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Abstract
The two contrasting approaches are end-to-end
neural NLI systems and linguistically-oriented
NLI pipelines consisting of modules such as
neural CCG parsers and theorem provers. The
latter, however, faces the challenge of integrat-
ing the neural models used in the syntactic and
semantic components. RNNGs are frameworks
that can potentially fill this gap, but conven-
tional RNNGs adopt CFG as the syntactic the-
ory. To address this issue, we implemented
RNN-CCG, a syntactic parser that replaces
CFG with CCG. We then conducted experi-
ments comparing RNN-CCG to RNNGs with-
/without POS tags and evaluated their behavior
as a first step towards building an NLI system
based on RNN-CCG.

1 Introduction

Over the years, two contrasting approaches to nat-
ural language inference (NLI) have emerged: end-
to-end neural NLI systems based on large lan-
guage models (LLMs) (Lan et al., 2020; Raffel
et al., 2020; He et al., 2021), which we call mono-
modular approaches, and linguistically-oriented
NLI pipelines consisting of syntactic parsers, se-
mantic representations and theorem provers (Bos
et al., 2004; Chatzikyriakidis and Luo, 2014; Mi-
neshima et al., 2015; Abzianidze, 2015; Martínez-
Gómez et al., 2017; Chatzikyriakidis and Bernardy,
2019), which we call multi-modular approaches.
While the former has become more popular in re-
cent years and has shown remarkable progress with
the increasing scale of LLMs, the latter offers high
precision, explanatory properties and strength in
higher-order reasoning such as arithmetic. Both
approaches have strengths and weaknesses and are
expected to complement each other.

A drawback of using neural networks in multi-
modular approaches is that their neural models are
split between syntax and semantics. For example,
the neural part-of-speech (POS) taggers cannot re-
ceive feedback from the results of the semantic

component. The distributional representations in
semantic components considered in works such as
Cooper (2019); Larsson (2020); Bekki et al. (2022,
2023) are not connected to syntax. This gap be-
tween syntactic and semantic neural models is a
potential weakness of multi-modular approaches
compared to mono-modular approaches that seek
to optimize the whole process of NLI.

The use of Recurrent Neural Network Grammars
(RNNGs) (Dyer et al., 2016) is a potential solution
to bridge the gap between syntactic and semantic
neural models in multi-modular approaches. RN-
NGs provide syntactic parsers that can function
as feeding input (syntactic structures) to seman-
tic components, which is still a non-trivial task
for large language models. Furthermore, unlike
standard syntactic parsers and large language mod-
els, RNNGs provide embedded representations for
phrasal constituents obtained by training on pre-
dicting syntactic structures, which we expect to be
useful in a semantic component as well.

One remaining challenge is that the underly-
ing grammar of the current RNNGs is context-
free grammar (CFG), while modern syntactic pro-
cessing in the multi-modular approaches adopts
mildly context-sensitive grammars such as com-
binatory categorial grammar (CCG) (Steedman,
1996, 2000).

Therefore, in this study, we attempt to imple-
ment RNN-CCG, a syntactic parser that replaces
the underlying grammar of RNNGs from CFG to
CCG, and compare the performance of RNN-CCG
with RNNGs, as a first step towards developing
a complete NLI system using RNN-CCG. Tech-
nically, RNN-CCG can be built using almost the
same techniques as RNNGs, but we will show that
its performance is slightly better than RNNGs.

2 Recurrent Neural Network Grammars

RNNGs are language models and syntactic parsers
that explicitly model hierarchical structures of
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words and phrases. Here, we will give an example
of their behavior as syntactic parsers. Internally,
RNNGs use two data structures: Stack and Buffer.
Initially, Buffer contains all the word vectors. Op-
erations on them are defined as Actions:

SHIFT Pop the word vector from Buffer and push
it to Stack.

NT X Push a vector corresponding to the non-
terminal symbol X to Stack. This non-terminal
symbol X is marked as open.

REDUCE Pop from Stack all the elements up to
the first open non-terminal symbol X encoun-
tered. Generate a new vector that encodes them
and push it back to Stack as a new element.

At each time step, Stack, Buffer, and history of
Actions are encoded using LSTMs and RNNs. Pars-
ing is performed by determining the next Action
at each parsing state based on this encoding. It is
inefficient to recompute the encoding of Stack ev-
ery time; thus, RNNGs adopts a mechanism called
Stack LSTMs (Dyer et al., 2015) for optimization.

RNNGs have been the subject of subsequent
researches: stack-only RNNGs (Kuncoro et al.,
2017), which eliminate Buffer from the architec-
ture and use only Stack, a Pytorch implementation
model (Noji and Oseki, 2021) that enables parallel
execution and learning of larger data, and a model
that uses Transformer instead of RNNs (Sartran
et al., 2022; Qian et al., 2021). However, in this
paper, we focus on comparing CFG and CCG as
underlying syntactic theories of RNNGs, adopting
the simplest model presented in the original pa-
per (Dyer et al., 2016) and conducting experiments
focusing on the parsing aspect.

Figure 1: Architecture of RNNGs

3 RNN-CCG

We implemented two models based on RNNGs:
RNN-CFG, which is a re-implementation of RN-
NGs using CFG, and RNN-CCG, which uses CCG
instead of a CFG for the grammar used in RNNGs.
By treating CCG syntactic categories as CFG ter-
minal symbols, CCG is regarded as an instance of
phrase-structure grammar, and the action selection
is a multi-class classification task similar to the case
of RNN-CFG. However, there was a problem with
RNN-CCG in that its syntactic structures do not
provide a layer for POS tags, which is insufficient
to be used for semantic composition. Therefore,
in this research, we extend RNN-CCG so that the
structures have syntactic categories corresponding
to words. For the sake of comparison, we also
implement RNN-CFG that outputs non-terminal
symbols corresponding to words.

3.1 Combinatory Categorial Grammar
CCG is a lexicalized grammar, the generative ca-
pacity of which is known to be mildly context-
sensitive. In phrase structure grammars such as
CFGs, most of the syntactic information is de-
scribed by production rules, and the lexicon is rel-
atively simple. In lexicalized grammars, on the
other hand, most of the syntactic information is
stored in the lexicon, and the combinatory rules are
relatively simple. Additionally, CCG provides se-
mantic information so that the syntactic structures
determine the paths for semantic composition.

To generate The hungry cat meows in a context-
free grammar, the following rules are required1:

S → NP V P

V P → meows

NP → The hungry cat

In contrast, in CCG, each lexical item is defined
as follows. In this example, two lexical items are
combined using the backward function application
rule, a combinatory rule in CCG, to generate a
sentence.

The hungry cat ⊢ NP

meows ⊢ S\NP

3.2 Part-of-speech Tags
RNNGs’ syntactic structures do not contain POS
tags; therefore, when implementing RNN-CCG

1The original paper on RNNGs does not consider the POS
tags of each word; we follow this convention in this paper.
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within the same framework as Dyer et al. (2016), a
syntactic structure such as the one shown in Figure
2 is obtained from the output Action sequence. In
Figure 2, it can be inferred that the syntactic cate-
gory of disclosed is S[pss]\NP , but to obtain the
advantage of CCG syntactic structures, which is the
path for semantic composition, it is necessary to
supplement such syntactic categories of words and
restore the detailed syntactic information. For ex-
ample, it is unclear how to supplement the syntactic
category of were or ’nt in Figure 2. Therefore, in
this study, as shown in Figure 3, we also make our
RNN-CCG predict the category corresponding to
each word using the “NT X” action.

1 (S[dcl]
2 (S[dcl]
3 (NP Terms)
4 (S[dcl]\NP
5 ((S[dcl]\NP) / (S[pss]\NP) were 'nt)
6 disclosed ) )
7 . )

Figure 2: Part-of-speech-insensitive parse tree

1 (S[dcl]
2 (S[dcl]
3 (NP
4 (N Terms ) )
5 (S[dcl]\NP
6 ((S[dcl]\NP)/(S[pss]\NP)
7 ((S[dcl]\NP)/(S[pss]\NP) were )
8 ((S\NP)\(S\NP) n't ) )
9 (S[pss]\NP disclosed ) ) )

10 (. . ) )

Figure 3: Part-of-speech-sensitive parse trees

Commonly, several constraints are imposed in
RNNGs (Dyer et al., 2016) to ensure the generation
of well-formed constituent structures. In this study,
we added POS tags and implemented the following
constraints accordingly.

• SHIFT is immediately after “NT X”

• Always REDUCE immediately after SHIFT

These two rules mean that every single terminal
symbol is reduced to a non-terminal. This non-
terminal corresponds to the POS tag associated
with the terminal.

4 Experiment

4.1 Experimental Setup

We implemented RNN-CFG and RNN-CCG for
English using hasktorch2, the Haskell interface for

2http://hasktorch.org/

Torch. For training, we used Penn Treebank3 as
CFG data and CCGbank4 as CCG data. We used
sections 2-21 for training, section 24 for valida-
tion, and section 23 for evaluation in both corpora.
Details are shown in Table 1.

Table 1: Corpus Statistics

PTB CCGbank
train test train test

Sentences 39,832 2,416 39,604 2,407
Tokens 44,987 8,461 44,211 8,393
Actions(Without POS) 1,182 236 810 258
Actions(With POS) 1,229 282 1,642 542

4.2 Experimental Results

We show the micro F1 score for each model when
this model is considered a sequence labeling model
that predicts the actions in Table 2.5

Table 2: Experimental Results

RNN-CFG RNN-CCG
Without POS With POS Without POS With POS

micro F1 90.7 91.3 91.3 93.6

Following the previous studies, these F1 scores are
calculated for the predictions assuming that all the
predictions before that time step coincide with the
ground truth data.

4.3 Discussion

POS tags According to Table 2, the POS-tagged
models achieved higher scores in both the CFG and
CCG models. This is a welcome result given the
usefulness of POS tags in semantic composition.
On the other hand, this seems counter-intuitive
since Table 1 shows that POS-tagged models have
more actions than their untagged counterparts in
both RNN-CFG and RNN-CCG. Predicting POS
tags becomes more difficult when the number of
classes increases in multi-class classification tasks.

This seemingly contradictory result can be at-
tributed to the constraints discussed in Section 3.2.
While the POS-free models predict a SHIFT action
to move a word from Buffer to Stack, the POS-
tagged models have to predict three actions in a
row: “NT X”, SHIFT, and REDUCE. Due to the
constraints mentioned earlier, all three predictions

3https://catalog.ldc.upenn.edu/LDC99T42
4https://catalog.ldc.upenn.edu/LDC2005T13
5We used rt_G.large (NVIDIA V100 for NVLink 16GiB

HBM2) on the ABCI (AI Bridging Cloud Infrastructure)
(https://abci.ai/) as the experimental environment.

http://hasktorch.org/
https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC2005T13
https://abci.ai/
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are guaranteed to be correct, contributing to the F1
score.

RNN-CCG vs. RNN-CFG Both the POS-tagged
and POS-free RNN-CCG models outperformed
their RNN-CFG counterparts in terms of microF1
score. Considering only the results of the POS-
free models, attributing the differences in accuracy
to the number of actions, the POS-tagged models
in our study had more actions in the CCG case.
Therefore, other factors must be at play. One possi-
ble explanation is that there are fewer combinatory
rules in CCG grammar compared to CFG grammar.
This results in a smaller pool of categories to pre-
dict with the “NT X” action, which may improve
performance.

4.4 Error Analysis
In the above results, all predictions up to each time
step used the ground-truth data, but when used as a
parser, the prediction at each time step depends on
the previous predictions. Therefore, we conducted
an error analysis using the predicted results of the
evaluation data by the syntax parser, including the
state of Stack.

In RNN-CCG with POS, it often occurred that
the same category was output repeatedly, as shown
in Figure 4.

1 (S[dcl]\NP
2 (S[dcl]\NP
3 (S[dcl]\NP
4 (S[dcl]\NP
5 (S[dcl]\NP
6 ...
7 (S[dcl]\NP general )

Figure 4: Output of RNN-CCG with POS

This was not observed in RNN-CFG or RNN-CCG
without POS. One possible cause is that many train-
ing data repeat predicting the same syntactic cate-
gory during training. This is not the case in CFG,
where there are not many production rules that
predict the same nonterminal successively in the
form of X → X, .... In CCG, however, this oc-
curs when X and Y are the same in the backward
function application rule. A typical example is
S\NP ⇒ S\NP, (S\NP )\(S\NP ), which oc-
curs in a structure where an intransitive verb is fol-
lowed by a VP modifier. While “NT S[dcl]\NP ”
is continuously predicted, an intransitive verb con-
tinuously stays at the beginning of Buffer. So to
learn when to transition to the SHIFT action, infor-
mation about whether an adverbial phrase exists in
the Buffer must be referred to.

There are also benefits to using CCG. In RNN-
CFG, since the production rules are not defined in
advance, there is no sense to ask which CFG rule
is correct. Figures 5, 6, 7, and 8 are the predicted
results for the same sentence by RNN-CFG and
RNN-CCG, both of which are predicted incorrectly,
but in Figure 6, there is no rule in CCG that has
S[dcl] as the child and S[dcl] as the parent, so
it is possible to judge whether the output tree is
consistent according to CCG theory.

1 (NP
2 (N
3 (N/N
4 ((N/N)/(N/N) 10)
5 (N/N 1\/2 ) )
6 (N
7 (N % )
8 (. . ) ) ) )

Figure 5: Correct

1 (S[dcl]
2 (S[dcl]
3 (NP
4 (N
5 (N/N 10 )
6 (N
7 (N/N 1\/2 )
8 (N % ) ) ) )
9 (. . ) ) )

Figure 6: Prediction by
RNN-CCG

1 (NP
2 (QP
3 (CD 10 )
4 (CD 1\/2 ) )
5 (NN % )
6 (. . ) )

Figure 7: Correct

1 (S
2 (NP-SBJ
3 (NP
4 (NNP 10 )
5 (NNP 1\/2 )
6 (NNP % ) ) )
7 (. . ) )

Figure 8: Prediction by
RNN-CFG

5 Conclusion

In this study, we implemented RNN-CCG, a syn-
tactic parser in which the grammar used inside the
RNNGs was replaced from CFG to CCG, and con-
ducted comparative experiments with RNN-CFG, a
reimplementation of classical RNNGs. We also im-
plemented their extensions with POS tags consid-
ering syntactic categories corresponding to words.

The results showed that the implementation of
RNN-CCG achieved a higher F1 score than RNN-
CFG with respect to the prediction of actions.
Moreover, both models function effectively when
considering POS tags, providing a better interface
for semantic composition in the case of RNN-
CCGs.

Overall, RNN-CCG is a prospective candidate
of syntactic parsers in a modular NLI approach that
bridges the gap between neural networks within
CCG parsers and semantic modules. Future re-
search could investigate the fusion of RNN-CCG
with semantic composition and logical reasonings.
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