Graph-based multi-layer querying in Parseme Corpora

Bruno Guillaume
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
Bruno.Guillaume@inria.fr

Abstract

We present a graph-based tool which can be
used to explore Verbal Multi-Word Expres-
sion (VMWE) annotated in the Parseme project.
The tool can be used for linguistic exploration
on the data, for helping the manual annotation
process and to search for errors or inconsisten-
cies in the annotations.

1 Introduction

The Parseme project (Monti et al., 2018) proposes a
large set of annotated data with Verbal Multi-Word
Expressions (VMWE). In version 1.2 (Ramisch
et al., 2020), 14 languages were covered but with
older versions and ongoing work', there are now
data in 26 languages (See Table 4 in appendix for
list of languages and the number of sentences for
each language). In the last release, Parseme 1.3,
only “verbal” Multi-Word Expressions are anno-
tated; the annotation of other categories is planed
for future releases.

Parseme data is published with associated
morpho-syntactic annotations, in accordance with
the Universal Dependencies (de Marneffe et al.,
2021) framework. Some parseme annotations are
directly built on data available in the UD project.
In this case, we have both high-quality morpho-
syntactic annotations and VMWE annotations on
the same data. Other parts of the Parseme data,
which are not built on existing UD data, are accom-
panied by an automatic morpho-syntactic annota-
tion, obtained with UDPipe (Straka et al., 2016),
thus also following the UD annotation frame-
work. This means that all annotated data from the
Parseme project can be considered as multi-layer
annotated data, with morphosyntactic annotations
encoded following UD and VMWE.

In this article, we propose an encoding of the
two annotation layers in a common structure, using

lhttps ://gitlab.com/parseme/corpora

58

a graph encoding of both UD and VMWE anno-
tations. With this encoding, it is possible to use
graph-based tools to work with the data. In this
work, we use our GREW tool (Guillaume, 2021) to
make queries on the two layers.

The Parseme 1.3 data will be released on
http://hdl.handle.net/11372/LRT-5124. At
the time of the final version of the paper, these data
are not available. The experiments reported in the
paper are done on a preliminary version of the data
provided by the Parseme team. We cannot exclude
minor differences between the data we used in our
observations and the official 1.3 data.

In Section 2, we explain the encoding. The next
sections give examples of usage with general obser-
vations in Section 3, applications to error mining
in Section 4 and some more comprehensive study
of the consistency between UD and Parseme anno-
tation layers in Section 5.

2 Graph encoding

The two annotation layers (UD and VMWE) are
stored in a common technical format (CUPT)?, but
it is not straightforward to consider both in the
same structure. In UD, each sentence is split in a
sequence of tokens and each Parseme annotation
consists in identifying a subset of the tokens of the
sentence which correspond to a VMWE. In addi-
tion to the subset, a tag is given to each VMWE.
The Parseme guidelines® describes the set of
tags and their definitions. The tagset contains
three universal tags: LVC.FULL, LVC.CAUSE for
light verb constructions and VID for verbal id-
ioms. Three quasi-universal categories are also
defined: VPC.FULL, VPC.SEMI for verb-particle
constructions and MV C for multi-verb construc-
tions. A few other tags are used in the corpora: the
IAV for inherently adpositional verbs, presented

2http: //multiword.sourceforge.net/cupt-format
Shttps://parsemefr.lis-lab.fr/
parseme-st-guidelines/1.3/

Proceedings of the 19th Workshop on Multiword Expressions (MWE 2023), pages 58—64
May 6, 2023 ©2023 Association for Computational Linguistics

https://gitlab.com/parseme/corpora
http://hdl.handle.net/11372/LRT-5124
http://multiword.sourceforge.net/cupt-format
https://parsemefr.lis-lab.fr/parseme-st-guidelines/1.3/
https://parsemefr.lis-lab.fr/parseme-st-guidelines/1.3/

as experimental in the Parseme guidelines and the
tag LS.ICV for inherently clitic verbs (currently
only used in Italian data). Some development ver-
sions of the data makes also use of the special
tag NOTMWE which, as its name indicates, does
not encode a VMWE, it is used in the consistency
checking mechanism*.

There are two difficulties in the encoding.

* A VMWE is not always a span of the origi-
nal text, or in other words it does not always
contains a subset of consecutive tokens of the
sentence. For instance, in the sentence Take a
look /1, the subset containing Take and look
is annotated with the tag LV C.FULL the token
a between the two elements not being part of
the VMWE.

The second problem is that the same token
can be included in more than one VMWEs.
In the sentence /...] to get rid of the moral
burden [...], two subsets are annotated inde-
pendently: the 3 elements get, rid and of are
tagged as IAV (Inherently adpositional verbs)
and the 2 elements get and rid are tagged
as MVC (Multi-verb constructions). Such
VMWE annotations will be called overlap-
ping VMWEs.

In order to take into account theses difficulties,
we propose to encode the two layers in a single
graph structure. Our graphs contain two kinds of
nodes and two kinds of edges:

* UD nodes and UD edges which encode the
lexical tokens and the dependency relations
between tokens

* Parseme nodes and Parseme edges which en-
code VMWEs: each VMWE is represented
by a new node with a feature named label
which stores the tag. The node associated with
a VMWE is linked with Parseme edges to all
the UD token it contains.

Figure 1 shows a simplified picture of the encod-
ing of the two overlapping VMWE:s in the sentence
[...] to get rid of the moral burden [...]. UD
nodes and relations are drawn in black whereas
Parseme nodes and edges are drawn in blue and
below the sentence.

4Script consistencyCheckWebpage.py available in
https://gitlab.com/parseme/utilities

English examples come from the English Parseme corpus:
https://gitlab.com/parseme/parseme_corpus_en

59

nmod
case

=

mark Xcomp

LS

to MVC IAV get rid of the moral burden
PART VERB ADJ ADP DET ADJ NOUN

Figure 1: Graph representation (simplified) of two over-
lapping VMWE annotations

Note that Parseme nodes are not really inserted
in the linear structure of the sentence. By conven-
tion, these nodes are drawn before the first token
of the subset, just to ease the reading of the figures.

3 Multi-layer queries

The benefit of having the two annotation layers
in the same structure is that it is possible to make
queries which refer to both layers and then to make
cross observations. We use the GREW tool which
allows to write graph queries that can be executed
on the Parseme corpora represented has above. The
tool is available in an online web interface: GREW-
MATCH® on a predefined set of treebanks. A Python
library, named GREWPY, is also available to use
queries in scripts.

We give a few examples of GREW queries on the
Parseme graph encoding.

3.1 VWMEs by types

Using the fact that all Parseme nodes have a feature
named label (and that UD nodes do not have such
a feature), the simple request below returns the set
of all annotated VMWEs.

pattern { MWE [label] }

In the request, MWE is an node identifier. The
query can be rephrased as: “search for any node
having a feature named label and call this node
MWE™.

GREW proposes a mechanism to cluster the out-
put of a query following some criterion. With the
clustering key MWE . 1abel, the set of solutions of
the previous query is clustered in a partition of sub-
sets according to the value of the feature 1abel of
the node MWE.

In Table 1 in appendix, each line correspond to
the size of the clusters obtained for each language
in the Parseme data.

6ht’cp: //parseme.grew.fr

https://gitlab.com/parseme/utilities
https://gitlab.com/parseme/parseme_corpus_en
http://parseme.grew.fr

3.2 VWMEs by sizes

We keep the same basic request used in the pre-
vious subsection. In GREW, the clustering key
MWE. __out__ splits the occurrences returned by a
request depending on the number of outgoing edges
on the node MWE. Following the encoding described
in Section 2, this corresponds to the number of to-
kens implied in the VMWE. Table 2 in appendix
reports the sizes of the clusters obtained with this
clustering for all languages.

According to the notion of Multi-Word Expres-
sion, we do not expect to have one-token annotation
as VMWE. All languages have a few number of
such VMWE:s (above 50 occurrences) except for
four languages: Hungarian, Chinese, Swedish and
German.

In Hungarian data, there are 5745 one-token
VMWEEs; this is probably linked to the fact that
Hungarian is an agglutinative language; among
the cases, the same noun with lemma bekezdés
‘paragraph’ appears 995 times, it is tagged as
VPC.FULL and it is built from the verb bekezd
‘to indent’ and with a noun-forming suffix -és’.

There are 5382 cases in Chinese, but Chinese,
not using whitespaces, is well know to be a lan-
guage in which tokenization is challenging.

In Swedish, there are 1614 occurrences and 1268
occurrences in German. In both languages, the
major part of cases are particle verbs. In Ger-
man, the four most frequent lemmas are: einsetzen
‘to insert’, anbieten ‘to offer’, ankiindigen ‘to an-
nounce’, mitteilen ‘to share’. Unlike English where
particles of particle verbs always remain separate
words (put off, to put off), German particles of in-
finitival forms are fronted and spelled as one word,
joining the main verb (abschrecken ‘to put off’,
abgeschreckt ‘be put off’). whereas particles of
finite verb forms are positioned behind the main
verb and spelled as separate words (schreckt ab
‘put off’) just as in English. In Swedish, just as
in German, there are many particle verbs that al-
ternate between realizing the particle as a separate
word and as a prefix. This shows that the notion of
tokenisation is considered quite differently in both
projects.

Apart from one-token annotations, the size 2 is
the most common setting in all languages. Size
6 and higher are quite rare and the maximum is
reached by Hebrew with one VMWE containing
13 tokens.

7https ://en.wiktionary.org/wiki/bekezdés

60

3.3 Ratio of overlapping VMWEs

With a graph request, we can distinguish VMWE
annotations with or without overlapping. The re-
quest below corresponds to the “without overlap-
ping” case:

pattern {
MWE1 [label]

}
without {
MWE2 [label];
) MWE1 —> X; MWE2 —> X

Lines 1-3 is a request for any VWME. Lines
4-7 use the without construction of GREW which
filters the output of a query: each occurrence of the
basic query (line 1-3) which satisfies the constraint
expressed in the without part is filtered out. In
our example, cases where some MWE2 exists, which
shares a token X with the one previously found
MWE1 are removed. The result of the full query is
then only the non-overlapping VMWEs.

For the “with overlapping” case, the request is
the same where the keyword without is replaced
by the keyword with (line 4). Table 3 shows the
ratio of overlapping VMWEs for each language.

4 Error mining

One of the common usage of GREW and mainly
GREW-MATCH is error mining. By looking at all
examples of a given query, we can spot inconsis-
tencies and potential annotation errors. A first ex-
ample of error mining is to explore the occurrences
of one-token VMWEs (see Subsection 3.2) which
are unexpected and require manual inspection. Let
us see a few other examples.

4.1 VMWE:s without any verb

We can test whether each annotation does contain
a verb. This is expected as the current version of
Parseme focuses on “Verbal” Multi-Word Expres-
sions. The following request searches for Parseme
VMWEs without any verb, according to UD anno-
tation (UD uses the two POS tags AUX and VERB
for the verbal forms).

pattern {
MWE [label];

without {
MWE —> V;
N V[upos=VERB | AUX]

https://en.wiktionary.org/wiki/bekezd�s

Table 4 in appendix gives the numbers of occur-
rences in each language for this request (column
no_verb). The median of the number of occur-
rences in the 26 treebanks is 91.5, with two tree-
banks above 1000 occurrences. The two exceptions
are Hungarian (we have already seen that many
nouns are tagged as VMWE because there are built
from a verb and a noun-forming affix) and Arabic
(where we also observe many cases of noun de-
scribing an action, build on a verbal root). This
shows that the definition of what is a “verb” in
Parseme is not fully aligned with the UD policy.

4.2 Inherently reflexive verbs

Parseme consider the tag IRV for Inherently re-
flexive verbs. In the meantime in UD, there is the
feature Reflex=Yes which can be used on reflex-
ive pronouns (but this is not mandatory). We can
expect that a VMWE annotated as IRV contains
such a reflexive pronoun. The request above allows
to search for the exceptions to this rule.

pattern {
MWE [label = "IRV"];

}
without {
MWE —> P;
P[upos=PRON, Reflex=Yes]

Table 4 in appendix gives the numbers of occur-
rences in each language for this request (column
IRV_no_reflex). For the three highest numbers
are 1144 in Italian, 1021 in Portuguese and 237 in
Swedish. This is due to the fact that these three
languages does not annotate feature Reflex in the
UD data. Romanian and French have both annota-
tions IRV in Parseme and Reflex=Yes on pronoun
in UD, but there are many inconsistencies.

Is is worth noting that Slovenian also appeared in
the problematic languages at the submission time.
but it was due to a bug in the data which was found
thanks to the current work and which was fixed in
the mean time.

5 Consistency UD/Parseme

In this section, we give a few examples of requests
which can be used in GREW-MATCH to explore
how some specific class of VWME is annotated in
one treebank.

61

ADP €@ AoV © NOUN © VERB
€D VERB 217 198
© NOUN 1 3 2

Figure 2: POS of the tokens used in the VPC construc-
tion in English

5.1 Verb-particle constructions in English

The example runs on Verb-particle constructions
(VPC) and on English data. According to Parseme
guidelines, two subtags must be used: VPC.FULL
for fully non-compositional VPC and VPC.SEMI
for semi-non-compositional.

First, we can have a look at the distribution of
this kind of VMWE according to the number of
tokens implied®. We observed 421 occurrences
(368 VPC.FULL and 53 VPC.SEMI)’ of this label,
all of them having exactly two tokens.

Another request!?, specifying the two tokens N1
and N2, can display the distribution of the POS of
the tokens in the Figure 2 which shows that two
constructions VERB-ADP and VERB-ADV covers all
but 6 cases.

Exploring further!!, we observed in the 217
VERB-ADP cases, a large majority (202) of anno-
tation where the VERB is linked to the ADP with
relation compound: prt. Other cases are: no direct
relation between the two nodes (10 cases), relation
advmod (3 cases), compound (2 cases). Similarly'?,
we observed in the 198 VERB-ADV cases, a major-
ity (118) of annotation where the VERB is linked to
the ADP with relation compound:prt. Other cases
are: relation advmod (75 cases), no direct relation
between the two nodes (2 cases), compound, obl
and xcomp (1 case fo each).

These irregularities in the annotation would re-
quire a careful inspection by a native English
speaker but we can already see a bunch of anno-
tation inconsistencies either in the UD annotation
layer or in the Parseme one.

8http://parseme4grew.1’r/?custom:631’1ee845234a1

The numbers of this section are based on requests done
on 2023/02/19, they may changed when the data is updated.
Requests on a stable data from a release will be provided for
final version.

1Oht‘cp://parseme.gr‘ew.Fr/?cus’com:631’1eeda64fe8

1]http://parseme.grew.fr/?custom:63f11“03dea172

12h‘ctp://parseme.grew.Fr/?cus’tom:631"11“0(194e4ec

http://parseme.grew.fr/?custom=63f1ee845234a
http://parseme.grew.fr/?custom=63f1eeda64fe8
http://parseme.grew.fr/?custom=63f1f03dea172
http://parseme.grew.fr/?custom=63f1f0d94e4ec

@ entendre

© laisser

o

° parler 7

@ remarquer 4

O savoir 4

© tomber 3
© valoir 3

© passer 1

Figure 3: Lemmas used with MVC label in French data.
Translations of columns lemmas are ‘fo do’, ‘to hear’
and ‘to let’. Translations of rows lemmas are ‘fo speak’,
‘to remark’, ‘to leave’, ‘to fall’, ‘to be worth’ and ‘to
pass’.

5.2 MVCin French

There are 22 occurrences of the MV C in the French
data, all having two tokens. All are continuous
except one containing a negation on n’entendra
plus parler de. .. ‘one will no more hear about. ...
The Figure 3 shows the distribution of lemmas
of the two tokens N1 and N2 (following the linear
order).

The syntactic annotation is regular with lemma
faire ‘to do’ for N1 as a causative auxiliary of N2
and for the two other lemmas (entendre ‘to hear’
et laisser ‘to let’), an xcomp relation from N1 to N2.

By searching the corresponding lemmas, we
found a few annotation errors or annotation incon-
sistencies.

6 Conclusion

We have shown in this paper that using a graph
encoding to represent a multi-layer annotation in a
common structure is useful and can be exploited for
different purposes, like error mining or linguistic
exploration of the data. This methodology opens
new perspectives for corpora maintenance and is
complementary to existing tools like the UD valida-
tion script'? and the Parseme consistency checking.
Using the same idea, it would be possible to encode
other annotation layers, like the ones available in a
corpus like the GUM corpus!# (Zeldes, 2017).

13https://universaldependencies.org/
validation-rules.html
14https://gucorpling.org/gum/

62

Acknowledgments

We would like to thank the reviewers for their help-
ful comments. Thanks also to Kim, Joakim and
Khensa for their help on German, Swedish and
Arabic respectively.

References

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255-308.

Bruno Guillaume. 2021. Graph Matching and Graph
Rewriting: GREW tools for corpus exploration, main-
tenance and conversion. In EACL 2021 - 16th confer-
ence of the European Chapter of the Association for
Computational Linguistics, Kiev/Online, Ukraine.

Johanna Monti, Savary Agata, Marie Candito,
Verginica Barbu Mititelu, Bejéek Eduard, Cap Fa-
bienne, éépld Slavomir, Silvio Ricardo Cordeiro,
Eryigit Giilsen, Voula Giouli, Maarten van Gom-
pel, HaCohen-Kerner Yaakov, Kovalevskaité Jolanta,
Krek Simon, Liebeskind Chaya, Carla Parra Es-
cartin, Lonneke van der Plas, Qasemizadeh Behrang,
Ramisch Carlos, Federico Sangati, Stoyanova Ivelina,
and Vincze Veronika. 2018. Parseme multilingual
corpus of verbal multiword expressions.

Carlos Ramisch, Agata Savary, Bruno Guillaume,
Jakub Waszczuk, Marie Candito, Ashwini Vaidya,
Verginica Barbu Mititelu, Archna Bhatia, Uxoa Ifiur-
rieta, Voula Giouli, Tunga Giingor, Menghan Jiang,
Timm Lichte, Chaya Liebeskind, Johanna Monti,
Renata Ramisch, Sara Stymne, Abigail Walsh, and
Hongzhi Xu. 2020. Edition 1.2 of the PARSEME
shared task on semi-supervised identification of ver-
bal multiword expressions. In Proceedings of the
Joint Workshop on Multiword Expressions and Elec-
tronic Lexicons, pages 107-118, online. Association
for Computational Linguistics.

Milan Straka, Jan Haji¢, and Jana Strakova. 2016. UD-
Pipe: Trainable pipeline for processing CoNLL-U
files performing tokenization, morphological anal-
ysis, POS tagging and parsing. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 4290—
4297, Portoroz, Slovenia. European Language Re-
sources Association (ELRA).

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581-612.

A Example Appendix

https://universaldependencies.org/validation-rules.html
https://universaldependencies.org/validation-rules.html
https://gucorpling.org/gum/
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://hal.inria.fr/hal-03177701
https://hal.inria.fr/hal-03177701
https://hal.inria.fr/hal-03177701
https://aclanthology.org/2020.mwe-1.14
https://aclanthology.org/2020.mwe-1.14
https://aclanthology.org/2020.mwe-1.14
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://aclanthology.org/L16-1680
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x

Language 1AV IRV | LS.ICV | LVC.cause | LVC.full | MVC | VID | VPC.full | VPC.semi

Arabic 581 0 0 303 2678 5] 1182 0 0

Basque 0 0 0 214 3152 0 880 0 0

Bulgarian 90 3223 0 222 1909 0| 1260 0 0

Croatian 1388 1193 0 147 880 0 293 1 0

Chinese 0 0 0 177 1214 | 3826 973 0 4629

Czech 0 | 10000 0 0 2923 0| 1613 0 0

English 71 0 0 51 333 51 187 368 53

Farsi 0 1 0 0 3435 0 17 0 0

French 0 1501 0 97 1878 22 | 2157 0 0

German 0 322 0 33 311 0 | 1437 1744 194

Greek 0 1 0 179 5293 51 | 2841 143 0

Hebrew 0 0 0 223 1049 0| 1108 153 0

Hindi 0 0 0 26 641 306 61 0 0

Hungarian 0 0 0 401 1143 0 104 5156 956

Irish 187 0 0 118 200 0 106 28 20

Italian 497 1144 37 174 734 33 | 1484 105 2

Lithuanian 0 0 0 25 479 0 308 0 0

Maltese 0 1 0 1 700 2 518 4 0

Polish 0 3688 0 314 2478 0 833 0 0

Portuguese 0 1021 0 127 3954 18 | 1306 0 0

Romanian 3340 3826 0 182 516 0| 1644 0 0

Serbian 0 564 0 69 402 0 269 0 0

Slovenian 710 1626 0 64 239 0 724 0 0

Spanish 511 714 0 81 392 713 327 1 0

Swedish 0 237 0 10 417 0 441 1461 589

Turkish 0 0 0 0 3583 5 | 4141 0 0
Table 1: Numbers of occurrences of VMWEs with their labels.

Language 1 2 3 4 5 6 7181910 11 2|13

Arabic 17 3673 946 91 11 | 10 0(11(0 0 0 0 0

Basque 0 4164 70 12 0 0 0[0]O0 0 0 0 0

Bulgarian 11 5974 604 | 102 13 0 0[0|O0 0 0 0 0

Croatian 0 3182 640 75 3 2 0[0]O0 0 0 0 0

Chinese 5382 5224 136 35 15 | 14 6|51 0 1 0 0

Czech 0| 11178 | 2571 | 664 97 | 18 8100 0 0 0 0

English 4 1001 73 25 7 3 0O|11]0 0 0 0 0

Farsi 1 3004 404 38 4 2 0[0]O0 0 0 0 0

French 5 4353 | 1048 | 180 34 | 28 6[1]0 0 0 0 0

German 1268 1976 644 | 129 15 7 11011 0 0 0 0

Greek 1 6253 | 1511 | 523 | 166 | 31 91715 1 1 0 0

Hebrew 42 1781 584 87 21 5 812 |2 0 0 0 1

Hindi 0 961 15 46 9 1 11011 0 0 0 0

Hungarian | 5745 2010 5 0 0 0 0[0]O0 0 0 0 0

Irish 3 477 152 21 5 1 01010 0 0 0 0

Italian 9 2693 | 1118 | 288 64 |27 |11 0|0 0 0 0 0

Lithuanian 0 683 99 21 7 1 oO(1]0 0 0 0 0

Maltese 13 680 391 | 100 32 3 41111 0 1 0 0

Polish 0 6550 653 88 13 6 0210 0 0 1 0

Portuguese 1 5449 650 | 263 32 | 20 61410 1 0 0 0

Romanian 0 8009 | 1368 74 45 | 12 0(0]O0 0 0 0 0

Serbian 0 1151 128 17 4 3 1101]0 0 0 0 0

Slovenian 0 2732 531 72 21 4 21110 0 0 0 0

Spanish 2 2089 569 69 10 0 0[0]O0 0 0 0 0

Swedish 1614 1336 188 14 3 0 0[01]0 0 0 0 0

Turkish 6 7233 445 41 4 0 0[0]O0 0 0 0 0

Table 2: Numbers of tokens of VMWEs.

63

Language Yes No
Bulgarian 0.0% | 100.0%
Maltese 0.16% | 99.84%
Turkish 0.57% | 99.43%
Farsi 0.58% | 99.42%
Lithuanian 0.74% | 99.26%
Serbian 1.38% | 98.62%
Slovenian 1.4% 98.6%
Basque 1.77% | 98.23%
Swedish 2.31% | 97.69%
Hebrew 2.88% | 97.12%
Polish 2.95% | 97.05%
French 3.04% | 96.96%
Chinese 3.38% | 96.62%
Czech 3.78% | 96.22%
Portuguese 4.17% | 95.83%
Arabic 4.27% | 95.73%
English 4.67% | 95.33%
Greek 4.82% | 95.18%
Irish 4.86% | 95.14%
Hungarian 5.54% | 94.46%
German 6.9% 93.1%
Italian 12.19% | 87.81%
Hindi 12.86% | 87.14%
Romanian 18.46% | 81.54%
Spanish 22.82% | 77.18%
Croatian 28.86% | 71.14%

Table 3: Ratio of VMWEs which overlap with another
annotation.

Language | # sentences | no_verb | irv_no_reflex
Arabic 7483 1302 0
Basque 11158 4 0
Bulgarian 21599 416 2
Croatian 6133 146 2
Chinese 48929 526 0
Czech 49431 790 0
English 7436 11 0
Farsi 3617 1 1
French 20961 2 107
German 8996 126 3
Greek 26175 26 1
Hebrew 19200 264 0
Hindi 1684 0 0
Hungarian 6159 5901 0
Irish 1705 214 0
Italian 15728 65 1144
Lithuanian 11104 12 0
Maltese 10600 59 1
Polish 23547 836 0
Portuguese 32062 26 1021
Romanian 56664 5 206
Serbian 3586 91 0
Slovenian 27825 0 5
Spanish 5515 23 8
Swedish 6026 92 237
Turkish 22306 330 0

Table 4: Numbers of occurrences of VMWESs without
any verbal token (column no_verb) and of VMWEs
tagged IRV without any reflexive pronoun (column
irv_no_reflex).

