in that layer.

that takes a type 1" and returns a set of objects so
that z : T'if x € F(T'). We can let F be a struc-
ture that binds types with a bundling of semantic
pointers ag + a; + ... + ay, for example

(12) F=(Ind®(a+b+...))+
Int®(1+2+...))+...

In SPA, a bundle is similar to any of its elements.
However, this similarity is more approximate than
similarity between near-identical vectors. For this
reason, we do not require the dot product of bundle
and element to be 1, but only that it does not ap-
proximate 0:

(13) (A1+A2+...+An)-Ai7”30,
(1<i<n)

Given this, type checking can be done by look-
ing up the witness cache in F' and checking its
similarity to the object:

14) z:TifFeT ¥x
where we use & so that this means
(15) z:TiIfF®T -x#0

(15) says that the vector which results from unbind-
ing T associated with type T from F is (approx-
imately) identical to the semantic pointer a. For
example:

(16) a:Indif F®Ind & a

See Figure 2 for an example.’

5The code for this and the following examples can be found
athttps://github.com/aluecking/SPA-TTR.


https://github.com/aluecking/SPA-TTR
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Figure 2: Given an F structure consisting of pointers
for two basic types IND and INT bound to three ob-
ject pointers each—A, B, C, respectively ONE, TWO,
THREE—the (correct) result of unbinding F with IND’
is approxiately (&) similar to pointers A, B and C.
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Figure 3: The similarity of T, with b is only high if
b ~ a. Comparing the similarity of T + a (¢t < 0.25s),
T + b (0.25s < t < 0.58) and T + b = a (notated
‘B_EQ_A’; t > 0.5s) to all pointers in question (note
that ‘A’ is masked by ‘B_EQ_A").

4.4 Singleton types

A special case is typechecking for singleton types
T, C T'. We define the SPA structure to correspond
to singleton types thus:

(17 T, ~ (T +a)
To check if b : T,, we can check the equality
a~ bandthatb: T

(18) b:T,ifax~bandd:T

—see Figure 3.

46

4.5 Labelled sets

Many structures in TTR are defined as labelled sets.
We take labelled sets in TTR to correspond to SPA
structures according to the following:

(19) {<€17«T1>7 ey <£n73n>} ~
€1®d1+...+gn®xn

This move, however, involves treating labels as
proper pointers, that is, compressed high(er) level
semantic representations, which seems to be at
odds with the status of labels as arbitrary book-
keeping devices. A potential way for reconciliation
is to think of labels as indicating functional roles, as
is initially attested in fMRI studies on processing,
where it has been found that general agency (e.g.,
owl-as-agent) is represented in different cortical
regions than narrow agency (e.g., owl-as-chaser)
(Frankland and Greene, 2020b). This is reminis-
cent of an inferential view of thematic roles (Dowty,
1991), which seem to justify a semantic pointer rep-
resentation, but poses the question whether this
approach extends to all labels.

Labelled sets are sets of ordered pairs where the
first item in each pair is a label. In SPA-TTR, we
are using the binding operator ® to associate two
SPA terms. In both frameworks, given an item x
and structure associating items (in TTR, a set S of
ordered pairs of items; in SPA, a vector S as shown
above) it is possible to retrieve the item y which
x is associated with in .S. In TTR, this is done by
finding a pair (x,t) in S. In SPA-TTR, this is done
by unbinding y from a binding x ® y in .S.

An important difference between TTR and SPA
is that in TTR, it is easy to retrieve the labels that
are used in a record type, which then enables rela-
belling the record as needed. In SPA-TTR, retriev-
ing the labels requires probing S for the presence
of each of a (finite) set of labels. If the set of labels
is large, this may be inefficient. We do not offer a
full solution to this problem here, but leave it for
future work. However, we believe that a solution
can be to keep around an index of the labels used
in different record types.

4.6 Record types

We will not attempt here to represent TTR records
in SPA, but focus instead of record types. Since
TTR record types are labelled sets where the labels
are paired with types, we use our SPA coding of
labelled sets for record types.
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time
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Figure 4: Recovering T2 from its path Ty ® Ly ®
Lo ® Lg ® Ly is successful, but lossy as can be seen
by comparison to querying To directly starting from
0.25s.

2 Ty
(20
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4.7 Paths in record types

In TTR, labels coinjoined by ‘. form paths in
records and record types. We can use unbinding in
SPA to achieve something similar. If 7T} is a record
type and 75 is a type and 17 .4;1. . . .. l T and
TN ~Pq,T5 ~Po, l; ~ Ll(l <1< m) then
2) PieLli®..®L,~P;

We can recover P2 (i.e., type T») from Py by fol-
lowing the path L} ®. . .®LZ,,, that is, by unbinding
it with all the pointers used to construct it. Note
that this retrieval is lossy, as illustrated in terms of
a path consisting of four labels in Figure 4.

4.8 Meet and Merge

We take both the meet type T3 AT, of two types
T1 and T, and the merge 77/A\T5 of two record
types 11 and T5 to correspond to the SPA summing
operation +.

(22) a. TiNI5 ~Tq1+ Ty fortypes 171 and 15
b. T1ATy ~ Ty + T for record types T}
and 15
C. U(Tl/\Tz) = U(TlATQ) =T1+ T,
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The SPA summing operation is distributive in
the same way that A is—‘binding distributes over
bundling’ (Schlegel et al., 2022, p. 4536)°—, so
that

23) (1®T1+l1®T2= ({1 ®(T1+ T2))

corresponding to

24) [fllTl] A [EllTQ] = [fllTl/‘\Tg]

Conflating A and A means we are not making a
distinction between 11 AT5 and T} AT» for record
types 11,75 (for non-record types, they work in
the same way also in TTR.).

4.9 Ptypes
Cooper (2023) defines a ptype
P(ay,...,a,) as representing a labelled set

{(pred, P), (arg;,a1), ... (arg;,an)}. We follow
this, so that e.g.

(25) a. run(a) ~ (pred ® run + argl ® a)

b. hug(a,b) ~
(pred ® hug +argl ®a+arg2®Db)

An important area for future research is to enable
classifier-based judgements of sensory input as be-
ing of ptypes and record types involving ptypes.
For example, given a situation s where a boy hugs
a dog, we want an agent A’s take on s to be judged
to be of a complex type involving properties and
relations.

4.10 Subtyping

Since subtyping can be defined in terms of a TTR
equality between two types, this could appear to
be a means of formulating the corresponding SPA-
TTR definition:

26) a. THCThif h'AT, =17 ~
(T1+T2) =~ Ty
b. O'(Tl C T2> = (Tl + Tg) ~ T4

For example,

®1n fact, in Nengo the vocabulary parses of, e.g., ‘A * B +
A *C’ and ‘A * (B + C)’ result in the same vector.



> xind
3 Xrun

6

Q7 of [;z]g x:a]) =
(x®at+y®b)+(x®a)) ~ (x®a+ty®b)

Howeyver, the above solution does not work because
(27) holds only if Ty = Tsg, which is of course
a much stronger requirement than subtyping. An
alternative could be to apply an element-wise max-
imum function:

28) a. 1Ty C Tyiff TN, = 11 ~
max(Ty, T2) = Ty
b. o(Ty C T) = max(T1,T2) ~ T

The similarity of the maximum is indeed larger than
the (cosine) similarity of supertype and subtype
(see https://github.com/aluecking/SPA-TTR).
However, further work is needed to further specify
and verify this proposal.

4.11 Functions

TTR functions can be represented as labelled sets,
but doing so says nothing about how they are ap-
plied to arguments. For this reason, we will here be
focusing on TTR functions as lambda abstracted
expressions. We will not offer a complete account
of TTR functions in SPA here, but only offer some
initial remarks.

For instance, assume we have a function
29) Ar: [x : Ind] : [ c run(r.x) }
This function corresponds to the following mini-
network:

(30)

pred ® run+
arg0 ® xind

Or in SPA syntax:

d = 64 # use vectors of 64 dimensions
spa. State (vocab=d)

spa.State (vocab=d)

input * spa.sym(”IND”) >> xind
xind * spa.sym(”ARGO0”) + spa.sym(”PRED =
RUN”)) >> xrun
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where ‘input’ can, for instance, receive activation
from another network such as k (see (11b)) or se-
quentially range over (any subset of) the objects
bound to IND in the witness cache (see (12)):

def inputs(t):

if t < 0.25:
return “A”

elif t < 0.5:
return “B”

input spa.Transcode (inputs ,
output_vocab=d)

5 Summary and conclusions

In this paper, we took initial steps towards relating
TTR to SPA, with mostly encouraging results. We
accounted for basic types, perceptual and cache-
based judgements, singleton types, record types,
meet types and merging of record types, ptypes,
and subtyping. As indicated above, more work is
needed to account for subtyping and judgements
involving ptypes. Work is ongoing to cover more
aspects of TTR in SPA, including records and func-
tions. In addition to these, several TTR elements
remain to be covered, including join types, asym-
metric merge, and type stratification to name but a
few.

The benefit of succeeding with this effort would
be a true hybrid between formal and neural se-
mantics that could potentially have the benefits of
both but the drawbacks of neither. We also hope
that this work may throw light on many puzzling
issues regarding the relation between formal and
neural semantics.
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