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Abstract
Quality Estimation (QE) is the task of predicting the quality of Machine Translation (MT) sys-
tem output, without using any gold-standard translation references. State-of-the-art QE mod-
els are supervised: they require human-labeled quality of some MT system output on some
datasets for training, making them domain-dependent and MT-system-dependent. There has
been research on unsupervised QE, which requires glass-box access to the MT systems, or par-
allel MT data to generate synthetic errors for training QE models. In this paper, we present
Perturbation-based QE - a word-level Quality Estimation approach that works simply by ana-
lyzing MT system output on perturbed input source sentences. Our approach is unsupervised,
explainable, and can evaluate any type of blackbox MT systems, including the currently promi-
nent large language models (LLMs) with opaque internal processes. For language directions
with no labeled QE data, our approach has similar or better performance than the zero-shot
supervised approach on the WMT21 shared task. Our approach is better at detecting gender
bias and word-sense-disambiguation errors in translation than supervised QE, indicating its ro-
bustness to out-of-domain usage. The performance gap is larger when detecting errors on a
nontraditional translation-prompting LLM, indicating that our approach is more generalizable
to different MT systems. We give examples demonstrating our approach’s explainability power,
where it shows which input source words have influence on a certain MT output word.

1 Introduction

Machine Translation (MT), with the aim of translating text from a source language to a target
language, has been increasingly adopted in different real-world scenarios, ranging from trans-
lations in healthcare areas to translations in the legal domains (Vieira et al., 2021). In many
of these applications, errors in translation output could cause serious harm to the users, e.g.,
translation errors leading to wrong medical diagnoses in healthcare or wrong judgment in court.
Therefore, it is important to let the users know how much they can trust a translation, by pro-
viding them with some quality assessment of the MT output. This is not always straightforward
due to the lack of gold-standard human translations, or the mismatch between evaluation data
and real-world usage. As a result, researchers have been looking into Quality Estimation.

Quality Estimation (QE) is the task of predicting the quality of MT system output without
access to reference translations. State-of-the-art QE systems are built in a supervised manner,
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where they require human-labeled quality assessment on MT output for training (Rei et al.,
2022). This approach has 2 drawbacks: the labeled QE data is costly to obtain, and the trained
QE models would only know about the types of error that are presented in the training data.
Supervised QE models are likely to underperform in unfamiliar settings (Kocyigit et al., 2022),
e.g., when evaluating the output of a new MT system on a new dataset from a different do-
main. Consequently, there has been research into unsupervised QE, where the human-labeled
assessment data is no longer required (Fomicheva et al., 2020b; Tuan et al., 2021). These works
either require glass-box information of the MT system (e.g., output log probabilities or atten-
tion scores), or a large amount of parallel MT data to create synthetic QE data for training. This
is problematic for language pairs with low-resourced MT data, or when the MT system is kept
blackbox, which is the current trend of some widely-discussed API-only large language models.

In this paper, we propose an unsupervised word-level QE approach to evaluate blackbox
MT systems, termed Perturbation-based QE. Our motivation is inspired by a known problem:
when uncertain, MT systems rely on spurious correlations learnt from the training data to gen-
erate translation (Emelin et al., 2020; Savoldi et al., 2021). We assume that, when outputting a
translation token, if the MT system relies on too many parts of the source sentence, it is likely
that the system is exploiting irrelevant correlations, thus the output token is unreliable. Consider
the English → German example: “My friend has a Ph.D. degree, and now she is a professor.” →
“Meine Freundin hat einen Doktortitel, und sie ist jetzt eine Professorin.”. The translation word
“Freundin” should only depends on “friend” and “she”, where “friend” indicates the meaning
and “she” indicates the gender form. The output word being influenced by more source words
would indicate that the MT system is focusing on the wrong part of the input sentence.

Broadly speaking, in Perturbation-based QE, we perturb words in the source sentences one
by one to find out which source words influence a single output word. If an output word is influ-
enced by too many source words, then it is predicted as a bad translation. Due to its simplicity,
our approach does not require human-labeled QE data, nor parallel MT data, nor glass-box
access to the evaluated MT system. Additionally, our QE approach comes with explainability
power: it shows which source words affect each output word in the translation, thus can be used
as an indication of the wrong correlations that is inherent in the MT system.

To summarize, our contributions are as follows:

• Proposing Perturbation-based QE1: a simple word-level Quality Estimation approach that
is explainable, unsupervised and works with any type of blackbox MT systems, including
the API-only large language models (i.e., MT-system-agnostic).

• Experiments showing the advantages of Perturbation-based QE: (1) it has similar or better
performance than zero-shot QE, without making use of labeled data of auxiliary language
pairs and (2) it is domain-independent and MT-system-independent compared to super-
vised QE methods: it can better capture out-of-domain gender errors and word-sense-
disambiguation errors, especially from an unseen, nontraditional translation-prompting
large language model and (3) it is not sensitive to hyperparameters.

• Analysis showing an example use of the explainability power of Perturbation-based QE.

2 Related work

Quality Estimation (QE) aims to predict the quality of Machine Translation (MT) output, either
at the sentence level or word level. For word-level QE, the goal is to predict whether each word
in the translation is correct. State-of-the-art word-level QE methods are supervised (Kim et al.,
2017a; Specia et al., 2021b), i.e., requiring labeled data for training, which is costly to obtain.
1Implementation available at https://github.com/TuAnh23/Perturbation-basedQE.
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Additionally, supervised QE is likely to be domain-dependent and MT-system-dependent, as
they do not aware of errors not occurring in the training data (Kocyigit et al., 2022).

Unsupervised QE overcomes the need for labeled data. Several works perform unsuper-
vised QE by using glass-box features from the MT systems (Popović, 2012; Moreau and Vo-
gel, 2012; Etchegoyhen et al., 2018; Niehues and Pham, 2019; Fomicheva et al., 2020b). As
an example, Fomicheva et al. (2020b) proposed unsupervised QE using the output probability
distribution and the attention mechanism from encoder-decoder MT models. Therefore, their
methods are model-specific. Tuan et al. (2021) excludes the need for human-labeled data and
MT glass-box access by creating synthetic data to train QE models. The synthetic data is gen-
erated by aligning candidate MT translations to the target references to find errors, or rewriting
target reference sentences using a masked language model to introduce errors. These methods
require a large and diverse amount of parallel MT data (i.e., source sentences and the gold-
standard translations), which is not always available for different domains and language pairs.
Additionally, these methods are also likely to be domain-dependent and MT-system-dependent,
as the QE model is trained on the output of pre-selected MT systems on pre-selected MT data.

Researchers also focus on Quality Estimation from the explainability perspective. He et al.
(2019) propose using integrated gradients from MT models (i.e., glass-box information) to
quantify how important each source word is to the output translated words. The method is
then used for QE by detecting under-translated source words that have low importance to the
output translation. Ferrando et al. (2022) also quantify the contribution of each source word on
the output translation using glass-box information from transformer-based MT models, which
is the layer-wise tokens attributions. Here the source words’ contribution can also be used to
detect under-translated source words, or to assess the quality of the whole translation. An-
other line of research is on explainable sentence-level QE, where the word-level error scores
are provided as the explanation for the predicted sentence-level score (Fomicheva et al., 2021).
Explanations can be extracted by using methods such as LIME (Ribeiro et al., 2016) or SHAP
(Lundberg and Lee, 2017) on top of sentence-level QE models, or building interpretable models
that output both sentence-level quality and word-level explanations (Fomicheva et al., 2021).

In contrast to the previous works on Quality Estimation, Perturbation-based QE does not
require labeled QE data, parallel MT data, nor glass-box access to the evaluated MT system.
From the explainability perspective, our approach provides a new type of explanation for target-
side word-level QE, i.e., the information on which source words affect each translated word.

3 Perturbation-based Quality Estimation

In this section, we describe Perturbation-based QE. Recall our motivation: if the MT system
relies on too many tokens in the source sentence to output a translation token, it is likely that
the system is exploiting irrelevant correlations, thus the translation token is unreliable.

Perturbation generation (Step I Figure 1): We first perform perturbation to the source
sentence. The subset of source words to perturb, which is a hyperparameter choice, is one of
the following: (1) content words, i.e., noun, verb, adjective, adverb, pronoun, determined by
NLTK part-of-speech tagging (Bird et al., 2009); (2) all words including functional words such
as “a”, “an”, “the”; or (3) all tokens including non-word tokens such as punctuation marks. For
each perturbed source word si, we mask it out from the source sentence and use a language
model to generate n best replacements. The language masking model can be BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019) or DistilBERT (Sanh et al., 2019) (choice of the
language masking model is a hyperparameter).

Translation (Step II Figure 1): We use the MT system to translate all perturbed versions.
Alignment (Step III Figure 1): We align at word level all the perturbed translations with the

original translation. Two possible alignment methods are (1) Levenshtein (Levenshtein et al.,
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<MASK> met his wife in the hot spring of 1988.
He met his wife in the hot spring of 1988.
Sam met his wife in the hot spring of 1988.
James met his wife in the hot spring of 1988.
David met his wife in the hot spring of 1988.

John met his wife in the hot spring of 1988.

John traf seine Frau in der heißen Quelle von 1988.
Er traf seine Frau im heißen Frühjahr von 1988.
Sam traf seine Frau im heißen Frühjahr von 1988.
James traf seine Frau in der heißen Quelle von 1988.
David traf seine Frau in der heißen Quelle von 1988.

PERTURB

TRANSLATE

ALIGN TRANSLATIONS

CONSISTENT
TRANSLATION

DIRECT-
PERTURBATION-

OUTCOME

INCONSISTENT
TRANSLATION

["in", "der", "Quelle"] is influenced by "John"

Step I

Step II

Step III

John met his wife in the hot spring of 1988.

["in", "der", "Quelle"] is influenced by "met"

John met his wife in the hot spring of 1988.

[] is influenced by "his"

John met his wife in the hot spring of 1988.

[] is influenced by "wife"

"John"   influenced by 0 < t source word   --> labeled OK
"traf"      influenced by 0 < t source word   --> labeled OK
          . . .
"Quelle" influenced by 4 > t source words --> labeled BAD
            . . . 

Figure 1: Perturbation-based QE. Words in the source sentence are perturbed one by one to find
out their influence on the output words. If an output word hj is influenced by more than t source
words (excluding the source word directly translated to hj), it is predicted as a BAD translation.

1966), which is the standard edit-distance alignment method that minimizes the number of
insertion, deletion and substitution operations; and (2) Tercom (Snover et al., 2006), which ad-
ditionally considers the shift operation. In Figure 1, the alignment outcome is shown in a table,
where the column titles are the tokenized original translation, the row titles are the replacements
of the perturbed source word, and each row is the aligned translation of the perturbed source
sentence. Note that sometimes the alignments are not one-to-one. Some words in the original
translation could have no aligned version in the perturbed translation. In this case, we align the
original word with an empty token. Similarly, some words in the perturbed translation might
not be aligned with any word in the original translation. In this case, we discard the words in
the perturbed translation, since we only evaluate the consistency of the original words.

Consistency evaluation (Step III Figure 1): An MT-output word hj is considered either
a consistent translation, an inconsistent translation, or a direct-perturbation-outcome w.r.t. each
perturbed source word si.

• Consistent translation is a translation that remains the same across perturbations. For ex-
ample, in Figure 1, “Frau” is a consistent translation w.r.t perturbing “John”. To account
for possible noise in alignment, we mark a translation as consistent if it remains the same
across more than c% out of n perturbations w.r.t si. The threshold c is a hyperparameter.

• Direct-perturbation-outcome is the translation of the perturbed word, thus should vary in
all perturbations. For example, in Figure 1, “John” is a direct-perturbation-outcome trans-
lation w.r.t perturbing “John”. To account for possible noise in translation and alignment,
we mark a translation as direct-perturbation-outcome if the number of unique versions over
the total n perturbations is larger than p%. The threshold p is a hyperparameter.

• Inconsistent translation is a translation that has a few versions of it across n perturbations
(i.e., the remaining cases). In Figure 1, “Quelle” is an inconsistent translation w.r.t per-
turbing “John”. When an MT-output word hj is inconsistent due to perturbing a source
word si, we say that hj is influenced by si. Here “Quelle” is influenced by “John”.

Quality label prediction (Last block Figure 1): If the number of source words influencing
hj (excluding the one directly translated to hj) is higher than a threshold t, then hj is predicted
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as a BAD translation, otherwise predicted as OK2. The threshold t is a hyperparameter.
Our approach comes with several advantages. First, it is unsupervised. The method does

not rely on any labeled QE data or parallel MT data for training. This potentially makes the ap-
proach domain-independent and MT-system-independent. In other words, the approach would
be robust to discover errors not presented in previous datasets, such as errors from a new MT
system on a different domain. A small amount of labeled QE data can be used for hyperparame-
ter tuning. However, our experiments show that the approach is not sensitive to hyperparameter
choices, and that hyperparameters can be transferred across languages. Second, our approach
is MT-system-agnostic and works for blackbox MT systems, as it only uses the MT system to
generate translations. Third, our approach comes with explainability power. For each MT out-
put word, our method shows which source words affect the generation of the considered output
word. In this way, one can find wrong correlations inherent in the MT systems.

In terms of computational cost, Perturbation-based QE does not involve any training pro-
cess. However, it requires computational power when using the evaluated MT system to gener-
ate translations of different perturbed versions of the source sentence. This can be considered
as the trade-off between our approach and the previous QE approaches.

4 Experimental setup

4.1 Overall evaluation

Dataset: We use the word-level part of the MLQE-PE dataset (Fomicheva et al., 2020a), which
is the benchmark in the WMT21 QE shared task (Specia et al., 2021b). The dataset consists
of source sentences, the machine translation output and the word-level OK/BAD labels. We
conduct experiments on four language pairs: English-German (en-de), English-Chinese(en-zh),
English-Japanese (en-ja) and English-Czech (en-cs). In this dataset, en-de and en-zh direc-
tions are supervised, while en-ja and en-cs directions are zero-shot. However, we only use the
development split for en-de and en-zh to perform hyperparameter tuning.

Evaluated MT systems: We use the to-be-evaluated encoder-decoder MT systems from
WMT21, i.e., the fairseq Transformer (Ott et al., 2019) bilingual models for en-de and en-zh;
and the ML50 fairseq multilingual Transformer model (Tang et al., 2020) for en-cs and en-ja.

Metrics: Following the WMT21 shared task, we use the Matthews correlation coefficient
(MCC) (Matthews, 1975) as the evaluation metric for word-level QE in our experiments.

Hyperparameters: Hyperparameters for our approach, as explained in Section 3, are the
number of unmasking replacements n, thresholds c, p, t, choices of source word subset for
perturbation, language masking models to generate perturbation replacements and alignment
tools. We use grid search to find the hyperparameter setting that yields the highest MCC score
on development data. The best setting for en-de (which is then applied on en-cs) is n = 30,
c = 0.95, p = 0.9, t = 2, perturbing content words, Tercom alignment and RoBERTa un-
masking. The best setting for en-zh (which is then applied on en-ja) is n = 30, c = 0.95,
p = 0.8, t = 4, perturbing all tokens, Tercom alignment and RoBERTa unmasking. We transfer
the hyperparameters across languages in such a way since we expect more language-similarity
between de/cs (alphabetic writing systems) and zh/ja (logographic writing systems).

Unsupervised QE baselines: For unsupervised baseline, we use the word-level log prob-
abilities generated by the MT system. If the log probability of an output word is larger than a
certain threshold l, then it is marked as OK, otherwise it is marked as BAD. The threshold l is
a hyperparameter. Here we also use the development split to find the best l for en-de and en-zh.
We apply the best value of l for en-de (which is log20.45) on en-cs and the best value of l for

2We focus on evaluating the translation words that were output by the MT system. Our approach is not
suitable to evaluate the gap between words or to detect untranslated parts of the source sentence.
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en-zh (which is log20.60) on en-ja. We choose this baseline since it has the same data usage
as our approach, and it requires little information from the MT system (although here we no
longer treat the MT system completely as blackbox).

Supervised QE baselines: We use the supervised baseline from the WMT21 QE shared
task (Specia et al., 2021a). The baseline is a multilingual transformer-based Predictor-Estimator
(Kim et al., 2017b), trained on labeled data for all available seven language directions. The
model is trained multi-tasked, requiring both word-level and sentence-level labeled data.

4.2 Out-of-domain, unseen-MT-system evaluation

Common in-domain, known-MT-system setup: The common evaluation setup for QE ap-
proaches, e.g., in the WMT21 shared task, are in-domain and on known MT systems. That is,
the QE test data is generated in the same way as the QE training data, and the to-be-evaluated
MT system is the same as the one used to create the QE training data. However, in order to be
useful in real-world applications, QE approaches should be capable of out-of-domain evaluation
on unseen MT systems. That is, QE approaches should be able to evaluate different types of MT
systems on different types of datasets. Therefore, we design experiments using QE approaches
in an out-of-domain, unknown-MT-system setting, described as follows.

Evaluated MT systems: We test the QE approaches on evaluating two MT systems, one
known and one unseen. The known MT system is the one that was used to create the WMT21
QE training and test data: the Fairseq encoder-decoder MT model. The unseen system is Flan-
UL2 (available on HuggingFace) - a recent prompt-based large language model (LLM). We
generate MT output from this LLM by prompting the system with “Translate this into German:
<English input>.”. We choose this system as LLMs have been gaining a lot of attention and are
more and more widely used (Vilar et al., 2022; Zhang et al., 2023; Bawden and Yvon, 2023).
Going beyond the conventional encoder-decoder MT systems, we attempt to show that our
approach is applicable to prompt-based translation using these prominent decoder-only LLMs.

Out-of-domain test data: We use two challenge sets on en-de. The first one is WinoMT
(Stanovsky et al., 2019), used to evaluate gender bias from MT systems. WinoMT contains
English input sentences with marked gender roles (e.g., “The doctor asked the nurse to help her
in the operation”) and evaluation protocol to identify whether the MT system outputs the correct
gender form. The second challenge set is MuCoW (WMT 2019 translation test suite version)
(Raganato et al., 2019), used to evaluate word-sense-disambiguation ability of MT systems.
MuCoW contains English input sentences with ambiguous words and evaluation protocol to
identify whether the MT system outputs the correct sense translations of the ambiguous words.

On WinoMT, the correct-gender accuracy is 69.4% for the Fairseq encoder-decoder MT
system and 47.5% for the Prompt-based LLM Flan-UL2 system. On MuCoW, the correct-
disambiguation accuracy is 47.59% for the Fairseq encoder-decoder MT system and 22.95% for
the Prompt-based LLM Flan-UL2 system. Both MT systems do not perform well in outputting
the correct gender form nor outputting the correct sense for ambiguous words. Therefore, it
would be interesting to see whether QE methods can detect these mistakes.

Out-of-domain error detection: We test whether QE approaches can detect gender errors
(which we refer to as GenderBAD tokens) and word-sense-disambiguation errors (which we
refer to as WSD-BAD tokens). Given an MT system, we first generate translations for the
WinoMT/MuCoW English sentences. Then we run WinoMT/MuCoW evaluation protocol to
mark the GenderBAD/WSD-BAD tokens. An ideal QE approach should be able to detect all
the GenderBAD/WSD-BAD tokens, i.e., correctly labeling them as BAD translations.

Metrics: We report on the GenderBAD-recall and WSD-BAD-recall, i.e., the percentage
of GenderBAD/WSD-BAD tokens (marked by WinoMT/MuCoW) that are successfully pre-
dicted as BAD by the QE methods. We do not report on the GenderBAD/WSD-BAD accuracy,
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since tokens with correct gender form or correct disambiguated sense are not necessarily OK
translations. They could contain some other types of errors such as tense or singular/plural
forms. Note that the recall metric could favor QE methods that are overly harsh (e.g., predicting
everything as BAD would result in perfect GenderBAD/WSD-BAD recall). Therefore, we ad-
ditionally report on the GenderBAD-precision and WSD-BAD-precision. Precision scores only
serve as an indication of whether a QE model is too harsh. The reason is that, GenderBAD and
WSD-BAD are not the only types of BAD error, thus it is not correct to always punish the QE
model for predicting a non-GenderBAD or non-WSD-BAD token as BAD.

4.3 Robustness w.r.t hyperparameter choices
Recall that, in the previous experiments, we use the WMT21 development data of en-de and en-
zh to perform hyperparameter tuning for Perturbation-based QE. The best hyperparameters for
en-de are then also used for en-cs, and the ones for en-zh are used for en-ja, since we assumed
more language similarity between de/cs and zh/ja. We refer to this as “ideal hyperparameters”.

The aim of this experiment is to test the robustness of our approach w.r.t hyperparame-
ter choices, i.e., how much our approach relies on labeled development data. Similar to the
experiment in Section 4.1, we report the MCC scores on in-domain setting, i.e., WMT21 test
data. Here we apply the hyperparameter settings in an opposite way compared to previous ex-
periment, i.e., (1) applying the best hyperparameter setting of en-de on en-zh and en-ja, and
(2) applying the best hyperparameter setting of en-zh on en-de and en-cs. We refer to this as
“suboptimal hyperparameters”. The MCC scores reducing significantly would indicate that
our approach is sensitive to hyperparameters and vice versa. Additionally, we provide ablation
experiments on the discrete hyperparameters to see their effects on the QE performance.

5 Results and Discussion

5.1 Overall QE performance

Supervised/Tuned Zero-shot/Un-tuned
en-de en-zh en-ja en-cs

Log probability QE 0.241 0.149 0.112 0.257
WMT21 QE baseline 0.370 0.247 0.131 0.273
Perturbation-based QE 0.287 0.180 0.218 0.270

Table 1: Performance (in MCC score) of word-level QE approaches on WMT21 test data.

The performance of our Perturbation-based QE on the WMT21 test data, in comparison
to other baselines, is shown in Table 1. Our approach outperforms the log-probability baseline
over all language pairs. The largest gap is on en-ja, where our approach obtains 0.106 points
higher. For en-de and en-zh, the gain from our approach is around 0.040 points. The smallest
gain is on en-cs, where our approach outperforms the log-probability baseline by 0.013 points.

Compared to the WMT21 QE baseline, on en-de and en-zh, our approach falls behind
by 0.083 and 0.067 points respectively. Recall that for these language pairs, the WMT21 QE
is supervised, requiring labeled word-level data, and additionally uses sentence-level data for
multi-task training. In contrast, our approach only uses the development split of word-level
data for hyperparameter tuning. It can be concluded that our approach is not competitive to the
supervised approaches that make use of more labeled data for training.

On en-ja and en-cs, our approach is competitive to the WMT21 QE baseline. Our approach
outperforms the baseline by 0.087 points on en-ja, while having similar performance on en-cs.
Recall that on these language pairs, both approaches do not use any labeled data of the language
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pairs in consideration. The WMT21 baseline is zero-shot: it uses labeled training data of 7 other
language pairs. In contrast, our approach only uses the development split of 2 other language
pairs for hyperparameter tuning. It can be concluded that, when there is no direct labeled data
for the language pair of interest, our approach has competitive performance while being more
data efficient compared to the zero-shot approach. Additionally, observe that the performance
of the WMT21 zero-shot baseline on en-ja is low compared to en-cs. This is possibly due to
the low similarity between ja and other languages in the training data. This indicates that the
zero-shot approach is more data-dependent, while this is not an issue for our approach.

5.2 Out-of-domain, unseen-system evaluation
The QE approaches’ performance on detecting out-of-domain errors from known/unseen eval-
uated MT-system is shown in Table 2. As can be seen, our Perturbation-based QE approach
has the best performance. When the task is to detect gender errors, our GenderBAD-recall is
significantly higher than the second-best QE approach by over 0.200 points. When the task is
to detect word sense disambiguation errors, our WSD-BAD-recall is higher than the second-
best QE approach by over 0.049 points. At the same time, our GenderBAD-precision and
WSD-BAD-precision scores are similar to the other methods, indicating that we are not overly
predicting tokens as BAD to cheat for a higher GenderBAD-recall and WSD-BAD-recall.

Known MT system
(Encoder-Decoder MT)

Unseen MT system
(Prompt-based LLM)

GenderBAD
recall

GenderBAD
precision

GenderBAD
recall

GenderBAD
precision

Log probability QE 0.175 0.036 0.429 0.047
WMT21 QE (supervised) 0.021 0.031 0.065 0.036
Perturbation-based QE 0.391 0.045 0.658 0.042

Known MT system
(Encoder-Decoder MT)

Unseen MT system
(Prompt-based LLM)

WSD-BAD
recall

WSD-BAD
precision

WSD-BAD
recall

WSD-BAD
precision

Log probability QE 0.137 0.007 0.347 0.005
WMT21 QE (supervised) 0.290 0.028 0.177 0.004
Perturbation-based QE 0.339 0.009 0.709 0.005

Table 2: Results on detecting out-of-domain errors by different QE methods. The top half
indicates results on WinoMT. The bottom half indicates results on MuCoW.

Another observation is that, the supervised WMT21 QE model performs poorly on detect-
ing GenderBAD tokens from MT outputs on WinoMT. Its GenderBAD-recall is very low, at
0.021 for known MT system and at 0.065 for unseen MT system. This performance is even
worse than that of the naive Log probability QE, whose GenderBAD-recall is 0.175 on known
MT system output and 0.429 on unseen MT system output. A possible explanation is that, the
WMT21 QE model does not aware of gender errors since this type of error does not present in
the training data. This indicates the data-dependent issue inherent to supervised QE approaches.

The performance gap between our Perturbation-based QE approach and the supervised
WMT21 QE model is larger on the unseen MT system than the known MT system. On the
unseen MT system, our GenderBAD-recall is higher than the WMT21 QE model by +0.593
points, which is larger than the corresponding gap of +0.370 when evaluating the known MT
system. Similarly, the WSD-recall gap is +0.532 on the unseen MT system, which is larger
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than the gap of +0.049 on the known MT system. Additionally, when detecting word sense
disambiguation errors from the unseen MT system, the performance of the WMT21 QE model
is once again worse than the naive Log probability QE approach, where its WSD-BAD-recall
is lower by -0.170 points. This indicates the MT-system-dependent issue inherent to supervised
QE approaches, where they are not able to perform as well on evaluating unseen MT systems.

Overall, the supervised QE models, while performing better in a similar setting as their
training process, fail behind Perturbation-based QE in out-of-domain and unseen-system set-
tings. This strengthens the domain-independent and system-independent power of our ap-
proach: it can better detect errors from a new MT system on a new domain usage.

5.3 Robustness w.r.t hyperparameter choices
The difference in performance when using different hyperparameter settings in our approach is
shown in Table 3. As can be seen, the MCC scores only deviate by around 0.010 points when us-
ing ideal versus suboptimal hyperparameter values. The difference in performance when using
different values for the discrete hyperparameters is shown in Table 4. We consider 3 hyperpa-
rameters, in the top-to-bottom order displayed in Table 4: sets of perturbed source words, un-
masking models and alignment methods. It can be seen that, the MCC scores generally deviate
by only around 0.010 points. Overall, different choices of hyperparameters do not significantly
affect our QE performance. This shows that our approach is not sensitive to hyperparameter
choices, which is useful since we are not dependent on labeled data for hyperparameter tuning.

en-de en-zh en-ja en-cs
Ideal hyperparameters 0.287 0.180 0.218 0.270
Suboptimal hyperparameters 0.274 0.167 0.206 0.284

Table 3: Perturbation-based QE performance in MCC using ideal/suboptimal hyperparameters.

en-de en-zh
Best val MCC Test MCC Best val MCC Test MCC

content words 0.282 ± 0.004 0.287 ± 0.005 0.196 ± 0.003 0.169 ± 0.005
all words 0.267 ± 0.004 0.277 ± 0.003 0.196 ± 0.002 0.162 ± 0.004
all tokens 0.270 ± 0.002 0.269 ± 0.006 0.208 ± 0.003 0.177 ± 0.004
BERT large 0.272 ± 0.006 0.278 ± 0.011 0.198 ± 0.006 0.174 ± 0.006
BERT base 0.272 ± 0.006 0.279 ± 0.009 0.199 ± 0.005 0.166 ± 0.006
DistilBERT 0.269 ± 0.008 0.272 ± 0.008 0.198 ± 0.008 0.168 ± 0.009
RoBERTa 0.277 ± 0.007 0.278 ± 0.008 0.203 ± 0.007 0.169 ± 0.007
Levenshtein 0.272 ± 0.006 0.275 ± 0.008 0.199 ± 0.006 0.170 ± 0.007
Tercom 0.274 ± 0.009 0.280 ± 0.009 0.200 ± 0.007 0.168 ± 0.007

Table 4: Ablation experiments on discrete hyperparameter settings for Perturbation-based QE.
The performance of a setting in a specific group is averaged over all settings of the other groups.

5.4 Perturbation-based QE for explainable MT
We investigate some examples of using Perturbation-based QE for explaining the MT output
gender errors on WinoMT and the word sense disambiguation errors on MuCoW. One gender
error example is shown in Figure 2a. The MT system outputs the female form for “house-
keeper”, while the form should be male, indicated by the word “he”. In an ideal scenario,
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the gender form of “housekeeper” (“Haushälterin/Haushalter”) should only depend on “he”.
However, our approach shows that, when perturbing the source word “he”, the output word
“Haushälterin” does not change. Instead, when perturbing [“chief”, “gave”, “tip”, “was”,
“helpful”], the output varies between “Haushälterin” and “Haushalter”, showing that the MT
model is focusing on the wrong part of the sentence to determine the gender form.

The chief gave the housekeeper a tip because he was helpful.

Der Chef gab der Haushälterin einen Tipp, weil er hilfsbereit war.
MT<GenderBAD>

*

Perturbing ''Chef':

Perturbation-based QE's explanation:

Perturbing "he":

INCONSISTENT
TRANSLATION

DIRECT-PERTURBATION-
OUTCOME

DIRECT-PERTURBATION-
OUTCOME

CONSISTENT
TRANSLATION

If you're going toward the inn, may I offer you a place in my coach?

Wenn Sie in Richtung des Gasthauses gehen, kann ich Ihnen einen Platz in meinem Trainer anbieten?

<WSD-BAD>
*

SRC words influencing Trainer: ["'re", "going", "offer", "place", "my"]  
Perturbation-based QE's explanation:

SRC words not influencing Trainer:  ["you", "inn", "I"]

a) b)

MT

SRC words influencing Haushälterin:  ["chief", "gave", "tip", "was", "helpful"].
SRC words not influencing Haushälterin:  ["he"]

Perturbing ''offer':

INCONSISTENT
TRANSLATION

DIRECT-
PERTURBATION-

OUTCOME
Perturbing ''going':

DIRECT-PERTURBATION-
OUTCOME

INCONSISTENT
TRANSLATION

Figure 2: Example of Perturbation-based QE’s explanation on WinoMT (a) and MuCoW (b).

One word sense disambiguation error example is shown in Figure 2b. The MT system
outputs the wrong sense for “coach”. It outputs “Trainer”, which means the sports trainer.
However, given the context, “coach” should mean the vehicle, thus the correct output should
be “Bus”. Ideally, the MT system should only look at the context source words indicating
movements to decide on the sense of “coach”. Nevertheless, our approach shows that the MT
output translation for “coach” varies when perturbing multiple source words. For example,
replacing “offer” with “rent” or “reserve” makes the system outputs the correct sense “Bus”,
while for other replacements it still outputs “Trainer”. Similarly, when replacing “going”
with other words that indicate movements, only “traveling” and “wandering” make the system
outputs the correct sense “Bus”. This explanation provides an insight into the MT system: the
sense “Bus” is only correlated to a few context words. Therefore, when the source sentence
does not contain those specific words, the MT system fails to output the correct sense.

6 Conclusion

We proposed an unsupervised word-level Quality Estimation method, termed Perturbation-
based QE. Our method does not rely on labeled QE data nor parallel MT data, masking
it more domain-independent and system-independent to find MT errors that cannot be fore-
seen. This advantage is supported by our experiment on finding gender bias and word-sense-
disambiguation erroneous translation from a nontraditional translation-prompting LLM. Our
approach is not sensitive to hyperparameter settings, thus less dependent on labeled data for hy-
perparameter tuning. Our approach is also explainable: it shows which source words affect an
output translated word. Additionally, our approach is MT-system-agnostic and works for black-
box systems. Overall, Perturbation-based QE, as an unsupervised method, still falls behind
supervised QE on in-domain and known-MT-system settings, but outperforms supervised QE
on zero-shot settings and on out-domain and unseen-MT-system settings. As future work, it can
be extended to assess the quality of other tasks, such as question answering or summarization,
in the same manner: minimally perturb the input and analyze changes in the output.
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