Negative Lexical Constraints
in Neural Machine Translation

Josef Jon jon@ufal.mff.cuni.cz
DusSan Varis varis @ufal.mff.cuni.cz
Michal Novak mnovak @ufal.mff.cuni.cz
Joao Paulo Aires aires @ufal.mff.cuni.cz
Ondrej Bojar bojar @ufal.mff.cuni.cz

Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics,
Prague, Czech Republic

Abstract

This paper explores negative lexical constraining in English to Czech neural machine translation.
Negative lexical constraining is used to prohibit certain words or expressions in the translation
produced by the neural translation model. We compared various methods based on modifying
either the decoding process or the training data. The comparison was performed on two tasks:
paraphrasing and feedback-based translation refinement. We also studied to which extent these
methods “evade” the constraints presented to the model (usually in the dictionary form) by
generating a different surface form of a given constraint. We propose a way to mitigate the issue
through training with stemmed negative constraints to counter the model’s ability to induce a
variety of the surface forms of a word that can result in bypassing the constraint. We demonstrate
that our method improves the constraining, although the problem still persists in many cases.

1 Introduction

In general, lexically constrained neural machine translation (NMT) is a method that allows
enforcing presence or absence of certain words or phrases in the translation output . Positively
constrained translation is more common and is used, for example, in named entities translation
(Liet al., 2019; Yan et al., 2019), terminology integration (Dinu et al., 2019; Jon et al., 2021), or
interactive machine translation (Knowles and Koehn, 2016).

Negative constraining serves different purposes. In this paper, we focus on two use-cases:
(1) paraphrase generation and (2) refining translation based on feedback. Paraphrasing aims to
produce a new translation hypothesis that differs from the original translation without significant
changes in meaning. On the other hand, translation refinement involves replacing specific
tokens in the original translation. These tokens can be selected either manually by the user or
automatically using techniques like word-level quality estimation (Kepler et al., 2019). Negative
constraining is particularly well-suited for translation refinement, while it can be one of the
solutions for paraphrase generation.

After providing a summary of related work (Section 2), we proceed to describe the two
tasks in detail (Section 3). Next, we delve into the methods we employ to achieve negative
constraining (Section 4). The results are presented in Section 5, followed by a manual analysis
of the outputs in Section 6.
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2 Related work

There are three dominant approaches to constrained NMT. The earliest ones were based on
replacing the constrained expressions in the source sentence with placeholders, ensuring that the
placeholders are copied into the translation produced by the model and, finally, replacing the
placeholders in the target with the desired expression (Crego et al., 2016; Hanneman and Dinu,
2020).

The second class of methods is based on modifying the decoding mechanism in such way
that only translations including (or not including) the specified words or phrases can be produced
in the final output (Anderson et al., 2017; Hasler et al., 2018; Chatterjee et al., 2017; Hokamp
and Liu, 2017; Post and Vilar, 2018; Hu et al., 2019a).

The third class of methods revolves around altering the source input in the training data,
allowing the NMT model to learn how to incorporate the constraints. This is typically done by
either appending the constraints to the end of the source sentence as a suffix or intertwining them
with the source sentence and distinguishing them from its tokens using factors (Dinu et al., 2019;
Song et al., 2019; Chen et al., 2020; Jon et al., 2021; Bergmanis and Pinnis, 2021b,a).

Currently, most of the research in the field focuses on positive lexical constraints, often
used for terminology integration. In contrast, there is a relatively less emphasis on negative
constraining, despite its applications in areas like paraphrase generation (Hu et al., 2019b;
Kajiwara, 2019). These works apply a method developed by Post and Vilar (2018) and later
improved by Hu et al. (2019a). This method modifies the beam search decoding algorithm so that
the beam in each time step includes the best hypotheses that satisfy from zero to the full number
of pre-defined constraints. When using only negative constraints, the algorithm effectively boils
down to filtering out hypotheses that would introduce any word (or phrase) from the list of
constraints.

3 Task description
We carry out experiments with negative constraints in the two following tasks:

Paraphrase generation is often achieved through translation, where negative constraints come
in handy for indicating the desired differences in the paraphrased output. To create a paraphrase
of a source sentence, we go through multiple rounds of translation, each time disallowing some
of the words generated in the previous pass. These restricted words or expressions should be
replaced by synonymous expressions by the MT model, thereby creating a paraphrase of the
original translation. As an example, consider the sentence “He dodged the ball.” as the initial
translation from a foreign language into English. When the word “dodge” is employed as the
negative constraint, the system is expected to generate a paraphrase of the original translation
(e.g. “He avoided the ball.”) in the second pass.

Feedback-based translation refinement involves using external feedback to assess the
model’s output, for example, through user feedback in an interactive setting. After the ini-
tial translation is presented, the user can identify certain words as mistranslated. These words
are then excluded from the subsequent output, prompting the model to generate a potentially
improved translation. As obtaining human constraints can be costly, we translate the source
without any constraints and analyze the tokens present in the MT output but not in the reference.
In the next translation pass, we constrain the model to avoid using these “unconfirmed” tokens
and evaluate the resulting translation.

In practice, word-level quality estimation (QE) systems can partially replace user feedback
by highlighting potentially problematic tokens. In our work, we use references as a proxy for an
oracle QE.
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4 Proposed methods

We define a constraint as a sequence of consecutive subwords, which may represent either a single
word or a multi-word expression. Each input example can have a list of multiple constraints that
need to be satisfied. To incorporate these constraints into the translation process, we implement
the following methods.

Beam filtering This method is based on an existing implementation where a hypothesis
containing any forbidden subword is dropped from the beam search.! For each input sentence, a
list of constraints (where each constraint represents a single subword) is provided. During beam
search, any time a hypothesis that contain a constraint from the list is generated, it is removed.
Optionally, it is removed only if the log probability of the subword is falls below a specified
threshold. This method is referred to as the “subword method”, and we extend it to support
multi-subword expressions (“multi-subword method”). Instead of filtering after a single subword
is generated, we store subwords corresponding to each constraint in a list of lists. For example:

* Constraint 1: decoding Segmentation: _deco ding

* Constraint 2: beam search Segmentation: _be am _search
* Subword method: [_deco, ding, _be, am, _search]

* Multi-subword method: [[_deco, ding], [_be, am, _search]]

Each hypothesis tracks its progress through the constraints, and it is removed only when a
complete constraint is met. In other words, the hypothesis is removed only when all the subwords
forming a single constraint are generated subsequently.?

Score penalty Another technique we experimented with is modifying the output probability of
the subwords that form the constrained expression during the decoding. For this technique, we
provided a list of constraints along with each input sentence. We created a mask with a penalty
value for each subword present in the vocabulary. In our implementation, the penalty value was
global, meaning each subword had either no or the same specified penalty. This mask was then
summed with the output logits at each decoding step. To handle multi-subword constraints, we
used a trie structure to track the progress through each constraint in each beam, similar to the
approach used in (Hu et al., 2019a).

In the trie structure, each node represents a subword that is part of a constraint. The node
contains a list of vocabulary IDs that, if generated in the next decoding step, would complete the
constraint. When the subword represented by a node is produced, the penalty is added to the
scores of these IDs in the next step.

Learned constraints A different approach to constraining involves modifying the training
data to bias the model. The objective is to prevent the model from producing the constraint
expressions that are directly provided with the input sentence. In our experiments, we separate
the list of constraints from the source sentence by a special <sep> token, whereas the individual
constraints within the list are separated by a special <c> token. For example:

* This is a sentence where we want to use synonyms for dog and cat. <sep> dog <c> cat

We train a model on the original dataset and the use this model to translate the source side
of the dataset. Tokens present in the translation but not in the reference are extracted and used as
“synthetic” constraints for training data, similar to the approach in the Translation refinement
task. The resulting training dataset with “synthetic” constraints is then utilized to train a model
capable of handling negative constraints in its input.

lImplemf:nted here: https://github.com/XapaJIlaMnu/marian-dev/tree/paraphrases_v2
2Link to the github repository of our code, removed for review.
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constraints WMT20 Multi-ref

BLEU COMET BLEU COMET

Yes 30.8 0.6067 46.5 0.5971
No 30.7 0.6071 46.7 0.5944

Table 1: Comparison of the baseline models trained with and without constraints present in the
training data. No constraints were present in the test set, showing that even the model exposed to
the input constraints can be used in a “default” mode (no input constraints).

5 Experiments

In this section, we compare the performance of the methods on the tasks presented earlier.

5.1 Datasets and tools

We use CzEng 2.0 (Kocmi et al., 2020) dataset, all the authentic parallel sentences (61M), as
the training dataset. We use WMT newstest-2019 (Barrault et al., 2019) and newstest-2020
(Barrault et al., 2020) for development and final evaluation respectively. We also used a subset of
50 examples from English-Czech newstest-2@11 which contains a large number of references
(about 15M reference sentences in total, averaging 300k references per source sentence) intro-
duced by Bojar et al. (2013) for part of the experiments. For evaluation on this multi-reference
dataset (denoted “Multi-ref” in the following), we randomly picked up to 1,000 references
for each source sentence to compute BLEU score and 20 references to compute COMET (the
COMET scores are computed separately for each reference and averaged).

We use SentencePiece (Kudo and Richardson, 2018) for subword segmentation and UD-
Pipe (Straka and Strakovd, 2017) for lemmatization. The models are trained with Marian
(Junczys-Dowmunt et al., 2018) using default hyperparameters for Transformer-base architecture.
BLEU (Papineni et al., 2002) scores are obtained by SacreBLEU (Post, 2018).> For COMET
(Rei et al., 2020) scores, we evaluate with the wmt20-comet-da model. As the references in the
Multi-ref test set are tokenized, we detokenized them using Sacremoses.*

5.2 Baseline

Our baseline model is a Transformer-base trained on CzEng 2.0 with negative constraints. This
model is specifically trained to use negative constraints provided as part of the input, as described
earlier in the Learned constraints section of Section 4. This approach enables more accurate
comparison with other methods of incorporating constraints. Table 1 illustrates that when no
constraints are provided at test time, the translation quality in terms of automated metrics is
similar to a vanilla model without constraints.

5.3 Paraphrasing

In this task, our goal is to produce paraphrases that are diverse enough from the original
translation. We thus opt for a multi-reference evaluation.

We create negative constraints by translating the source sentences of Multi-ref with the
baseline model. The translations are then tokenized, removing punctuation and common Czech
stopwords®. The remaining set of tokens serve as negative constraints.

3SacreBLEU signature: BLEU+case.mixed+lang.en-cs+numrefs. 1+smooth.exp+test. wmt20+tok.13a+version.1.4.14
4https ://github.com/alvations/sacremoses
SProhibiting them by a constraint would hinder generation of grammaically fluent sentences.
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Figure 1: Correlation between either BLEU (left) or COMET (right) scores and similarity of
translation to the baseline translation for paraphrasing.

Single subword Whole token
Penalty {tBLEU |Sim 1TCOMET |[Cvg ‘ TBLEU |Sim 1COMET |Cvg
0 46.5 100 0.5991 1.00 46.5 100 0.5991 1.00
0.1 46.5 83.6 0.5999 0.84 46.7 929 0.6078  0.94
0.2 459 764 0.5946  0.76 46.6  88.0 0.6123  0.89
0.5 451  70.6 0.5917  0.70 460 729 05991 0.73
1 41.6 50.2 0.5616 0.52 42.6 58.9 0.5939 0.62
2 325 297 0.4469  0.32 355 391 0.4988  0.46
3 202 109 0.1203  0.18 26.8 205 0.3869  0.30

Table 2: Results of the score penalty method on the paraphrasing task. We boldface variants
where we deem the degradation small enough (BLEU or COMET close enough to their baseline
value or even better).

In this task, our focus is on examining the relationship between the reference-based transla-
tion quality metrics (BLEU and COMET) and the similarity of the translation with the baseline
translation. The objective is to generate sentences that are as distinct as possible while minimiz-
ing the negative impact on translation quality. The correlation for all the methods is depicted in
Figure 1. Sampling across a range of thresholds (see below) generates various output variants.
We arrange them on the x-axis based on their similarity with the unconstrained translation
(“Similarity BLEU”). The y-axis then represents the automatically assessed translation quality.
The curves’ concave shape confirms that there is no sudden drop in quality as we paraphrase.
However, even with the very permissive scoring against the Multi-ref references, both BLEU
and COMET inevitably decline as we deviate further from the initial translations.

Tables 2—4 present the translation scores as well as the similarity of the paraphrase to the
first translation (Similarity BLEU, denoted “Sim” here) for several thresholds. Each threshold
controls the number of tokens to be paraphrased, affecting the similarity. However, its exact
meaning differs for each method, as explained below. Coverage (“Cvg”) indicates the ratio of
constraint tokens that were produced in the translation (ignoring the casing).

The results for the score penalty method are presented in Table 2. Penalty represents the
log probability that is subtracted from the logits for constrained tokens in each decoding step.
Two variants of the method are compared. Single subword is the simpler variant, penalizing
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Single subword Whole token
Thrshid {1BLEU [Sim 1TCOMET |Cvg ‘ TBLEU |Sim 1COMET |[Cvg

0 72 2 -0.3388 0.07 8.7 2.8 0.0621 0.09
-0.1 204 13.7 0.1919  0.17 18.1 10.5 0.2448 0.14
-0.2 335 299 0.4285 0.37 339 268 0.4595 0.31
-0.5 420 576 0.5938 0.60 417 533 0.5544  0.52
-1 459  82.6 0.6146  0.83 45.1 77.8 0.6059  0.76
-1.5 45.7 923 0.6011 0.91 46.1  89.8 0.6076  0.87
-2 46.2 955 0.5901 0.96 46.2 933 0.5774  0.93
-3 46.3  99.2 0.5931 0.99 46.3 99.1 0.5906  0.99

Table 3: Results of the beam filtering method on the paraphrasing task. Boldfacing as in Table 2.

Ratio BLEU Sim COMET Cvg

0 46.5 100 0.5991 1.00
single 454 814 0.5582 0.83
0.1 441 751 0.5685 0.76
0.2 39.9 57.6 0.5287 0.63
0.4 32.8 359 0.4796  0.43
0.6 248 19.1 0.4034 0.25
0.8 223 143 0.3193 0.18
1 13.1 8.7 0.2194 0.12

Table 4: Results of the learned method on the paraphrasing task. We do not boldface any row
because the BLEU and COMET scores immediately degrade.

each subword found among the constraints. On the other hand, in the Whole foken variant, the
multi-subword implementation is used. The penalty is applied only when a whole constraint
is completed in the hypothesis (in our configuration, the whole constraint will always be a
single word, due to the constraint generation algorithm). The penalty parameter allows us to
control the resulting paraphrase similarity: the higher its value, the more disadvantaged are
the constrained tokens during decoding. We observe no significant degradation of translation
up until about 88 BLEU similarity (0.89 coverage). Even at 72.9 BLEU similarity (0.73
coverage), the degradation is minimal. Multi-subword implementation yields better results
than the single-subword implementation, allowing us to reach slightly lower coverage with
comparable degradation, and it even appears to improve the baseline metric levels (BLEU of
46.7 and COMET of 0.6123 instead of the baseline 46.5 and 0.5991, respectively).

For the beam filtering method, the results are presented in Table 3. The controlling parameter
is a threshold log probability, removing the hypotheses that use the constraint with a probability
below the threshold. Opposed to the previous method, the lower its value, the more permissive
the algorithm is, keeping the hypotheses with less probable constraints in the beam search. Again,
two variants (single- and multi-subword) are implemented. For similar paraphrases, there are no
notable score differences. However, as translations become more dissimilar, the multi-subword
implementation performs better. Overall, beam filtering and score penalty methods show similar
performance. An improvement in overall quality in terms of COMET is again observed when
deviating somewhat from the baseline output (COMET slightly above 0.60 compared to 0.59).

Results for the learned constraints method are displayed in Table 4. We consider content
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Figure 2: The best results obtained by each method on the translation refinement task, either
in terms of BLEU (left) or COMET (right) scores. These results were computed using the best
found setting of the control parameter for each method.

Single subword Whole token
Penalty BLEU Sim COMET Cvg BLEU Sim COMET Cvg
0 46.5 100 0.5991 1 46.5 100 0.5991 1
0.1 469 954 0.6144 0.93 47.0 96.5 0.6104 0.95
0.5 48.5 80.6 0.6024 0.70 48.7 85.1 0.6237 0.76
1 48.6 68.9 0.5754 0.50 48.5 743 0.6302 0.59
2 47.1 57 0.5773  0.30 48.6 639 0.6011 043
3 482 533 0.5617 0.19 494 614 0.5790 0.33
35 48.1 50.8 0.5226  0.15 494 57.1 0.5695 0.22

Table 5: Results of the score penalty method on the refinement task.

words from the baseline translation as potential negative constraints, resulting in a full set of
conceivable constraints for a sentence. The method’s control parameter is the ratio of total
constraints to those actually used. For example, with 6 available constraints for a sentence and
aratio of 0.5, we select only 3 constraints. “Singl” in the ratio column indicates that only one
constraint was used for each sentence. The selection is based on token-level model scores from
the baseline translation, where scores of subwords comprising a token are summed. The lowest
log probability tokens are constrained first, effectively preventing the usage of words that the
baseline model hesitates to produce. We chose this sampling approach after observing large
result variances when using randomly sampled constraints. However, we acknowledge that this
selection method is not optimal, as several random runs led to significantly better BLEU and
COMET scores. The learned constraints underperform compared to other approaches, likely
because the decoding-based methods offer more precise control over which constraints to use
(penalty or threshold).

5.4 Translation refinement

Unlike the paraphrasing task, where the relationship between similarity and translation quality is
relevant, the translation refinement task solely aims to improve the absolute quality of translation.
The best scores achieved with optimal control parameters are presented in Figure 2.

Results for score penalty and beam filtering methods are presented in Tables 5 and 6,
showing the similar performance to each other, as already observed in the previous task.

In the learned constraints method (Table 7), the BLEU scores improve with an increasing
ratio of constraints, while the COMET scores do not follow the same trend.

The learned constraints method outperformed others significantly in terms of BLEU score.
The score penalty method achieved a slightly better COMET score with the best penalty value.
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Single subword Whole token
Thrshid BLEU Sim COMET Cvg BLEU Sim COMET Cvg

0 474 487 0.4755 0.03 494 50.1 0.5771  0.05
-0.1 479 524 0.6012 0.19 49.6 534 0.5814 0.16
-0.2 48.7 595 0.6163 0.37 48.7 56.7 0.6192 0.31
-0.3 494 65.7 0.5976  0.46 485 637 0.6179 0.42
-1 47.1 88 0.6100 0.83 477 854 0.6109 0.76
-2 463  96.9 0.5932 097 46.5 95 0.5813 0.93
-3.5 463 99.2 0.5931 0.99 463 99.2 0.5931 0.99

Table 6: Results of the beam filtering method on the refinement task.

ratio BLEU Sim COMET Cvg

0 46.5 100 0.5991 1.00
single 47.6 823 0.6123 0.75
0.1 46.8 944 0.6058 0.92
0.2 47.0 83 0.6212 0.75
04 474 725 0.6026  0.56
0.6 48.7 65.7 0.5922 0.38
0.8 51.2  58.8 0.6103 0.21
1 534 554 0.5746  0.08

Table 7: Results of the learned method on the refinement task.

We believe this is again due to the decoding methods providing more precise control over the
enforcement of constraints compared to the learned method.

In Table 8 we present results for the two best scoring methods on a better-known test set for
comparison, newstest20 (Barrault et al., 2020). The learned method provides better results than
the score penalty method on this dataset.

6 Manual analysis

Our results show that the methods tend to overlook some negative constraints and still produce
prohibited words. Both the score penalty and beam filtering methods require pushing the
thresholds quite far to satisfy all constraints. Conversely, the learned method is more attentive
to constraining but results in quick degradation of translation quality. To gain insights into
the system behavior, we examined the outputs and present typical examples for each class in
Figure 3. These examples are from the translation refinement task using the learned method,
with constraints being tokens present in the baseline translation but not in the reference. The
first example showcases a clear failure of the method, as the constraint is ignored without any
apparent reason. The second example is challenging, as it requires knowledge of the Czech
transcription of the name Assam based on its English transcription.

The Reference error example illustrates a situation, where the the meaning of the reference
translation that we use to generate the negative constraints slightly deviates from the source
sentence, resulting in a constraint difficult to satisfy. The reference translation replaces the
term two-thirds (dvoutretinovou) with a different term, needed (potrebnou), which leads to
dvoutretinovou being selected as a constraint. Since it is difficult to translate two-thirds majority
differently from the baseline translation, the model fails to do so. This issue could be addressed
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Learned Score penalty
ratio BLEU COMET penalty BLEU COMET

single 31.5 0.6183 0.2 30.6 0.6033
1 38.5 0.5973 0.1 30.8 0.6028

baseline 30.9 0.6067

Table 8: Results of best performing methods on newstest20. Results obtained using best-
performing parameters for both metrics separately are shown.

Model Constraints BLEU Surface Form Cvg Lemma Cvg

SF no 30.9 1.00 0.96
SF SF 38.5 0.09 0.34
Stem no 30.9 1.00 0.96
Stem Stem 36.9 0.22 0.39

Table 9: Comparison of surface form and lemma coverage (Cvg) for models trained with either
surface form or stemmed constraints. Evaluated on newstest-2020.

by using a validation dataset with more accurate reference translations.

In the Segmentation error example, the constraint is circumvented by employing a different
subword segmentation of the output. Sinve we use SentencePiece without prior tokenization,
adding a quotation mark (,,) at the beginning of a token results in a different segmentation
that is not accounted for by the constraints (as the constraints are provided to the model with
pre-existing segmentation).

The Inflection example demostrates a scenario where the model managed to avoid generating
a constraint in a specific form but did not avoid producing the constrained term itself. Out of
8 constraints, 4 are fulfilled with a different inflected form in the constrained translation (in
addition, one constraint is produced with a different spelling: diskusi/diskuzi). This behavior is
undesirable because such circumvention can still lead to a potentially problematic translation.
However, in certain cases, like paraphrasing, it may be deemed acceptable.

The extent of this behavior is presented in Table 9. We conduct a comparison between
coverage at the surface form level and coverage at the lemma level. The evaluation is based on
the translation refinement task on newstest-2020, using the learned method with a constraint
usage ratio of 1.0. For the lemma-level coverage assessment, both the constraints and constrained
translation were lemmatized. This ensures that even when the constraint is generated in a
different surface form, it is considered covered. It is important to note that our lemmatization
method is context-dependent, and in some cases, different lemmas may be produced for the same
word in a sentence and in the constraint list, leading to some imprecision in these results.

At the surface level, the coverage is 0.09, indicating that 91% of the constraints are correctly
satisfied. However, at the lemma level, the coverage increases to 0.34, which means that another
25% of the constraints appear in the translation in a different surface form, not detected by the
previous method of computing coverage. We attempted to mitigate this behavior by training
the model to use stemmed constraints (Stem model in Table 9). Our goal was to leverage the
language modeling capability of the NMT model to account for all the possible word forms.
While this approach partially works, reducing the gap between surface form and lemma coverage
to 17 instead of 25, the overall performance is inferior (BLEU of 36.9 instead of 38.5).
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Source

Base translation

Constraints

Constrained translation

Error

Michael Jackson’s former
bodyguard has claimed the
late singer cultivated some
of his eccentricities with the
deliberate intention of ril-
ing up the media.

Byvaly bodyguard Michaela
Jacksona tvrdil, Ze zesnuly
zpévak péstoval nékteré z jeho
vystfednosti s dmyslem roz-
zufit média.

bodyguard,
tvrdil, péstoval,
své, vystrednosti,
S, dmyslem,
rozzufit, média

Byvaly osobni straZce Michaela
Jacksona tvrdi, Ze zesnuly
zpévak péstuje nékteré z jeho
vystfednosti se zdmérem roz-
zufrit sdélovaci prostiedky.

Not satisfied

And Modi’s government A Modiho vlidda vyvolala Modiho, A Moédiho vlidda zpisobila  Challenging
has created an uproar by in-  pozdviZeni zavedenim  vyvolala, rozruch vytvofenim ndrodniho

stituting a national registry ~ ndrodniho registru obCanii a  pozdviZeni, registru obcant a zfizenim za-

of citizens and setting up  zfizenim zadrZovacich tdbort  zavedenim, jateckych tédbort v pohrani¢nim

detention camps in the bor- v pohrani¢nim staté Assam zadrzovacich, staté Assam.

der state of Assam. Assam

Neither ~ chamber  of Zdd se, Ze ani jedna kon- kongresova, Zda se, ze ani jedna z kon- Reference
Congress appears to have  gresovd ~ komora  nemd  komora, gresovych ~ komor  nemd

the two-thirds majority —dvoutfetinovou vét§inu  dvoutietinovou, dvoutfetinovou vétSinu potieb-

needed to override the potiebnou k prekondni prezi- prekondni nou k potlaceni prezidentovy

president’s opposition. dentovy opozice. opozice.

_Last _year, _construction _Po bl { Z _Ri ja du _byla _itvar ového Po bl i Z _Ri ja du _byla Segmentation
_of _Qiddiya_"ent _v_loiském _roce _zahdjen _v _loniském _roce _zahdjen a

er tain ment _city " _was a _vystavba _utvar ového _vystavba _,, @ t var ového

_launched _near _Riyadh. _mésta_Qiddiya _meésta“ _Qiddiya

A Pittsburgh native whose =~ Domorodec z Pittsburghu, domorodec, Domorodce z Pittsburghu, je- Inflection
real name was Malcolm jehoz pravé jméno bylo pravé, hoZz skute¢né jméno bylo Mal-

James Myers McCormick,
Miller’s
frank discussion of his

lyrics  included

depression and drug use.

Malcolm James Myers Mc-

Cormick, Millerovy texty
zahrnovaly upfimnou diskusi

o jeho depresi a uzivéani drog.

Millerovy, texty,
up-
fimnou, diskusi,

zahrnovaly,

depresi

colm James Myers McCormick,
Milleruv text obsahoval otevie-
nou diskuzi ohledné¢ deprese a
uzivani drog.

Figure 3: Examples of baseline and constrained translations with interesting behavior. The
columns show the English source sentence, baseline translation into Czech, list of constraints,
and the final constrained translation. The last column contains a type of error observed. The
Segmentation example is shown in subword units for explanation purposes.

7 Conclusion

We conducted a thorough investigation into NMT decoding with negative lexical constraints,
addressing two tasks: paraphrasing and interactive translation refinement. Our comparison of
various approaches revealed that it is indeed possible to restrict the NMT model from generating
specific words in its output. However, none of the methods provided flawless results. By
examining the errors made by the most effective approach, we identified instances where the
model evades the constraints in morphologically rich languages by producing slightly different
surface forms of the prohibited words. While we proposed a simple solution by training the
model to use stemmed constraints, it adversely impacts the overall translation quality. Despite
these challenges, our research sheds light on the potential of using negative constraints in NMT
decoding and highlights areas for further improvement.
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