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Abstract

While many new automatic metrics for machine translation evaluation have been proposed in
recent years, BLEU scores are still used as the primary metric in the vast majority of MT
research papers. There are many reasons that researchers may be reluctant to switch to new
metrics, from external pressures (reviewers, prior work) to the ease of use of metric toolkits.
Another reason is a lack of intuition about the meaning of novel metric scores. In this work,
we examine “rules of thumb” about metric score differences and how they do (and do not)
correspond to human judgments of statistically significant differences between systems. In
particular, we show that common rules of thumb about BLEU score differences do not in fact
guarantee that human annotators will find significant differences between systems. We also
show ways in which these rules of thumb fail to generalize across translation directions or
domains.

1 Introduction

Despite mounting evidence over the course of many years (Akiba et al., 2003; Callison-Burch
et al., 2006; Chiang et al., 2008; Tan et al., 2015; Mathur et al., 2020a, i.a.) demonstrating that
BLEU (Papineni et al., 2002) has fundamental flaws in accurately reflecting translation quality,
it has remained the de facto standard automatic MT evaluation metric for both scientific research
and practical deployment (Marie et al., 2021). Numerous research efforts (Callison-Burch et al.,
2007; Przybocki et al., 2009; Bojar et al., 2017; Freitag et al., 2021b, 2022, i.a.) have focused on
the correlations between human judgments of translation quality and automatic metric scores;
year after year, these have shown new metrics correlating better with human judgments than
BLEU does. There are certainly some other obstacles beyond correlation with human judgment
on translation quality that hinder the adoption of newer and better human-correlating automatic
MT evaluation metrics in practice.

Przybocki et al. (2009) outlined four objectives in the search for new and improved au-
tomatic MT evaluation metrics: 1) “high correlation with human assessments of translation
quality”; 2) “applicable to multiple target languages”; 3) “ability to differentiate between sys-
tems of varying quality” and finally, 4) “intuitive interpretation”, i.e. whether the scores are
meaningful and easy to understand on their own, with values and differences that are inter-
pretable and clear in practice. As the first three objectives can be addressed by the correlation
analysis of MT metrics with human judgment on translation quality but not the last one, we be-
lieve that gaining an intuitive understanding of the properties and behavior of the metrics is one

186

Proceedings of Machine Translation Summit XIX, Vol. 1: Research Track, pages 186—-199
September 4-8, 2023, Macau SAR, China.
©2023 The authors. This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).



of the remaining challenges that MT researchers are facing when they are considering adopting
a new metric. One way to do this is by designing metrics to be easily interpretable; another
way is to examine whether we can build up reliable and useful intuitions about existing metrics.
In order for metrics to be widely adopted, a combination of these—making new metrics that
are more interpretable and simple to understand or debug,' as well as forming intuitions about
them—may be necessary. Our focus in this work is on the latter, examining existing metrics to
understand the meaning of the score differences they present.

In this work, we focus in particular on whether it is possible to get a sense of what kinds of
metric score differences may correspond to significant improvements as judged by human an-
notators.” We examine whether this is consistent across target languages and across translation
domains, within a specific metric. We do not suggest that this means that MT researchers can
forego running significance tests or doing the appropriate human evaluation; as Marie (2022)
notes, “A rule of thumb may yield correct results but can’t be scientifically credible.” However,
having these rules of thumb and intuitive senses of metric score meanings may indeed be nec-
essary to encourage broader adoption, so we present this work solely focusing on whether it is
possible to build such rules of thumb about some of the modern metrics.

2 Related work

Mathur et al. (2020a) demonstrated that even statistically significant BLEU score differences
of 0-3 BLEU points do not reliably correspond to human judgments of significant differences
between systems. With a focus on pairwise ranking of systems, Kocmi et al. (2021) argued
for evaluating metrics primarily based on whether the metric’s pairwise rankings of two sys-
tems agrees with human pairwise rankings. They found that among the system pairs that were
deemed statistically significant by humans, but where BLEU produced a flipped ranking com-
pared to humans, the median BLEU difference is 1.3 BLEU. They found this result concerning
as “BLEU differences higher than 1 or 2 BLEU are commonly and historically considered to
be reliable by the field” (Kocmi et al., 2021) and their result showed otherwise. They fur-
ther encouraged the use of paired statistical significance tests for more reliable conclusions on
MT quality improvement. Subsequently, Marie (2022) examined the Conference on Machine
Translation (WMT) 2021 and 2022 data to see what thresholds of metric score difference mag-
nitudes corresponded reliably to statistically significant differences in metric scores (at p-values
< 0.05, < 0.01, and < 0.001). They found that to claim a significant improvement in metric
scores with p-value < 0.001, statistical significance testing should be done for differences lower
that 2 BLEU. However, they only focused on significance in metric scores improvement but did
not consider whether such thresholds correspond to significance in human judgments.
Nevertheless, there remain some common “gut feelings” among researchers and reviewers
about what constitutes “significant” improvement on the basis of metric score differences alone,
without running human evaluation or significance tests. As Marie et al. (2021) note, the majority
of MT papers since 2018 do not use significance tests and instead rely on score differences. One
number commonly tossed about informally is that a score difference of around 2 BLEU points
can typically be expected to be significant. But where does this assumption come from, and does
it hold? One possible source for this is Koehn (2004), which found, specific to the particular test
scenario that “Even for small test sets of size 300 sentences (about 9000 words), we can reliably
draw the right conclusion, if the true BLEU score difference is at least 2-3%.°3 In that setting,

! Another reason, beyond the scope of this work, that researchers may be hesitant to adopt new, complex
metrics, is the possibility that they may have unexpected failure modes (see, e.g., Yan et al., 2023).

Concurrent work, Deutsch et al. (2023), provides another way to examine score differences and their
relation to human annotation.

3Note that this refers to a score difference of 2 or 3 BLEU points, not relative improvement.
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the “right conclusion” is the one that matches the conclusion drawn from a very large test set
(30,000 sentences) about which of two systems is better, based on automatic metric scores. The
goal of that work is to identify how small of a dataset can still be reliably used (along with
bootstrap resampling for statistical significance) to draw conclusions about the automatically
measured differences between two systems. However, sometimes this kind of BLEU difference
is used informally as a proxy for whether a human annotator will find the difference notable,
something that does not follow from that particular paper. Marie (2022) found that for systems
from WMT?21 and 22, almost all system pairs with a BLEU difference greater than 2.0 were
significantly different with p-value < 0.001, though this significance judgment relates only to
the metric scores and not to any human annotation. In this work, we focus on a question more
closely related to this and to Mathur et al. (2020a), rather than Marie (2022): whether there exist
rules of thumb about metric score differences and their correspondence to significant differences
in human judgments. Regardless of the exact source of these rules of thumb (which may never
be known) or the exact BLEU score difference (or exact relative improvement) of a particular
rule of thumb, some researchers feel that they have a sense of metric score differences, and we
examine how that may correspond (or not) to judgments of MT quality across a range of metrics
in this work.

Similar to Mathur et al. (2020a), we are interested in the relationship between metric score
differences and significant differences in human scores. That work is interested both in Type
I errors (where an insignificant metric difference might correspond to an actually significant
difference under human evaluation) and Type II errors (where the metric score difference is
significant, but the human evaluation does not find a significant difference). We take a related
but slightly different approach to examining this relationship. We examine the “rules of thumb”
about which metric score differences are meaningful. Using the large number of system pairs
from WMT evaluations, we look at how the metric difference between two systems is related
to the probability that the human annotations find the systems to be statistically significantly
different. We select a threshold for this probability and examine the metric difference that
corresponds. We then examine whether this is consistent across different test sets, domains, and
target languages. That is, are there consistent rules of thumb about metric score differences?
Or is there too much variation?

3 Do BLEU score rules of thumb correspond to human judgments?

In casual discussion and sometimes even formal work or reviewing, there is often a conflation
of several (somewhat) orthogonal topics, which may be the source of these intuitions and rules
of thumb. Sometimes “significant” is used simply to mean some value of “large”, unrelated
to precise definitions of statistical significance testing. Marie et al. (2021) note the use of this
convention and suggest that it indicates some level of consensus among researchers on BLEU
differences, albeit a consensus that is not necessarily well-founded; they address a number of
other pitfalls in MT evaluation as well. In particular, in their meta-evaluation of 769 MT papers,
they note that the majority of recent papers do not perform statistical significance tests, relying
instead just on the “amplitude of the differences between metric scores to state whether they
are significant or not”; in fact they note that even a BLEU score difference of around 1 may be
used by most MT papers as “significant evidence of the superiority of an MT system and as an
improvement in translation quality” (Marie et al., 2021). These are assumptions that sufficiently
large metric score differences guarantee significant differences in metric scores; when combined
with the assumption that metric scores and human scores are well-correlated, this often leads to
the assumption that a certain metric score difference guarantees a statistically significant differ-
ence in human scores. We examine this relationship between statistically significant differences
in human scores and the magnitude of metric differences in this work.
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First, we investigate whether the more generous rule of thumb surrounding the significance
of 2 BLEU improvement has a basis in fact. While Marie (2022) has shown that (at least for
WMT21 and 22) such a BLEU difference tends to be a significant difference (p < 0.001)
in metrics score, does that mean that human annotators will judge the pair of systems to be
meaningfully different? That is to say, we assess the probability that an MT system pair would
be judged by humans as having a statistically significant difference in quality, if BLEU showed
a difference of 2 or more points for that pair.

3.1 Data

We use the human direct assessment (DA) and direct assessment with scalar quality metric
(DA+SQM, which we refer to in figures as SQM for conciseness) scores collected at the WMT
News/General shared tasks from 2019 to 2022 (Barrault et al., 2019, 2020; Akhbardeh et al.,
2021; Kocmi et al., 2022) and organized in the MT Metrics Eval package.* The MT Metrics
Eval package includes all scores from baseline and participating MT evaluation metrics in the
Metrics shared task (Ma et al., 2019; Mathur et al., 2020b; Freitag et al., 2021b, 2022), covering
all segments of all MT systems in WMT News/General shared tasks. It also contains complete
information about which segments of each MT system were annotated by human evaluators on
translation quality, allowing us to run paired t-test for each system pair on their sentence-level
human DA/SQM (normalized) scores.

32 DA/SQM

In DA (Graham et al., 2017) at WMT, human annotators are asked to rate translations compared
to the corresponding source/reference sentence on a slider of continuous scale between 0 and
100. The difference between DA and the DA+SQM performed at WMT22 (Kocmi et al., 2022)
is that, for the latter, the slider is marked with seven tick marks where four of them are labeled
with quality guidelines. The sentence-level human scores are standardized using z-scores.

3.3 Automatic MT evaluation metrics

The automatic MT evaluation metrics chosen for this study are the baselines and the high-
performing participants in the WMT19-22 Metrics shared tasks. BLEU (Papineni et al., 2002)
is the (clipped) precision of word n-grams between the MT output and its reference weighted by
a brevity penalty. spBLEU (Team et al., 2022) is BLEU computed with subword tokenization
done by standardized Sentencepiece Models (Kudo and Richardson, 2018). chrF (Popovi¢,
2015) uses character n-gram to compare the MT output with the reference and it is a balance
of precision and recall. BERTScore (Zhang et al., 2020) uses cosine similarity of contex-
tual embeddings from pretrained transformers to compute F-score of sentence level similarity.
BLEURT-20 (Sellam et al., 2020) is fine-tuning RemBERT to predict DA score for a MT-
reference pair. COMET-20 (Rei et al., 2020) is fine-tuning XLM-R to predict DA score for a
MT-source-reference tuple. YiSi-1 (Lo, 2019) measures the semantic similarity between the MT
output and reference by the IDF-weighted cosine similarity of contextual embeddings extracted
from pretrained language models, e.g. ROBERTa, CamemBERT, XLM-R, etc., depending on
the target language in evaluation. COMET-22 (Rei et al., 2022) is an ensemble of two mod-
els: COMET-20 and a multitask model jointly predicting sentence-level MQM and word-level
translation quality annotation. metricX XXL is the MQM prediction from a massive multi-
task metric fine-tuned 30B mT5 using a variety of human feedback data such as, DA, MQM,
QE, NLI and Summarization Eval. UniTE (Wan et al., 2022) is a learnt metric that unified

*nttps://github.com/google-research/mt-metrics-eval

commit: bdda529ce4fae9cec8156ea8a0abd94fe1b85988
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ABLEU | 20| 50100
Pr(p < 0.05]/ABLEU) | 0.56 | 0.70 | 0.91

Table 1: Probability of significant human score difference at p < 0.05 given A BLEU of 2.0,
5.0 and 10.0 respectively.

the reference-based, reference-free and MT-source-reference way of evaluation trained on data
with synthetic translation quality label.

3.4 Statistical significance test on human scores and isotonic regression

To ensure enough statistical power in the paired t-test on the sentence-level human DA/SQM
(normalized) scores, we first filter out system pairs that have fewer than 250 sentences in com-
mon annotated by the human evaluators. Since we are running the significance test on the
normalized human scores with the sign of the human score differences known, we run the one-
sided t-test with the equal variance assumption.

After collecting the metric score difference and p-value of the t-test on the human scores
for each system pair, we fit the data to an isotonic regression (Robertson et al., 1988) that
predicts whether the human score difference will be significant given the metric’s score dif-
ference. Isotonic regression produces a non-decreasing function where the classifier output is
interpretable as a confidence level.> We set p<0.05 as the significance level of human scores.
Thus, the output of our isotonic regression function can be viewed as Pr(p < 0.05|AM) where
p is the p-value of the t-test on the human scores for each system pair and AM is the metric
score difference.

3.5 Results

Figure 1 and 2 show the (log) p-value of one-sided paired t-test on human DA/SQM z-scores
for each metric score difference of each system pair in WMT19-22, across all translation di-
rections and domains. Note that each system is only compared against other systems within its
same language pair and direction (and for which there is an overlap of at least 250 common
human-annotated segments for the pair of systems).

For all the metrics, we can choose metric score difference cutoffs (i.e., a point along the
x-axis) to give a particular level of confidence that this metric difference genuinely reflects
significant human score differences. Drawing a line up from the metric difference to the red
line enables us to say that the metric difference at that x-value corresponds to a confidence
level at corresponding y-value on the red line (for example, as seen in Table 1, a BLEU score
difference of 2.0 corresponds to a 56% chance of the corresponding human evaluation finding
a significant difference between the two systems). However, in the sub-figure of BLEU, we
can see that data points are more spread out to the top-center of the graph. This indicates even
where the BLEU differences are high human evaluators are not always finding the two systems
to be significantly different; these are areas where the conclusion drawn from BLEU would be
incorrect from the perspective of human evaluation. More data points spread out to the top-
center also means having to make a tradeoff in the rule of thumb: either a very high score
difference for high confidence of human judgment significance, or a smaller score difference
but a lower confidence that the difference will be judged to be significant by human annotators.

More importantly, table 1 shows the probabilities of significant human score difference at
p<0.05 given BLEU differences of 2.0, 5.0 and 10.0 respectively. For 2 BLEU difference, the
probability that human evaluators find the MT output significant different is as low as 56%), i.e.

6

Shttps://scikit-learn.org/stable/modules/isotonic.html
®Points with lower y-axis values have smaller p-values and are “more” statistically significant.
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Figure 1: Log p-value of one-sided paired t-test on human DA/SQM z-scores for each metric
(top: BLEU, bottom: COMET-20) score difference of each system pair in WMT19-22, all trans-
lation directions/domains. Red line is the isotonic regression fit to all data points, representing
Pr(p < 0.05|AM). Note: for readability, p-values of p < 0.0001 are rounded up to 0.0001.

nearly one in every two times when we observe 2 BLEU improvement, it does not correspond to
a significant human difference. A wider BLEU improvement margin (5 or 10 points) is needed
for higher confidence that translation quality improvement will be judged to be significant by
human annotators. This indicates that these rule of thumb intuitions about what kind of BLEU
score differences are meaningful (or statistically significant) appear to be overstated and inac-
curate, at least when it comes to significant differences in Auman judgment, which is generally
considered to be the gold standard and what metric scores are seeking to replicate.

Finally, table 2 shows the cutoff of metrics’ score differences for human notable differ-
ence at 50%, 80% and 95% confidence level. This table serves as a lookup between BLEU
differences and differences in some of the modern metrics. For example, we see that a BLEU
score difference of 1.2 corresponds to 50% confidence that human annotators will agree with
the metric’s ranking of the two systems and do so with a significant difference. Meanwhile, a
COMET-20 score difference of 0.05 would have the same 50% chance of human-judged signif-
icant difference.
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Figure 2: Log p-value of one-sided paired t-test on human DA/SQM z-scores for each metric
score difference (top-to-bottom, left-to-right: spBLEU, chrF, YiSi-1, BERTScore, BLEURT-
20, COMET-22, metricx, UniTE) of each system pair in WMT19-22 all translation directions
and domains. The red line is the isotonic regression fit to all the data points, representing
Pr(p < 0.05]AM). Note: for readability, p-values of p < 0.0001 are rounded up to 0.0001.
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Pr(p < 0.05|AM) \ 0.5 \ 0.8 \ 0.95
surface matching

ABLEU 1.2 5.5 12.9
AspBLEU 1.9 5.8 8.1
AchrF 1.6 54 8.7
neural (before 2022)

ABERTScore 0.005 | 0.014 | 0.022
ABLEURT-20 0.018 | 0.052 | 0.088
ACOMET-20 0.05 0.20 | 0.35
AYiSi-1 0.003 | 0.015 | 0.023
neural (in 2022)

ACOMET-22 0.04 | 0.13 0.33
Ametricx 0.02 | 005 ]| 0.14
AUniTE 0.04 | 0.16 | 0.35

Table 2: Cutoff of metrics’ score differences for significant human difference at 50%, 80% and
95% confidence level.

4 Discussion

Another unaddressed problem of the rules of thumb is that the MT community may sometimes
treat them as though they are language and domain independent, applying rules of thumb across
different target languages and domains without considering their differences. This is the case
despite the fact that it is widely known that language typology affects BLEU scores (for ex-
ample, highly inflected languages may see their BLEU scores penalized due to single-character
differences in affixes). In addition, recent WMT Metrics shared tasks (Freitag et al., 2021b,
2022) has moved on to using multidimensional quality metric (MQM) (Lommel et al., 2014)
as the human annotation method for translation quality for more consistent and reliable anno-
tations (Freitag et al., 2021a). We now investigate into the consistency of the cutoff of metrics’
score differences at 80% confidence level for different target languages, evaluation domains and
human annotation methods.

4.1 Consistency across target languages

We divide the target languages into several groups: we examine all target languages together,
English (the most common target language), and three groups of other target languages. These
remaining groups are split into languages that use alphabetical/abugida writing systems (which
we call group I: Bengali, Czech, German, French, Hausa, Croatian, Icelandic, Kazakh, Lithua-
nian, Polish, Russian and Ukrainian), those that use logographic writing systems (which we
call group II: Chinese and Japanese), and then separately Inuktitut (which uses an abugida but
is also the most morphologically complex of the target languages at WMT, in addition to being
low-resource as compared to many of the other language pairs, and being covered by a smaller
set of the metrics). For simplicity and space-related reasons, we select a single threshold: 80%
confidence that the score difference will correspond to a significant (p < 0.05) human score
difference. The resulting thresholds are shown in Table 3.

Beginning with BLEU, we observe a fairly stark difference between the groups of lan-
guages, with English requiring an 8.0 BLEU difference and group I languages requiring a 3.6
BLEU difference for this confidence level, with Inuktitut falling between the two. This pattern
is repeated across the other metrics, though it varies by metric whether the group II languages
are more similar to English or to the group I languages (in some of the pre-2022 neural metrics,
the group II languages require an even smaller metric score difference than English).
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target lang. \ all \ English \ I \ II \ Inuktitut
surface matching

ABLEU 5.5 8.0 3.6 8.0 4.5
AspBLEU 5.8 8.1 2.4 6.2 —
AchrF 54 6.2 3.0 3.8 6.2
neural (before 2022)

ABERTScore | 0.014 0.016 | 0.011 | 0.009 —
ABLEURT-20 | 0.052 0.063 | 0.033 | 0.018 —
ACOMET-20 0.20 0.20 | 0.10 | 0.08 0.05
AYiSi-1 0.015 0.022 | 0.005 | 0.010 0.023
neural (in 2022)
ACOMET-22 0.13 0.33 0.07 0.08 —
Ametricx 0.05 0.15 0.03 0.05 —
AUniTE 0.16 0.35 0.06 | 0.09 —

Table 3: Comparison of thresholds of AM when Pr(p < 0.05|AM) = 0.8 for different target
languages. Language group I contains system pairs translating into Bengali, Czech, German,
French, Hausa, Croatian, Icelandic, Kazakh, Lithuanian, Polish, Russian and Ukrainian. Lan-
guage group II contains system pairs translating into Chinese and Japanese.

In addition to highlighting the difference between languages, this also highlights another
challenge: that variations on metrics have different thresholds. This should come as little sur-
prise; even simple differences in preprocessing are known to produce differences in the same
metric scores (Post, 2018). For example, we observe some inconsistency in the thresholds for
BLEU and spBLEU.

BERTScore has the most consistent threshold where human annotators agree that the trans-
lation quality improvements are significant. This perhaps is because it is an untrained metric
based on one multilingual pretrained transformer model so that it avoids having inconsistent
implications like YiSi-1, a metric with language specific models or BLEURT-20, COMET-22
and UniTE, metrics that may be overfit to predict human scores for higher correlation.

4.2 Consistency across domains

We perform a similar comparison of thresholds for 80% confidence in human evaluation sta-
tistical significance (at p < 0.05) in Table 4 across domains. This analysis is restricted to
2022, where the evaluation was multi-domain. Here we combine all target languages. We again
observe inconsistency across metrics, though some metrics show smaller relative threshold dif-
ferences. For example, it requires double the BLEU score difference margin to be confident
that translation quality of systems in the ecommerce and conversational domains significantly
improved according to human evaluators, as compared to the news and social domains. For this
analysis, COMET-22 has the most consistent cutoff across different domains.

4.3 Do human annotation methods matter?

Similar to the previous analyses, we perform a comparison of thresholds for 80% confidence in
human evaluation statistical significance (at p < 0.05) in Table 5 for different human annotation
protocols. Some metrics, like BLEU and chrF, show much higher score differences required
for 80% confidence under MQM evaluation, while others like BLEURT-20, COMET-20, and
UniTE show the opposite. More study would be required to understand these differences across
human evaluation protocols and determine how to compare across different annotation methods.
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domain \ news \ social \ ecommerce | conversational
surface matching

ABLEU 10.0 12.0 23.0 22.0
AspBLEU 10.0 13.0 14.0 10.0
AchrF 8.5 12.0 6.5 19.0
neural (before 2022)

ABERTScore | 0.013 | 0.016 0.009 0.025
ABLEURT-20 | 0.058 | 0.100 0.073 0.070
ACOMET-20 0.20 0.40 0.26 0.25
AYiSi-1 0.035 | 0.003 0.002 0.025
neural (in 2022)

ACOMET-22 0.14 0.15 0.18 0.11
Ametricx 0.10 0.18 0.13 0.10
AUniTE 0.17 0.45 0.31 0.28

Table 4: Comparison of thresholds of AM when Pr(p < 0.05|AM) = 0.8 across domains.

annotation | DA/SQM | MQM
surface matching

ABLEU 5.5 12.9
AspBLEU 5.8 5.7
AchrF 54 10.0
neural (before 2022)

ABERTScore 0.014 | 0.012
ABLEURT-20 0.052 | 0.028
ACOMET-20 0.20 0.13
AYiSi-1 0.015 | 0.011
neural (in 2022)

ACOMET-22 0.13 0.11
Ametricx 0.05 0.03
AUniTE 0.16 0.06

Table 5: Comparison of thresholds of AM when Pr(p < 0.05|/AM) = 0.8 for different human
annotation methods.

5 Conclusions

We presented an empirical study of the relationship between statistically significant differences
in human scores and the magnitude of metric differences. We showed that the rules of thumb
surrounding the significance of BLEU improvement does not hold according to human judg-
ment on translation quality (regardless of whether the rule of thumb is exactly 1 or 2 or even
slightly larger BLEU differences). We provided an intuitive interpretation between BLEU dif-
ferences and the differences in some of the modern metrics. However, we found that for some
metrics, the score differences corresponding to significant improvements as judged by human
annotators may not be transferable across target languages or translation domains. We have to
emphasize again that we do not suggest that this means that MT researchers can forego running
significance tests or doing the appropriate human evaluation. This work only supports an in-
tuitive senses of metric score meanings to encourages broader adoption of new automatic MT
evaluation metrics.
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