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Abstract

Despite the tremendous success of Neural Machine Translation (NMT), its performance on low-
resource language pairs still remains subpar, partly due to the limited ability to handle previously
unseen inputs, i.e., generalization. In this paper, we propose a method called Joint Dropout,
that addresses the challenge of low-resource neural machine translation by substituting phrases
with variables, resulting in significant enhancement of compositionality, which is a key aspect
of generalization. We observe a substantial improvement in translation quality for language
pairs with minimal resources, as seen in BLEU and Direct Assessment scores. Furthermore, we
conduct an error analysis, and find Joint Dropout to also enhance generalizability of low-resource
NMT in terms of robustness and adaptability across different domains.

1 Introduction

Although Neural Machine Translation (NMT) has made remarkable advances (Vaswani et al.,
2017), it still requires large amounts of data to induce correct generalizations that characterize
human intelligence (Lake et al.l [2017). However, such a vast amount of data to make robust,
reliable, and fair predictions is not available for low-resource NMT (Koehn and Knowles| [2017).

The generalizability of NMT has been extensively studied in prior research, revealing the
volatile behaviour of translation outputs when even a single token in the source sentence is
modified (Belinkov and Biskl, |2018}; [Fadaee and Monz, [2020; L1 et al., [2021). For instance, in
the sentence “smallpox killed billions of people on this planet” from our IWSLT test set, when
replacing the noun “smallpox” with another acute disease like “fuberculosis”, the model should
ideally generate a correct translation by only modifying the relevant part while keeping the rest of
the sentence unchanged. However, in many instances, such a small perturbation adversely affects
the translation of the entire sentence, highlighting the limited generalization and robustness of
existing NMT models (Fadaee and Monz, 2020).

Compositionality is regarded as the most prominent form of generalization that embodies
the ability of human intelligence to generalize to new data, tasks, and domains (Schmidhuber,
1990; Lake and Baroni|, |2018)), while other types mostly focus on the practical considerations
across domains, tasks, and languages, model robustness, and structural generalization (Hupkes
et al., 2022). Research in compositional generalization has two main aspects: evaluating the
current models’ compositional abilities as well as improving them.
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In terms of evaluation, some studies use artificially created test sets that mimic arithmetic-
like compositionality (Lake and Baroni, 2018]), while others evaluate compositionality in a more
natural way (Keysers et al., |2020; Kim and Linzen, [2020; |Dankers et al., 2022). In terms of
improvement, earlier work aimed to enhance the models’ compositional abilities on tasks such
as semantic parsing datasets (Qiu et al.| 2022), math word problem solving (Lan et al.|[2022),
data-to-text generation (Mehta et al.| 2022), and classification (Kim et al.,|2021). As for NMT,
previous work has shown shortcomings in systematic compositional skills |Lake and Baroni
(2018); L1 et al.| (2021)), particularly for low-resource languages Dankers et al.[(2022), yet no
direct improvements have been proposed.

We aim to improve compositionality in NMT, with a focus on low-resource scenarios
that necessitate more robustness to form new combinations of previously seen smaller units.
To achieve this, we introduce Joint Dropout (JD), a simple and effective method that jointly
replaces translation-equivalent phrase pairs in the source and target sentences with variables,
encouraging the model to maintain the translation of the remaining sentence, regardless of the
dropped phrases. JD is orthogonal to and compatible with other methods for improving NMT
performance. Specifically, it is designed to be data-centric and model-agnostic, allowing it to be
easily combined with existing techniques that focus on different aspects of the NMT pipeline.

Our analysis on simulated and real low-resource data demonstrates JD’s ability to signifi-
cantly improve compositional generalization and translation quality.

2 Methodology

Generalization has been a longstanding concern in the field of machine translation. In the past,
Statistical MT utilized phrases as the fundamental translation units in order to consider contextual
information, such as in Phrase-Based Statistical Machine Translation (Zens et al., 2002, PBSMT).
To increase generalization, Hierarchical PBSMT proposed by |Chiang| (2005) builds upon the
bilingual phrase pairs of PBSMT to learn hierarchical rules, capturing discontinuous translation
equivalences and therefore allowing for better generalization.

Similarly, JD leverages bilingual phrases to make the rest of the translation not dependent
on a specific phrase pair. However, the main idea behind JD originates from compositionality:
the meaning of a sentence is a function of the meanings of its known atoms and how they are
systematically and syntactically combined (Partee et al., [1984)). By substituting meaning with
translation in this definition, we come up with a rule of compositionality for translation systems:

T(P o Q)=7(P) o 7(Q) ¢))
in which 7 is the translation function, P and () are the constituents of the sentence, and o is a
combiner. JD aims to transfer the principle of compositionality to the translation model in order
to improve generalization and robustness of NMT by replacing joint phrases with variables. To
exemplify, given the De-En sentence pair (Sie hat Rom besucht, She visited Rome), we replace
nouns with variables: (X hat Xo besucht, Y1 visited Ys). Per Equatio
7(Sie hat Rom besucht)

= 7(((X1 hat X5 besucht) ox, Sie) ox, Rom)

= 7((X1 hat X3 besucht) ox, Sie) o (x,) 7(Rom)

= (7(X1 hat X besucht) o.(x,) 7(Sie)) or(x,) 7(Rom)

= ((Y; visited Y2) oy, She) oy, Rome

@)

= She visited Rome

where 7(X;) = Y;, and 0 ox v = 0[X;\7], i.e., ox performs the replacement of v in the
position X; in the sentence o. In the above sketch, we disregard any potential dependencies
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within the sentence. However, the variables are independent of the rest of the sentence in any
manner. Therefore, our goal is to enable the model to translate the entire sentence without
being affected by the specific words or phrases at position X;. Hence, if the model learns the
rules of composition properly, changing one or more lexical units will not hurt the rest of the
translation. To this end, inspired by hierarchical PBSMT, we make use of bilingual phrases to
improve generalization in low-resource NMT. However, since NMT has a strong capability to
learn ordering through the cross-attention mechanism (Toral and Sanchez-Cartagenal |2017), our
aim is not to directly apply hierarchical PBSMT to NMT, but to propose an approximation as a
lightweight and efficient regularization method.

First, using Eflomal (()stling and Tiedemann, 2016), an efficient word alignment tool, we
generate symmetrized word alignments for the parallel training corpus to find the correspondences
between source and target words in each pair of training sentences. Then, we use alignments as
the input to generate the phrase translation table by decomposing the source and target sentences
into a set of dozens of bilingual phrase pairs that are consistent with the word alignment (Koehn
et al.,2003). In the next step, we select phrase pairs from the phrase table for each pair of training
sentences and replace them with joint variables of (X;,Y;). More specifically, given a pair of
sentences S = {wy, wa, ..w, } and T = {w}, w), ...w,, }, after substitution the sentences are
S=A{wi, ... X5 .,w, ., X, swp b and T = {wy, ..., Y5, . wy, .., Y, o wy, ), where X
and Y are variables corresponding to the source and target phrases, respectively. We discuss
different criteria to replace phrases with variables in Finally, we add the variable-induced
corpus to the original training set, effectively doubling its size

3 Experiments

In this section, we present a comprehensive overview of our experiments. We begin by providing
details regarding the datasets used and the training systems employed. Next, we delve into the
specific criteria we considered when replacing phrases with variables. Subsequently, we discuss
the significant improvements achieved by our proposed method, JD, across various aspects,
including compositional generalization, translation performance, robustness, and the ability to
generalize across domains.

3.1 Experimental setup

Data. For the preliminary experiments, we use the TED data from the IWSLT 2014 German-
English (De-En) shared translation task (Cettolo et al., 2014) and randomly sample from the
training data to represent various low-resource settings. In order to evaluate the models trained on
IWSLT subsets, we use the concatenation of the IWLST 2014 dev sets (tst2010-2012, dev2010,
dev2012) as our test set, which consists of 6,750 sentence pairs.

We further evaluate JD on multiple actual low-resource language pairs: Belarusian (Be),
Galician (Gl), and Slovak (Sk) TED talks (Q1 et all [2018) and Slovenian (SI) from
IWSLT2014 (Cettolo et al.,|2014) with training sets ranging from 4.5k to 55k sentence pairs.

In order to evaluate the compositional ability of JD, following |Dankers et al.|(2022), we
use an English-Dutch (En-N1) training set from OPUS | (Tiedemann and Thottingal, |2020) and
randomly sample to create low-resource sets. To evaluate these models, we use both the ‘dev’
and the ‘devtest’ sets from FLORES-101 (Goyal et al., 2022) as the validation and test data.

!The code is available at https://github.com/aliaraabi/Joint_Dropout

>We ensure all models undergo the same maximum number of updates during training, allowing a fair
evaluation.

3 Available on https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/data/,
README-v2020-07-28.md
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Setup #Phrases BLEU

Setup BLEU
igaie 8 12'(2) T-opt. 18.0
pt : Teopt. + JD 19.9
T-opt. + JID. PP 8013 18.6 -
Toopt. + JD.VP 8013 18.8 T-opt. + target Varle.lbles only 15.5
T-opt. + source variables only  17.3
Topt. +JD-NP 8013 18.7 T-opt. + not aligned variables  17.8
Topt. +JD_Mix 8013 18.8 Pt £ :

Table 2: Importance of jointly drop-
ping aligned phrases for model trained
on 10K De-En samples.

Table 1: Results of Transformer-
base, Transformer-optimized and Joint
Dropout with various phrase types
on 10K De-En training samples.
Noun Phrases (NP), Prepositional
Phrases (PP), Verb Phrases (VP), and
mixture (Mix) of all the above.

Pre-processing. We apply punctuation normalization, tokenization, data cleaning, and true-
casing using the Moses scripts (Koehn et al., 2007). The sentence length is limited to a maximum
of 175 tokens during training. After replacing phrases with variables, we also apply BPE
segmentation (Sennrich et al., 2016b) with the parameter tailored to the low-resource training
data (Araabi and Monz, 2020). We ensure that variables are not split into smaller segments.

Data annotation. To generate a realistic test set for evaluating robustness against sentence
perturbation, we first randomly select 300 translation outputs from the inference stage of baseline
systems trained using optimized parameters on 20k samples. These outputs are then ranked using
the Direct Assessment (DA) method by engaging native annotators. The top 100 outputs are then
selected and the corresponding outputs from the model trained with JD are extracted and ranked
using DA. Next, the input sentences are modified by replacing specific phrases or words while
ensuring their syntactic and semantic accuracy. After obtaining the outputs for both the baseline
and JD systems on the perturbed sentences, we conduct a DA on them.

Training system. To conduct our experiments, we employ two different models: Transformer-
optimized (Araabi and Monz, 2020), specifically tailored to low-resource NMT and Transformer-
base with its default hyper-parameters (Vaswani et al.,2017). This choice allows us to demon-
strate that the improvements achieved are consistent and independent of the specific model
settings. We use the Fairseq library (Ott et al.l 2019) for our experiments and average sacre-
BLE (Postl, 12018) over three runs as the evaluation metric. All of the models are trained on a
single GPU for a few hours with the model parameters ranging from 28M to 47M.

3.2 Joint Dropout parameters

The following conditions are considered in replacing phrases with variables. First, we do not
allow two adjacent phrases to be replaced with variables. Although phrases can vary in length,
we consider all phrases as potential candidates for substitution with variables, irrespective of
their length. After conducting initial experiments, we have determined that setting the maximum
number of variables allowed in each sentence to 10 yields satisfactory results.

Since noun phrases are the most cross-linguistically common phrases, we hypothesize
that they are good candidates to be replaced. Therefore, in a set of experiments we investigate
the choice of phrase types. We consider four different scenarios: replacing 1) only Noun

*sacreBLEU parameters: nrefs: 1|case:mixed|eff:no|tok: 13a|smooth:exp|version:2.0.0
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Figure 1: Effect of different Joint Dropout rates on Transformer-base and Transformer-optimized,
on the validation sets of two De-En training subsets.

Phrases (NP), 2) only Prepositional Phrases (PP), 3) only Verb Phrases (VP), and 4) mixtures
of all the above. We train four systems on 10k samples from the TED talks dataset with four
different substitution scenarios yet the same number of variables (8013)E] We use the constituency
parser from Stanford CoreNLP (Manning et al.,[2014).

It is important to note that our selection of phrase pairs in both languages is solely based on
English constituency parse trees. We do not rely on the use of a constituency parser, which is often
not available for many low-resource languages. The results presented in Table [T] demonstrate
that the choice of different phrase types does not lead to significant differences in our method.
Therefore, our approach eliminates the need for a constituency parser, making it applicable to a
wider range of low-resource languages. For the rest of the experiments, we substitute phrases
regardless of their types.

To make JD independent of a phrase translation table, we consider not-aligned phrases
in both or either translation sides. The importance of using aligned phrases is demonstrated
in Table 2] where it is observed that utilizing not-aligned phrases results in a degradation of
performance by 2.5 BLEU points. This finding highlights the significance of incorporating
aligned phrases in the JD method.

To maintain control over the number of variables across the entire training corpus, we
introduce a concept called the Joint Dropout rate. This rate is determined by calculating
the proportion of dropped tokens, specifically from within phrases, in relation to the total
length of both the source and target sentences. By utilizing this Joint Dropout rate, we can
effectively regulate and manage the presence of variables throughout the training process.
Figure [T]illustrates the improvements achieved by two distinct systems as the Joint Dropout rate
increases. Notably, JD consistently improves the performance of both the Transformer-base and
Transformer optimized models. Specifically, on a dataset of 110k samples, JD yields a notable
increase of +2.4 BLEU points for the Transformer-base model and +1.8 BLEU points for the

38013 is the number of all possible substitutions for PPs.
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BLEU Consistency
#Samples T-opt. T.opt.+JD T-opt. T.opt.+JD

5k 4.2 6.1 2.0 4.0*
20k 10.4 10.7 8.1 11.0*
40k 12.8 134 13.1 15.6
80k 16.4 16.4 37.1 43.8%

200k 19.2 18.7 58.2 65.4"

Table 3: BLEU and consistency scores (En — NI) when replacing a noun in the subject position
with a different noun. Significant improvements on compositionality of JD over the strong
baseline are marked with * (approximate randomization, p < 0.01).

Transformer-optimized model. Moreover, when evaluating a larger dataset of 20k samples, JD
further improves translation quality by 4-3.1 BLEU points for the Transformer-base model and
+1.4 BLEU points for the Transformer-optimized model.

We see that the Joint Dropout rate of 0.3 is a good choice, while more noise in the training
set hurts performance. We use this rate for the remainder of the experiments.

3.3 Compositional generalization

Unlike phenomena such as idioms, which require a more global understanding, JD concentrates
on improving compositionality at the local level. In this section, we aim to evaluate our method
on local compositionality. Here, we take advantage of the most relevant theoretically grounded
test from [Hupkes et al.| (2020) which is systematicity, a notion frequently used in the context
of compositionality. This attribute of the model concerns the recombination of known parts
and rules, ensuring that the model’s ability to grasp novel inputs is systematically tied to their
aptitude to comprehend related inputs. For instance, understanding “smallpox killed billions
of people on this planet” and “tuberculosis”, also implies understanding “tuberculosis killed
billions of people on this planet”.

Given that there are an infinite number of potential novel combinations that can be derived
from known parts in natural data, we concentrate on a sentence-level, context-free rule: S — NP
VP, as proposed by Dankers et al.| (2022), where a noun from the NP in the subject position is
replaced with a different noun, while maintaining number agreement with the VP. Additionally,
they highlight that a systematic system necessitates consistency. We assess this systematicity of
translations based on their consistency across various contexts when presenting words or phrases.
Consistency is measured by evaluating the equality between two translations while taking into
account anticipated modifications. In S — NP VP setup, after replacement, translations are
deemed consistent if there is only one word difference between them. Table [3]illustrates that JD
consistently enhances the consistency scores for various low-resource data conditions.

3.4 Translation performance

In this section, we conduct a comprehensive evaluation of translation quality across multiple
language pairs to assess the effectiveness of JD. The results presented in Table ] highlight the
significant improvements in translation quality achieved by JD for actual low-resource language
pairs. Importantly, these improvements also hold true for the reverse language direction.
Furthermore, we compare JD to three comparable methods for dropping tokens: Zero-Out,
where the embedding of a token is set to zero (Sennrich et al., [2016a), Token Drop, which
replaces tokens with the <dropped> tag|Zhang et al.|(2020), and SwitchOut, where words are
replaced with random words from their corresponding vocabularies Wang et al.| (2018). The
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Method Be-En GI-En SI-En  Sk-En En-Be En-Gl En-S1 En-Sk

T-base 4.6 13.4 8.9 24.0 3.5 10.1 6.8 19.0
T-base + JD 6.5 158 102 25.0 4.5 129 7.8 19.2

T-opt. 8.0 21.8 15.2 28.9 5.5 18.3 12.3 23.1
T-opt. +JD 99 228 161 29.8 73 189 127 235

Table 4: BLEU scores for actual extremely low-resource languages: Be, Gl, SI, and Sk with 4.5k,
10k, 13k, and 55k training samples, respectively.

Method 5k 10k 20k Method 5k 10k 20k

T-opt. 13.4 18.0 23.0 T-base 8.6 12.1 16.6

T-opt. + ZO 13.6 18.3 228 T-base+Z0O 89 13.3 18.3

T-opt. + TD 95 16.8 239 T-base+ TD 5.3 89 14.6

T-opt. + SW 134 184 240 T-base + SW 5.5 9.8 145

T-opt. +JD 152 199 244 T-base+JD 9.8 14.5 19.1
(a) Transformer-optimized (b) Transformer-base

Table 5: Comparing BLEU scores for Joint Dropout (JD) and the reimplementations of Token
Drop (TD), Zero Out (ZO), and SwitchOut (SW) on 5k, 10k and 20k training samples from
IWSLT De-En.

results in Table [Sa] demonstrate that Zero-Out only provides marginal improvements. Moreover,
both Token Drop and SwitchOut methods prove to be ineffective in low-resource scenarios. In
contrast, JD consistently outperforms these methods, particularly in extreme low-resource cases.
As shown in Table[5a] Zero-Out only provides marginal improvements. In addition, while Token
Drop and SwitchOut methods prove to be ineffective in low-resource situations, JD consistently
yields the largest improvements, especially for extreme low-resource cases. In addition, Table[5b|
provides additional evidence supporting the superiority of JD over similar methods, even when
optimized parameters for the Transformer model are not specifically chosen.

3.5 NMT Robustness

Recent work has shown that trivial modifications to the source sentence can cause unexpected
changes in the translation (Fadaee and Monz| 2020). Furthermore, models with stronger compo-
sitional abilities are anticipated to generate more robust translations |Dankers et al.[(2022). To
evaluate the robustness of JD against such modifications, we differ from previous methods that
automatically introduce noise to the test set (Michel and Neubig, [2018}|Cheng et al.,2019) which
is prone to creating semantic and syntactic errors in the input. Instead, we manually develop a
more realistic test set.

First, based on Direct Assessment (DA) on a 100-point scale (Graham et al.| [2013), we
select the top 100 sentences out of randomly selected 300 translation outputs generated by a
Transformer-optimized model trained on 20k samples. We then alter the input sentences by
replacing a specific phrase or word, while ensuring that they remain syntactically and semantically
accurate. Table[f]illustrates that perturbing the original sentences results in a smaller performance
decrease for the model trained with JD, when compared to the baseline. This means that our
proposed method significantly decreases the volatile behavior of low-resource NMT.

Table [/|shows an example of perturbing a sentence. After replacing “ein Kind in Indien” in
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Method Metric  Orig.  Per. A

Tbase DA 62.1 49.3 —12.8
BLEU 285 260 —25
DA 69.8 593 —105

T D
base+JD bl py 307 304 —03
Tont DA 79.9 566 —23.3
pt- BLEU 374 318  —56
DA 83.7 774 —6.3
Topt +ID pi ey 418 399  —1.9

Table 6: Direct assessment and BLEU scores, pre and post input perturbation on random samples
from De-En test set.

Original test sentence Test sentence after perturbation
St [ein Kind in Indien] sagt: {meine Oma in China} sagt:
“heute habe ich einen Affen gesehen”. “heute habe ich einen Affen gesehen”.
Ref [a child in India] says , {my grandmother in China} says,
' “I saw a monkey today .” “I saw a monkey today .”
ot [a child in India] says, {my grandmother’s mother in China}
-opt.
P “today I’ve seen a monkeys.” says, “Look today.”
Toopt. + 1D ‘[‘a7kid in India] says, ) Jé‘my grar.ldmother in China} fays,
I’ve seen a monkeys today. today I've seen a monkeys.

Table 7: By replacing the German noun phrase ein Kind in Indien [a child in India] with
meine Oma in China [my grandmother in China], there is no undesirable behavior in the rest
of the translation when using Joint Dropout. Underlined text means the rest of the translation
is approximately the same with the reference, while the wavy underline means it has changed.
Bracket shows the phrase that we perturb, while the curly bracket is the perturbed phrase

the source sentence with “meine Oma in China”, while the rest of the translation is negatively
affected using the baseline model, the JD shows more robustness against the input perturbation
and does not exhibit any negative behavior.

3.6 Generalization across domains

In low-resource language settings, NMT systems frequently encounter challenges when it
comes to achieving effective translation across distinct domains. This is primarily attributed
to their tendency to prioritize the idiosyncrasies of the training domain, rather than capturing
the broader linguistic characteristics shared by the language pairs. Therefore, in addition to
evaluating generalization in terms of compositionality and robustness, it is also crucial to assess
generalization concerning distributional shift and uncertainty estimation (Hupkes et al.,|2022]).
While the definition of a domain is not precisely defined (van der Wees et al.l [2015)),for our
evaluation, we consider TED talks and news as belonging to different domains.

Table 8] provides insights into the behavior of JD when there is a domain shift between the
training domain (TED talks) and the test domain (news from WMT). The results demonstrate
that JD exhibits greater robustness in such scenarios, showcasing its ability to better handle
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Method 10k 20k 40k

T-base 2.4 3.9 7.1
T-base +JD 3.2 54 9.8
T-opt. 6.2 8.7 139

Topt. +JD 7.5 109 14.6

Table 8: Results of training on different subsamples of TED talks and testing on a domain with
different distribution (Newstest2020).

distributional shifts and improve translation quality across different domains. This highlights the
effectiveness of JD in mitigating the negative effects of domain-specific training and enhancing
the generalizability of NMT systems in low-resource language pairs.

4 Conclusion

Despite the fact that NMT’s success is closely tied to having large amounts of training data, it
is still beneficial to explore methods that can help improve generalization when working with
limited data. In this paper, we introduce Joint Dropout as a straightforward yet effective approach
to enhancing the compositional generalization and translation quality of low-resource NMT.
Specifically, we demonstrate that jointly replacing phrases with variables has a regularizing
effect that mitigates overfitting by enabling the system to translate sentences regardless of the
specific phrases present at the variable positions.

5 Future work

We only focus on improving generalizability of low-resource NMT, while higher-resource
settings might also gain from joint variables. Additionally, we demonstrate the effectiveness
of our proposed method using multiple low-resource language pairs, whereas there are many
other language pairs with limited data. Furthermore, since JD tries to capture the rules of
compositionality in translation, we expect more benefit to the language pairs with less similarity.
Additionally, our approach is data-centric and model-agnostic, applicable to various models and
tasks beyond the methods evaluated in this paper. Therefore, it has the potential to improve
existing pre-trained models such as mBART (Liu et al.} [2020), when fine-tuning on low-resource
languages, but further experimentation is needed to confirm its effectiveness. We leave these
investigations to future work.

6 Broader Impact

The implementation of NMT has brought about significant progress in the translation field,
however, it also poses potential challenges such as liability for mistakes made by using NMT and
mistranslation, which could be more of a concern when dealing with limited data. Furthermore,
the high ability of NMT to generalize well presents a potential risk of difficulty in identifying
errors, specifically those related to compositionality. This can be a concern in safety-critical
domains where a single error can have severe consequences. Moreover, the ability of NMT to
produce more coherent and fluent translations may impede the identification of where the system
is malfunctioning, thus hindering the correction of errors or biases in the model.
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