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Abstract

The language-independency of encoded
representations within multilingual neural
machine translation (MNMT) models is
crucial for their generalization ability on
zero-shot translation. Neural interlingua
representations have been shown as an ef-
fective method for achieving this. How-
ever, fixed-length neural interlingua repre-
sentations introduced in previous work can
limit its flexibility and representation abil-
ity. In this study, we introduce a novel
method to enhance neural interlingua rep-
resentations by making their length vari-
able, thereby overcoming the constraint
of fixed-length neural interlingua represen-
tations. Our empirical results on zero-
shot translation on OPUS, IWSLT, and Eu-
roparl datasets demonstrate stable model
convergence and superior zero-shot trans-
lation results compared to fixed-length
neural interlingua representations. How-
ever, our analysis reveals the suboptimal
efficacy of our approach in translating
from certain source languages, wherein we
pinpoint the defective model component in
our proposed method.

1 Introduction

Multilingual neural machine translation
(MNMT) (Dong et al., 2015; Firat et al.,
2016; Ha et al., 2016; Johnson et al., 2017; Dabre
et al., 2021) systems enable translation between
multiple language pairs within a single model by
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Figure 1: (a) Previous fixed-length neural interlingua rep-
resentations; (b) Our proposed variable-length neural in-
terlingua representations. Each colored box denotes the
representation (Rd×1) on the corresponding position. “Enc.”,
“Dec.”, and “d” are encoder, decoder, and dimension of model
hidden states.

learning shared representations across different
languages. One of the key challenges in building
effective MNMT systems is zero-shot translation
performance involving unseen language pairs.

Previous work reveals that improving the
language-independency of encoded representa-
tions is critical for zero-shot translation perfor-
mance, with neural interlingua representations (Lu
et al., 2018; Vázquez et al., 2019; Zhu et al.,
2020) being proposed as an effective method for
achieving this. Neural interlingua representations
are shared, language-independent representations
that behave as a neural pivot between different
natural languages. As shown in Figure 1 (a), it
enables sentences in different languages with the
same meaning to have the same interlingua repre-
sentations. Previous work has shown the effective-
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ness of fixed-length neural interlingua representa-
tions for zero-shot translation. However, a fixed
length can limit neural interlingua representations’
flexibility and representation ability. It is highly
model size and training data size-sensitive accord-
ing to our experimental results for different set-
tings of model and training data size.

This paper proposes a novel method for improv-
ing neural interlingua representations by making
their length variable. As shown in Figure 1 (b), our
method enables the length of the interlingua repre-
sentations to vary according to different lengths of
source sentences, which may provide more flexi-
ble neural interlingua representations. Specifically,
we utilize the sentence length in the centric lan-
guage1 (e.g., English) as the length of neural in-
terlingua representations. We propose a variable-
length interlingua module to project sentences in
different source languages with the same mean-
ing into an identical neural interlingua represen-
tation sequence. To enable translating from non-
centric language source sentences during infer-
ence, we also introduce a length predictor within
the variable-length interlingua module. Moreover,
as for the initialization of the interlingua mod-
ule, we propose a novel method that facilitates
knowledge sharing between different interlingua
lengths, which can avoid introducing redundant
model parameters. We expect that variable-length
interlingua representations provide enhanced rep-
resentations according to different source sentence
lengths, which mitigates the model size and train-
ing data size-sensitive problem of previous work in
low-resource scenarios and improves performance
for zero-shot translation.

We conduct experiments on three MNMT
datasets, OPUS (Zhang et al., 2020), IWSLT (Cet-
tolo et al., 2017), and Europarl (Koehn, 2005)
with different settings of training data size and
model size. Results demonstrate that our proposed
method yields superior results for zero-shot trans-
lation compared to previous work. Our method
exhibits stable convergence in different settings
while previous work (Zhu et al., 2020) is highly
sensitive to different model and training data sizes.
However, we also observe the inferior performance

1In this work, we consider using an x-centric parallel cor-
pus, wherein all sentence pairs within the corpus consist of
sentences in language x paired with another language. It is
noteworthy that the English-centric corpus is the most preva-
lent setting. We denote a language distinct from x as a “non-
centric language” in the subsequent text.

of our method for translation from non-centric lan-
guage source languages. We attribute it to the ac-
curacy of the interlingua length predictor and point
out the possible directions of this research line.

2 Related Work

This paper focuses on variable-length interlingua
representations for zero-shot NMT.

2.1 Zero-shot Translation

In recent years, MNMT (Dong et al., 2015; Firat
et al., 2016; Ha et al., 2016; Johnson et al., 2017;
Aharoni et al., 2019; Tan et al., 2019; Dabre et
al., 2021; Zhang et al., 2020) has been a popular
research topic, where the generalization ability of
MNMT models to zero-shot translation is a criti-
cal problem as obtaining sufficient training data for
all translation directions is often impractical. An
MNMT model’s zero-shot translation performance
usually benefits from the encoder-side represen-
tations being language-independent and decoder-
side representations being language-specific. To
achieve this, some studies have proposed remov-
ing encoder-side residual connections (Liu et al.,
2021) or introducing language-independent con-
straints (Al-Shedivat and Parikh, 2019; Pham et
al., 2019; Arivazhagan et al., 2019; Yang et al.,
2021; Mao et al., 2023). Other methods involve
decoder pre-training and back-translation (Gu et
al., 2019; Zhang et al., 2020), denoising autoen-
coder objectives (Wang et al., 2021), and encoder-
side neural interlingua representations (Lu et al.,
2018; Vázquez et al., 2019; Zhu et al., 2020).

2.2 Neural Interlingua Representations for
Zero-shot Translation

As mentioned above, constructing neural interlin-
gua representations is a powerful method to im-
prove shared encoder representations across vari-
ous source languages and enhance zero-shot trans-
lation. Lu et al. (2018) first proposed the concept
of neural interlingua representations for MNMT,
intending to bridge multiple language-specific en-
coders and decoders using an intermediate interlin-
gua attention module, which has a fixed sequence
length. Vázquez et al. (2019) extended this ap-
proach with a universal encoder and decoder ar-
chitecture for MNMT and introduced a regulariza-
tion objective for the interlingua attention similar-
ity matrix. More recently, Zhu et al. (2020) ap-
plied the neural interlingua approach in the Trans-
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Figure 2: Variable-length interlingua module. “zh-x” denotes the x-th embedding of a Chinese-specific interlingua query.

former (Vaswani et al., 2017) model architecture
and proposed a position-wise alignment objec-
tive to ensure consistent neural interlingua repre-
sentations across different languages. However,
these methods utilized fixed-length neural interlin-
gua representations, which may reduce the model’s
representation ability for source sentences with
different lengths. This paper focuses on revisiting
and improving neural interlingua approaches.

3 Variable-length Neural Interlingua
Representations

We present an MNMT model that comprises three
distinct components: a source language encoder,
a neural interlingua module, and a decoder. The
source language encoder converts source sentences
to language-specific representations, the neural in-
terlingua module generates language-agnostic rep-
resentations, and the decoder converts these repre-
sentations into the target language translation. In
this section, we introduce a novel neural interlin-
gua module.

Specifically, we propose variable-length neural
interlingua representations surpassing prior work’s
fixed-length constraint. To achieve this break-
through, we have developed a module that in-
cludes interlingua encoder layers, an interlingua
length predictor, and a language-specific interlin-

gua query. Our module uses an embedding sharing
mechanism, as shown in Figure 2. Moreover, we
introduce the objectives that guide the training of
variable-length neural interlingua representations.

3.1 Variable-length Interlingua Module
Interlingua Encoder Layers In accordance with
Zhu et al. (2020), we construct a variable-length
interlingua module within a Transformer model
architecture. Our model utilizes N Transformer
encoder layers and 6 Transformer decoder layers,
with M interlingua encoder layers introduced be-
tween them. To maintain consistency with a stan-
dard 6-layer Transformer encoder, we set M +
N = 6, ensuring that the number of model pa-
rameters remains almost the same. Each interlin-
gua encoder layer consists of a sequential series
of operations, including self-attention mechanisms
(or feed-forward networks),2 encoder-interlingua
attention, and feed-forward networks, as illustrated
in Figure 2.

The input representations for interlingua en-
coder layers are denoted as QI ∈ Rd×lenI(X),
where d and lenI(X) respectively indicates the di-
2We utilize feed-forward networks for the first interlingua en-
coder layer and employ a self-attention mechanism for sub-
sequent layers. This is because the interlingua query is ini-
tially weak and unable to capture similarities through a self-
attention mechanism. This design choice is similar to that of
Zhu et al. (2020).
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mension of hidden representations and the length
of the neural interlingua representations given a
source sentence X = x1, x2, ..., xk. Specifically,
we define lenI(X) as follows:

lenI(X) =

{
len(X), Xis in centric

len(CT(X)), Xis in non-centric
,

(1)
where CT(X) denotes the translation of X in the
centric language. We use teacher forcing to gen-
erate interlingua length during training. For in-
stance, if we use English-centric parallel sentences
as training data, lenI(X) for each sentence pair
will be the length of English sentences. Thus, sen-
tences that convey the same semantic meaning can
have the same interlingua length, and interlingua
length is variable according to different sentences.
For the initialization of QI, we will provide a de-
tailed explanation of how to generate it later in this
section.

Subsequently, QI undergoes self-attention (or
feed-forward networks), and we obtain the out-
put Q

′
I. Assume that the contextualized represen-

tations on top of N Transformer encoder layers
are HS ∈ Rd×k. Then we establish an encoder-
interlingua attention mechanism:

HEI = Attn(Q
′
I,HS,HS), (2)

where Attn(Q,K,V) indicates the multi-head at-
tention mechanism (Vaswani et al., 2017). This
encoder-interlingua attention inherits the design in
previous studies of neural interlingua representa-
tions (Lu et al., 2018; Vázquez et al., 2019; Zhu et
al., 2020).

Finally, we pass HEI through position-wise
feed-forward networks to obtain HI, the output
of the interlingua encoder layers. HI serves as a
language-agnostic neural interlingua and can vary
in length depending on the source sentence. Once
we have HI, we feed it into a standard Transformer
decoder to generate the translation.
Interlingua Length Predictor Length of interlin-
gua representations is not readily available dur-
ing inference when translating from non-centric
source sentences (e.g., non-English source sen-
tences) using Eq. (1). To address this, we pro-
pose using an interlingua length predictor to obtain
lenI(X) for inference. Specifically, we treat the
length prediction of translation in the centric lan-
guage as a classification task, addressed utilizing
mean pooled contextualized representations atop

the Transformer encoder.3 More precisely, we pre-
dict X’s interlingua length as:

lenI(X) = argmax
i

softmax(
1 HT

S

k
W + b)i,

(3)
where k is the length of X , 1 ∈ R1×k denotes
a vector with all the elements of 1, W ∈ Rd×K

and b ∈ R1×K indicates the weight and bias of
a linear layer, and K is the maximum sequence
length allowed in the model.
Language-specific Interlingua Query Here, we
present the method for obtaining input representa-
tions QI for the interlingua encoder layers. Ini-
tially, we randomly initialize an embedding ma-
trix El ∈ Rd×K containing K embeddings for
the source language l. Next, we extract the first
lenI(X) embeddings from El to obtain QI.

QI = ElIS, (4)

where IS ∈ RK×lenI(X) has 1s as main diag-
onal elements and 0s for other elements. Note
that the language-specific nature of El allows the
model to learn a unique mapping from each lan-
guage to the neural interlingua representations.
Zhu et al. (2020) used the technique of language-
aware positional embedding (Wang et al., 2019)
for both the neural interlingua representations and
the source and target sentences, resulting in am-
biguity regarding whether the improvements were
from the neural interlingua representations or not.
In contrast, our proposed language-specific inter-
lingua query clarifies whether a language-specific
mapping to neural interlingua representations ben-
efits zero-shot translation.

3.2 Training Objectives
Given a training sample sentence pair (X,Y ), we
introduce the following training objective, com-
bining an NMT loss, an interlingua alignment
loss, and a length prediction loss. The interlin-
gua alignment loss is utilized to guarantee the con-
sistency of the neural interlingua representations
for each training sentence pair sample. In con-
trast, the length prediction loss ensures the gen-
eration of variable interlingua length during infer-
ence. Specifically, the training objective is defined
as follows:

L(X,Y ) = αLNMT + βLIA + γLLP, (5)
3We attempted to treat it as a regression task, but the perfor-
mance of the regression model was notably inferior to that of
the classifier-based predictor.
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Datasets Languages # Sup. # Zero. # Train # Valid # Test

OPUS
ar, de, en,

12 30 12,000,000 2,000 2,000
fr, nl, ru, zh

IWSLT en, it, nl, ro 6 6 1,378,794 2,562 1,147
Europarl de, en, es, fr, nl 8 12 15,782,882 2,000 2,000

Table 1: Statistics of the training data. “# Sup.” and “#
Zero.” indicate the respective number of language pairs for
supervised and zero-shot translation. “# Train” denotes the
total number of the training parallel sentences while “# Valid”
and “# Test” showcase the number per language pair.

where α, β, and γ are weight hyperparameters for
each loss, LLP is a cross-entropy loss computed
from the softmax outputs from Eq. (3), and LIA is
a position-wise alignment loss using cosine simi-
larity following Zhu et al. (2020):

LIA = 1− 1
lenI(X)

∑
i cos < HI(X)i,HI(Y )i > .

(6)

Here HI(·)i denotes the i-th column of HI(·).4
Please note that during training, we always have
lenI(X) = lenI(Y ) because we apply teacher forc-
ing to generate the interlingua length for the sen-
tence pair (X,Y ). With LIA, different sentence
pairs with varying lengths of translation in centric
language can be represented using variable-length
neural interlingua representations. This can en-
hance the bridging ability for zero-shot translation.

4 Experimental Settings

4.1 Datasets
Our study involves conducting experiments on
zero-shot translation using three distinct datasets,
OPUS (Zhang et al., 2020), IWSLT (Cettolo et al.,
2017), and Europarl (Koehn, 2005), each compris-
ing 7, 4, and 5 languages, respectively. For each
dataset, we adopt the train, valid, and test splits
following Zhang et al. (2020), Wu et al. (2021),
and Liu et al. (2021). Table 1 presents each
dataset’s overall statistics. The training and valida-
tion data exclusively contains English-centric sen-
tence pairs, indicating the centric language is En-
glish in all the experiments, leading to 12, 6, and 8
supervised directions, and 30, 6, and 12 zero-shot
directions for each dataset. Refer to Appendix A
for preprocessing details.

4.2 Overall Training and Evaluation Details
For the OPUS and IWSLT datasets, we utilize
a Transformer-base model, while for Eu-
4To derive HI(Y ), it is necessary to feed the target sentence
to both the encoder and interlingua encoder layers, which can
potentially result in increased computational requirements.

roparl, we employ a Transformer-big model,
to evaluate the performance of Transformer with
both sufficient and insufficient training data. Re-
garding language tag strategies to indicate the
source and target languages to the model, we adopt
the method of appending the source language tag
to the encoder input and the target language tag
to the decoder input (Liu et al., 2020). This ap-
proach allows for the creation of fully language-
agnostic neural interlingua representations in be-
tween.5 The maximum sentence length is set as
256, which indicates that K = 256 (Section 3.1).
Refer to Appendix B for other training details.

For evaluation, we choose the evaluation check-
point based on the validation LNMT with the low-
est value. We use a beam size of 5 during inference
on the trained models to conduct inference. We re-
port SacreBLEU (Post, 2018).6

4.3 Baselines and Respective Training Details
To compare our variable-length neural interlingua
method with previous fixed-length neural interlin-
gua methods, we trained the following settings:
MNMT (Johnson et al., 2017) is a system
trained with standard Transformer-base or
Transformer-big for multiple language pairs.
We applied the language tag strategy of source lan-
guage tag for encoder input and target language tag
for decoder input.
Pivot translation (Zoph and Knight, 2016) in-
volves translating a source language into a pivot
language, usually English, and then translating
the pivot language into the target language. This
system constitutes a robust baseline for zero-shot
translation, which we include for reference. We
implement this setting by feeding the pivot lan-
guage output of the MNMT model to itself to gen-
erate the target language.
Len-fix. Uni. Intl. We follow the setting
described by Zhu et al. (2020), but we remove
its language-aware positional embedding to test
whether a single interlingua module can improve
zero-shot translation. Compared to our variable-
length interlingua representations presented in
Section 3.1, these fixed interlingua representations
have a universal lenI (Eq. (1)) for different source
5We do not consider employing target language tag append-
ing on the encoder-side (Johnson et al., 2017) in this work
because it would require removing both the source and tar-
get language information after feeding the source sentence to
obtain the neural interlingua representations.
6We utilize the “zh” tokenization mode for Chinese, and the
“13a” tokenization mode for other languages.
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Methods
Zero-shot Supervised: From en Supervised: To en

OPUS IWSLT Europarl OPUS IWSLT Europarl OPUS IWSLT Europarl

Pivot 22.0 19.9 29.5 - - - - - -
MNMT 16.5 13.1 29.0 31.2 29.6 32.9 36.8 33.5 36.1
Len-fix. Uni. Intl. 18.2 12.7 17.4 29.6 19.6 20.1 35.3 22.2 21.8
Len-fix. LS. Intl. 18.4 4.7 5.8 30.1 7.3 6.7 35.7 12.9 7.1
Len-vari. Intl. (ours) 18.9† 14.8 29.6 30.2† 26.2 32.6 34.0 27.1 33.8

Table 2: Overall BLEU results on OPUS, IWSLT, and Europarl. The best result among all the settings except Pivot is in
bold. We mark the results significantly (Koehn, 2004) better than “Len-fix. Uni. Intl.” with † for OPUS dataset.

Methods
de–fr ru–fr nl–de zh–ru zh–ar nl–ar Zero-shot
→ ← → ← → ← → ← → ← → ← Avg.

Pivot 23.4 21.2 31.0 26.0 21.8 23.6 24.8 37.9 24.0 38.9 7.4 17.4 22.0
MNMT 17.6 15.0 21.5 17.7 17.9 21.4 15.3 27.6 18.0 28.6 5.3 13.3 16.5
Len-fix. Uni. Intl. 20.1 17.0 25.0 22.4 19.5 21.3 20.3 30.9 19.6 30.4 6.1 14.4 18.2
Len-fix. LS. Intl. 20.7 17.7 25.7 21.7 19.8 21.6 19.9 31.5 20.1 31.6 6.5 14.5 18.4
Len-vari. Intl. (ours) 20.6† 18.3† 26.0† 23.4† 20.2† 22.1† 20.8 31.8† 20.0 31.9† 6.3 14.5 18.9†

Table 3: BLEU results of zero-shot translation on OPUS. We randomly select six zero-shot language pairs and report the
results. The best result among all the settings except “Pivot” is in bold. We mark the results significantly (Koehn, 2004) better
than “Len-fix. Uni. Intl.” with †.

sentences and a universal E ∈ Rd×lenI for different
languages and without a QI (Eq. (4)). The fixed in-
terlingua length is set to 17, 21, and 30, which are
the average lengths of each dataset following Zhu
et al. (2020) and Vázquez et al. (2019).
Len-fix. LS. Intl. The only difference between
this system and the “Len-fix. Uni. Intl.” system
mentioned above is the initialization of the inter-
lingua query. We use a language-specific El ∈
Rd×lenI for each source language l without a QI

(Eq. (4)).
Len-vari. Intl. (ours) This refers to variable-
length neural interlingua representations proposed
in Section 3.

For the last three neural interlingua settings, we
set M and N to 3 for both the Transformer en-
coder and interlingua encoder layers. The values
of α, β, and γ (Eq. (5)) are set as 1.0, 1.0, and 0.1,
respectively. We remove the first residual connec-
tion within the first interlingua encoder layer to im-
prove the language-independency of the interlin-
gua representations, inspired by Liu et al. (2021).

5 Results and Analysis

We now present in tables 2, 3, and 4 the results of
our variable-length interlingua approach and com-
pare them against several baselines.

5.1 Main results
Firstly, Tables 2 and 3 indicate that our proposed
variable-length interlingua representations outper-

form previous work in zero-shot directions. The
severe overfitting issue of “Len-fix. Uni. Intl.” and
“Len-fix. LS. Intl.” on IWSLT and Europarl sug-
gests that they are limited to model size and train-
ing data size settings, while our proposed method
can converge stably on all three settings. These
results demonstrate that our flexible interlingua
length can benefit zero-shot translation more effec-
tively. Secondly, our proposed method performs
better than previous work in “from en” supervised
directions as shown in Tables 2 and 4, but still falls
short of the MNMT baseline. This may be at-
tributed to the interlingua module’s weak source-
target awareness. Thirdly, our variable-length
neural interlingua representations perform signif-
icantly worse on “to en” directions than “Len-fix.”
methods on OPUS and MNMT on all datasets. We
provide analysis of this phenomenon next.

5.2 Validation NMT Loss

We investigate why variable-length neural inter-
lingua representations perform poorly in “to en”
supervised directions by analyzing the validation
NMT loss, an approximate measure of NMT per-
formance on the validation set. Figure 3 displays
the validation NMT loss for all settings on OPUS.
We observe that variable-length interlingua repre-
sentations can converge well, even smaller than the
validation loss of “Len-fix. Uni. Intl.” and “Len-
fix. LS. Intl.” However, the interlingua length pre-
dictor was teacher-forced during training, indicat-
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Methods
en–ar en–de en–fr en–nl en–ru en–zh Supervised Avg.
→ ← → ← → ← → ← → ← → ← From en To en

MNMT 23.9 37.8 30.8 34.6 33.9 35.5 27.8 31.5 29.4 35.1 41.2 46.4 31.2 36.8
Len-fix. Uni. Intl. 22.6 36.6 28.9 33.0 31.7 33.5 27.4 30.1 28.4 34.0 38.8 44.6 29.6 35.3
Len-fix. LS. Intl. 22.9 36.8 29.0 33.8 32.3 33.9 27.7 30.6 28.9 34.3 39.5 44.8 30.1 35.7
Len-vari. Intl. (ours) 23.3† 33.8 30.1† 32.3 32.9† 32.6 27.3 27.9 29.5† 32.2 38.0 45.3† 30.2† 34.0

Table 4: BLEU results of supervised translation on OPUS. The best result among all the settings is in bold. We mark the
results significantly (Koehn, 2004) better than “Len-fix. Uni. Intl.” with †.

ar de fr nl ru zh Avg.

Acc. of Len. Pre. 20.6 26.5 17.6 19.3 21.1 13.8 19.8
Avg. of | Len. Pre. − gold | 2.4 3.4 3.8 3.1 3.3 3.9 3.3
BLEU w/ Len. Pre. 33.8 32.3 32.6 27.9 32.2 45.3 34.0
BLEU w/ gold 35.5† 33.4† 33.3† 29.4† 33.4† 46.0† 35.2†

Table 5: Accuracy of the interlingua length predictor, averaged absolute difference between predicted length and gold
length, and “to en” BLEU scores of each non-English source language on OPUS. “w/ Len. Pre.” and “w/ gold” indi-
cate using the predicted interlingua length and the correct interlingua length (length of the English translation), respectively.
Accuracy of the length predictor and average abosulute difference are evaluated using OPUS’s test set. We mark the results
significantly (Koehn, 2004) better than “BLEU w/ Len. Pre.” with †.
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Figure 3: Validation NMT loss curve on OPUS.

ing the validation NMT loss was calculated with
a 100% accurate interlingua length predictor. As
a result, the inaccurate interlingua length predictor
is likely the primary cause of our method’s infe-
rior performance in “to en” directions, despite its
well-converged validation NMT loss.

5.3 Impact of the Interlingua Length
Predictor

We analyze the interlingua length predictor and
identify the reason for the subpar performance in
“to en” translations. We input the source sentences
of the test set in non-English languages into the
model and check whether the predicted length in
interlingua is identical to the length of its English
reference. We present the accuracy on the OPUS
dataset in Table 5. The results show that the ac-
curacy for each language is approximately 20.0%,
which can result in error propagation when trans-

lating from those languages. To further under-
stand the impact of the length predictor quality on
translation performance, we attempt to provide the
model with the correct interlingua length instead
of relying on the length predictor. As shown in
Table 5, the results reveal significant BLEU im-
provements when the correct interlingua length is
applied. This suggests that the performance issue
encountered when translating from a non-centric
source language can be addressed by upgrading
the interlingua length predictor’s accuracy. Fur-
thermore, we can also enhance zero-shot transla-
tion performance if we have a better length pre-
dictor. Nevertheless, we observe that even with a
low length prediction accuracy of approximately
20.0%, we can still achieve solid BLEU perfor-
mance, averaging 34.0 BLEU points. This indi-
cates that an incorrectly predicted length with just
a trivial difference, as shown in Table 5, will not
result in the enormous information loss required
for translation.

6 Conclusion

This study introduced a novel variable-length neu-
ral interlingua approach that improved zero-shot
translation results while providing a more stable
model than previous fixed-length interlingua meth-
ods. Although our analysis revealed a performance
downgrade in “to en” directions, we have identi-
fied the problematic model component and plan to
address it in future studies.
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A Preprocessing Details

Jieba7 is used to segment Chinese while
Moses8 (Koehn et al., 2007) is utilized to tokenize
other languages. We employ BPE (Sennrich
et al., 2016) with 50, 000, 40, 000, and 50, 000
merge operations to create a joint vocabulary for
each dataset, resulting in the vocabulary sizes of
66, 158, 40, 100, and 50, 363, respectively.

B Training Details

Our models are trained using Fairseq.9 As the data
size for each language pair is relatively similar,
oversampling is not implemented for MNMT. The
dropout rate was set to 0.1, 0.4, and 0.3 for each
dataset, and we use the Adam optimizer (Kingma
and Ba, 2015) with a learning rate of 5e-4, 1e-
3, and 5e-4, respectively, employing 4, 000 warm-
up steps. The Transformer-base model was
trained using four 32 GB V100 GPUs, and the
Transformer-big model was trained using
eight 32 GB V100 GPUs, with a batch size of
4, 096 tokens. To speed up training, mixed pre-
cision training (Micikevicius et al., 2018) is also
employed. Each dataset is trained for 500, 200,
and 500 epochs.

C Limitations

While this study proposed a novel method for
improving neural interlingua representations for
zero-shot translation, the following limitations
should be addressed in future work:

• The inaccurate interlingua length predic-
tor currently leads to inferior performance

7https://github.com/fxsjy/jieba
8https://github.com/moses-smt/
mosesdecoder
9https://github.com/facebookresearch/
fairseq

for translation from non-centric languages.
Therefore, a better predictor should be ex-
plored to improve the performance.

• We used the length of centric language sen-
tences as the interlingua length, which may
limit the application for using parallel sen-
tences not involving the centric language.
Therefore, a better way to generate variable
lengths for neural interlingua representations
should be developed in future work.

• We have yet to test whether the neural inter-
lingua representations obtained in this study
can act as a semantic pivot among all the
languages. Thus, it would be interesting
to evaluate the effectiveness of our variable-
length interlingua representations on cross-
lingual language understanding tasks (Hu et
al., 2020).
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