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Abstract 

Due to the scarcity of high-quality bilingual sentence pairs, some deep-learning-based machine 
translation algorithms cannot achieve better performance in low-resource machine translation. 
On this basis, we are committed to integrating the ideas of machine learning algorithm improve-
ment and data augmentation, propose a novel multiloop incremental bootstrapping framework, 
and design the corresponding semi-supervised learning algorithm. This framework is a meta-
frame independent of specific machine translation algorithms. This algorithm makes full use of 
bilingual seed data of appropriate scale and super-large-scale monolingual data to expand bi-
lingual sentence pair data incrementally, and trains machine translation models step by step to 
improve the translation quality. The experimental results of neural machine translation on mul-
tiple language pairs prove that our proposed framework can make use of continuous monolin-
gual data to raise itself. Its effectiveness is not only reflected in the easy implementation of 
state-of-the-art low-resource machine translation, but also in the practical option to quickly es-
tablish precise domain machine translation systems. 

1. Introduction 

Machine Translation (MT) is an algorithmic computing process that uses a target natural lan-
guage form to paraphrase the semantics of a source natural language. After the Bronze Age 
marked by Rule-based MT (RBMT) and the Silver Age marked by Statistical MT (SMT), the 
Golden Age marked by deep-learning-based Neural MT (NMT) has begun. After more than 70 
years of unremitting exploration around the three generations of MT, many excellent algo-
rithms and practical products have been produced (Garg and Agarwal, 2018). 

If the formal language theory and context-free grammar derived from the development of 
compilers have achieved MT based on transformation generation rules, then language data has 
become the backbone of MT in the post-rule era. The Bayes conditional probability formula 
explicitly quantifies the language model and translation model contained in large-scale lan-
guage data, which makes the noise channel model to decrypt an encrypted message become a 
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statistical MT paradigm. The deep neural network performs fine-grained characterization of 
super-large-scale language data, and uses many parameters to simulate the end-to-end NMT 
model that can generate fluent target language (Tan, Wang, Yang, Chen, Huang, Sun and Liu, 
2020). 

RBMT is time-consuming and labor-intensive, and it is not easy to guarantee the self-
consistency among many rules, so it is difficult to popularize into practical applications. SMT 
often needs more than 5 million sentence pairs to train a good model, while NMT requires at 
least 20 million sentence pairs to train an excellent model. The effect of NMT rolling that of 
RBMT and SMT is the result of the interaction of computing power, algorithm and data. It is 
precisely because the vector computing component has greatly accelerated the parallel compu-
ting ability, which makes the early proposed artificial neural network algorithm can burst out 
amazing deep intelligence on the data of super-large-scale bilingual sentence pairs (Stahlberg, 
2020). 

Among the more than 7,000 existing languages in the world, the vast majority of less com-
monly taught languages, such as indigenous languages, endangered languages, and dialects that 
are not widely spoken, have difficulties in data scarcity of super-large-scale bilingual sentences 
to varying degrees. Therefore, there is still huge room for improvement in low-resource MT 
with limited training data (Ranathunga, Lee, Skenduli, Shekhar, Alam and Kaur, 2021). At 
present, low-resource MT has gradually evolved into two mainstream research ideas, data aug-
mentation centric idea and machine learning algorithm improvement centric idea. There is an 
overlap between the two ideas since the latter one may also use various language data. 

2. Related Works 

Reviewing the research history of low-resource MT, the data augmentation centric idea mainly 
focuses on how to expand the training corpus. While the machine learning algorithm improve-
ment centric idea often explores how to use transfer learning, unsupervised learning, adversar-
ial learning, and so on to improve the effect of low-resource MT. 

Typical data augmentations include: (1) By pairing monolingual training data with an au-
tomatic back-translation, the approach can treat it as additional parallel training data, and obtain 
substantial improvements on the low-resource MT task (Sennrich, Haddow and Birch, 2016). 
(2) The method starts with a small amount of parallel data and iteratively improves the model 
by training it on the current data and using it to generate translations for additional monolingual 
data. (Hoang, Koehn, Haffari and Cohn, 2018). (3) Some studies use a bilingual lexicon to 
build a phrase-table, combine it with a language model, and use the resulting MT system to 
generate a synthetic parallel corpus, which does not require any additional resource besides the 
monolingual corpus used to train the embeddings (Artetxe, Labaka and Agirre, 2019).  

Classical machine learning algorithm improvements include: (1) Transfer learning. The 
earlier technique is transfer learning between vocabulary, grammar and cognate languages 
mainly based on the characteristics of the language itself. Some studies first train a high-re-
source language pair (the parent model), then transfer some of the learned parameters to the 
low-resource pair (the child model) to initialize and constrain training (Zoph, Yuret, May and 
Knight, 2016). Then there are studies that relieve the vocabulary mismatch by using cross-
lingual word embedding, train a more language-agnostic encoder by injecting artificial noises, 
and generate synthetic data easily from the existing data, so as to implement transfer learning 
between languages with different vocabulary and grammar (Kim, Gao and Ney, 2019). Some 
studies prove that the cognate parallel corpus can improve the low-resource language NMT 
effectively, which mainly depends on the morphological similarity and semantic equivalence 
between the cognate languages (Liu, Xiao, Jiang and Wang, 2018). Recent technique tends to 
adopt pre-trained models in related languages to bootstrap the training of a low-resource MT 
model. According to the language affinity, the research also found that the use of multi-round 
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fine-tuning of highly related multiple high-resource language pairs can further improve the 
effect of low-resource MT (Maimaiti, Liu, Luan and Sun, 2019). Some studies have systemat-
ically compared multistage fine-tuning, and relevant experiments have confirmed that multi-
parallel corpora are extremely useful, and their multistage fine-tuning can give 3~9 BLEU score 
gains over a simple one-to-one model (Dabre, Fujita and Chu, 2019). A study has proposed a 
XLNet based pre-training method, that corrects the defects of the pre-training model, and en-
hance NMT model for context feature extraction. Experimental results on minority languages 
to Chinese tasks show that the generalization ability and BLEU scores of this method are im-
proved, which fully verifies the effectiveness of the method (Wu, Hou, Guo and Zheng, 2021). 
There are also studies aimed at two related very low resource Sorbian languages. On the one 
hand, the authors pretrain the German-Upper-Sorbian model using masked sequence to se-
quence objective and then finetune using iterative back-translation. On the other hand, they use 
final German-Upper-Sorbian model as initialization of the German-Lower-Sorbian model, and 
then the same vocabulary in the two languages is used in the further training of iterative back-
translation (Khatri, Murthy and Bhattacharyya, 2021). (2) Unsupervised learning. This tech-
nique involves training a MT model without using any labeled data. Different from the unsu-
pervised method in the above data augmentation, some studies have proposed a novel method 
to train a NMT system in a completely unsupervised manner, relying on nothing but monolin-
gual corpus, which completely removes the need of parallel data (Artetxe, Labaka, Agirre and 
Cho, 2018). Some studies propose two knowledge distillation methods and empirically intro-
duce a simple method to translate between thirteen languages using a single encoder and a 
single decoder, making use of multilingual data to improve unsupervised neural MT for all 
language pairs (Sun, Wang, Chen, Utiyama, Sumita and Zhao, 2020). Some studies add an 
adapter layer with a denoising objective on top of pre-trained model, and implement multilin-
gual unsupervised MT that only has monolingual data by using auxiliary parallel language pairs 
(Üstün, Berard, Besacier and Gallé, 2021). (3) Adversarial learning. This technique adopts an 
interesting idea of alternate promotion of both two sides of contradiction. Some studies have 
put forward a unique idea of training the NMT model to generate human-like translations di-
rectly by using the generative adversarial net (Yang, Chen, Wang and Xu, 2018). The method 
builds a conditional sequence generative adversarial net which comprises of two adversarial 
sub models, a generative model which translates the source sentence into the target sentence as 
the traditional NMT models do and a discriminative model which discriminates the machine-
translated target sentence from the human-translated one. The two sub models play a minimax 
game and achieve a win-win situation when reaching a Nash Equilibrium. 

Overall, low-resource MT algorithms are still an active area of research, and there are 
many promising techniques being developed to improve the quality of translations for low-
resource languages. We propose a novel multiloop incremental bootstrapping (MIB) meta 
framework independent of specific MT algorithms, and hope to integrate the advantages of data 
augmentation and machine learning algorithm improvements from a higher level of abstraction 
to achieve concise and efficient industrial practical methods. 

3. Multiloop Incremental Bootstrapping 

The MIB we proposed is a semi-supervised incremental learning data augmentation idea that 
can promote the advantages of supervised learning and unsupervised learning. The idea adopts 
a rolling snowball strategy: Firstly, good bidirectional MT models are trained by using bilingual 
corpus of appropriate scale. Then, through fully tapping the potential of the Internet monolin-
gual big data, the trained MT models translate monolingual sentences twice to incrementally 
construct a bilingual pseudo-corpus. Then, the bilingual pseudo-corpus is used to enhance the 
initial bilingual corpus. Finally, the above process is loop-repeated based on the enhanced bi-
lingual corpus, until the trained MT model meets the optimal performance requirements. 
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3.1. Framework 

According to the MIB idea, we give full play to the advantages of super-large-scale unlabeled 
corpora, and propose a MIB framework for low-resource MT as shown in Figure 1. The frame-
work mainly includes a MT model trainer, two machine translators, several crawlers, a simi-
larity calculator, and a corpus truncator. 

 
Figure 1. Multiloop incremental bootstrapping framework. 

The MIB route is made up of multiple improvement loops. Step: We need to prepare a 
ST (source language to target language) parallel sentence corpus named as STCor0. Step: 
The MT model trainer receives the STCor0, and trains out two MT models respectively from 
language S to language T and from language T to language S. Step: A group of parallel 
crawlers continuously crawl language S texts from the Internet, and build a super-large-scale 
language S sentence corpus (SCor0). Step: The ST machine translator translates each lan-
guage S sentence (SSen0) in SCor0 into the corresponding language T sentence (TSen) accord-
ing to the ST MT model, and collects them to form a language T sentence corpus (TCor). 
Step: The TS machine translator translates the language T sentence (TSen) in TCor back into 
the language S sentence (SSen1) according to the TS MT model, and collects them to form a 
language S sentence corpus (SCor1). Step: The similarity calculator calculates the similarity 
between the source sentence SSen0 and the result sentence SSen1 flowing through the two ma-
chine translators. Step: The corpus truncator sorts the corresponding sentence pair <SSen0, 
TSen> according to the similarity between SSen0 and SSen1, and truncate the TopN sentence 
pairs with the highest similarity to form a new ST parallel sentence corpus (STCor1). Step: 
The STCor1 is merged into the STCor0. The first closed loop is completed from the Step to 
the Step, and then the second loop is started from the Step again, and so on. The above 
multiple loops are used together to implement the complete MIB framework. 

Our MIB framework gives a novel idea of semi-supervised low-resource MT based on 
pseudo-corpus incremental learning. It has three significant features: (1) The framework is a 
very flexible meta-framework. On the one hand, it is independent of both specific MT model 
training algorithms and sentence similarity calculating algorithms. On the other hand, if a do-
main-independent universal parallel sentence corpus is used as the STCor0, and a directionally-
crawled domain-dependent language S sentence corpus is used as the SCR0, it can quickly and 
conveniently implement precise MT systems adapting to various domains. (2) Although the 
working of the crawlers is a step contained in the loop, the preparation of the corresponding 
language S sentence corpus can also be separated out to establish an individual module. Be-
cause the scale of the language S sentence corpus affects the effectiveness of incremental learn-
ing, it is necessary to implement functions such as uninterrupted crawling, sentence segmenta-
tion, and sentence deduplication. We can use parallel computing technology to maximize the 
scale of the language S sentence corpus, use NLP technology to segment the language S sen-
tences, and use information retrieval technology to delete the language S sentences contained 
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in STCor0. (3) Two prior parameters need to be set. Where, the TopN parameter indicates the 
increment of sentence pairs in each loop, which determines the delta effect of each loop learn-
ing. The parameter of the total number of loops not only represents the MIB termination con-
dition, but also determines the total learning time overhead. The two parameters together de-
termine the depth of the whole learning. 

3.2. Algorithm 

According to the MIB idea, we design a multiloop incremental bootstrapping machine transla-
tion (MIBMT) algorithm as shown in the pseudo-code in Figure 2 to specifically implement 
the above MIB framework. The MIBMT algorithm mainly includes two main functions of MIB 
training (MTMODELS: train ()) and translating (STRING: translate ()), and a specific model 
training function (MTMODEL: modeltrain ()), a crawling function (SCOR: crawl ()), and so 
on. 

1. // Multiloop Incremental Bootstrapping Machine Translation (MIBMT) Algorithm 
2. // MIB Training 
3. // n: total number of loops 
4. // topn: increment of sentence pairs 
5. // stcor0: parallel sentence corpus 
6. Main Function MTMODELS: train(n, topn, stcor0) 
7. MTMODELS mtmodels  MTMODELS.new(); 
8. For 0 To n Do 
9.  mtmodels.st  modeltrain(stcor0, ‘s’, ‘t’); 

10.  mtmodels.ts  modeltrain(stcor0, ‘t’, ‘s’); 
11.  SCOR scor0  crawl(stcor0.get(‘s’), ‘s’); 
12.  STCOR stcor1  STCOR.new(); 
13.  For STRING ssen0 : scor0 Do 
14.   STRING tsen  translate(mtmodels.st, ssen0, ‘s’); 
15.   STRING ssen1  translate(mtmodels.ts, tsen, ‘t’); 
16.   FLOAT sim  similaritycalculate(ssen0, ssen1); 
17.   stcor1 corpustruncate(stcor1, ssen0, tsen, sim, topn); 
18.  End For 
19.  stcor0.merge(stcor1); 
20.  mtmodels  MTMODELS.new(); 
21. End For 
22. Return mtmodels. 
23. // Specific Model Training 
24. // stcor0: parallel sentence corpus 
25. // ls: source language id 
26. // lt: target language id 
27. Function MTMODEL: modeltrain(stcor0, ls, lt) 
28. SCOR newscor  mpt.tokenize(stcor0.get(ls), ls); 
29. TCOR newtcor  mpt.tokenize(stcor0.get(lt), lt); 
30. MTMODEL mtmodel  specificmodeltrain(newscor, newtcor); 
31. Return mtmodel. 
32. // Crawling 
33. // scor: sentence corpus 
34. // l: language id 
35. Function SCOR: crawl(scor, l) 
36. SCOR scor0  SCOR.new(); 
37. SCOR crawledscor  mpt.sensplit(crawledtxt, l); 
38. For STRING sen : crawledscor Do 
39.  If (!scor.contain(sen)) Then scor0.add(sen); 
40. End For 
41. Return scor0. 
42. // MIB Translating 
43. // mtmodel: machine translation model 
44. // inputtxt: input text 
45. // ls: source language id 
46. Main Function STRING: translate(mtmodel, inputtxt, ls) 
47. STRING outputtxt  STRING.new(); 
48. SCOR inputscor  mpt.sensplit(inputtxt, ls); 
49. For STRING sen : inputscor Do 
50.  outputtxt  outputtxt + mtmodel.specifictranslate(sen) + separator; 
51. End For 
52. Return outputtxt. 

Figure 2. Multiloop incremental bootstrapping machine translation algorithm. 
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In the main function of MIB training (Function MTMODELS: train ()), the inputs are the 
preset total number of loops (n), increment of sentence pairs (topn), and initial parallel sentence 
corpus (stcor0), while the output is a pair of MT models (mtmodels). The outermost loop is run 
n+1 times based on the preset total number of loops n (lines 8 to 21 in Figure 2). In each loop, 
firstly, perform bidirectional translation model training (lines 9 and 10 in Figure 2), then crawl 
the monolingual sentence corpus (line 11 in Figure 2), then perform bidirectional translation 
on the sentences in the monolingual sentence corpus one by one, and obtain the pseudo bilin-
gual sentence corpus according to the similarity (lines 13 to 18 in Figure 2). Finally, merge the 
pseudo corpus into the initial parallel sentence corpus. 

In the main function of MIB translating (Function STRING: translate ()), the inputs are 
MT model (mtmodel), source language text (inputtxt), and source language identifier (ls), while 
the output is target language text (outputtxt). Firstly, the input source language text is seg-
mented into sentences (line 48 in Figure 2), then translated one by one according to the trans-
lation model (line 50 in Figure 2), and the translated sentences are connected and assembled by 
the target sentence separator (loop between lines 49 and 51 in Figure 2), finally the target lan-
guage text is output. 

The inputs of the specific model training function (Function MTMODEL: modeltrain ()) 
are a parallel sentence sorpus (stcor0), a source language identifier (ls), and a target language 
identifier (lt). The output is a translation model (mtmodel). In addition to the need for token 
feature representations based on language (lines 28 and 29 in Figure 2), the most important step 
is the specific training step for MT models (line 30 in Figure 2), which is an end-to-end training 
process for NMT models. 

The inputs of the crawling function (Function SCOR: crawl ()) is the existing monolingual 
sentence corpus (scor) and language identifier (l), while the output is the newly added mono-
lingual sentence corpus (scor0). In addition to sentence segmentation for the crawled text (line 
37 in Figure 2), it is necessary to perform a repeat judgment operation (line 39 in Figure 2) to 
ensure that the new sentence is not in the existing monolingual sentence corpus. 

3.3. Algorithm Analysis 

Inheriting the meta-framework characteristic of the MIB framework, the MIBMT algorithm is 
also a general meta-algorithm. Any high-performance MT algorithm can be embedded in the 
meta-algorithm to implement specific functions of model training and translating. This meta-
algorithm uses repetitive hardware multi-process and multi-threading to implement the effi-
cient crawling (crawl), and uses sentence fingerprint indexing and retrieval to implement the 
Boolean judgment (contain). There are three characteristics that need special attention in prac-
tical use: (i) The scale and quality of the initial parallel sentence corpus stcor0 must meet the 
requirements of specific model training to ensure that the MT model trained in the first loop 
has high translation precision. Just as “no powerful First Impulse, no more and more precise 
celestial orbits”. (ii) The MIBMT bias is controlled by the crawled super-large-scale sentence 
corpus scor0. If scor0 comes from open domain contents, a universal MT model is eventually 
produced, while from narrow domain contents, a domain MT model is produced. “What foods 
he feeds, what eggs hen will lay.” (iii) For each source language or target language, a dedicated 
morphological processing tool (mpt) is required. For instance, during specific model training, 
the tokenize tool (tokenize) represents each single Chinese character as a token, while it repre-
sents the lowercase form of each English word separated by spaces as a token. For another 
instance, both the crawled text (crawledtxt) and input text (inputtxt) need to execute a sentence 
splitting tool (sensplit) according to the corresponding language to obtain a sentence sequence. 
We have to customize the morphological processing tool for each language because different 
languages have different morphological representation systems. That is “different shoes for 
different feet”. 
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The time overhead of the MIBMT algorithm is mainly used for the learning process of the 
training function, which is directly proportional to the total number of loops and the training 
time of the specific MT model. For instance, the total number of loops is n, the time cost of 
training a specific model using a NMT algorithm is m, and the bidirectional models are trained 
in parallel (line 9, 10 of Figure 2), then the main time complexity will be O(nm). The space 
overhead of the MIBMT algorithm is not only related to the increment of sentence pairs (TopN) 
and the size of the initial parallel sentence corpus, but also to the space cost of the specific MT 
model. Since the training corpus is processed in batches during model training, this relationship 
is only a positive correlation and not a simple direct proportional relationship. If a NMT model 
is specifically used, and the source language vocabulary size is S and the target language vo-
cabulary size is T, then the main spatial complexity is O(ST). Of course, the above-mentioned 
space-time complexity is still very huge. Fortunately, the learning process of the training func-
tion is an offline processing, and it is learned once and used multiple times. While the online 
processing of the translating function is efficient in time and space. In order to achieve excellent 
MT results in practical applications, longer learning time and larger storage space are worth-
while and acceptable. We can also increase the GPU and memory to reduce actual space-time 
overhead. 

4. Experiment 

In order to verify that the MIB can be effectively used for low-resource MT, we first implement 
a MIBMT meta-algorithm by embedding an open source sequence-to-sequence NMT model1. 
The hparams of the NMT model mainly include the number of neurons (num_units = 512), the 
number of encoding and decoding layers (num_encoder_layers = num_decoder_layers = 4), 
the batch size (batch_size = 512), and the beam search width (beam_width = 10), while others 
remain the default values. Next, the 15 languages of Indonesian (ind), Malay (msa), Vietnamese 
(vie), Thai (tha), Khmer (khm), Lao (lao), Filipino (fil), Myanmar (mya), Italian (ita), Kazakh 
(kaz), Kyrgyz (kir), Ukrainian (ukr), Polish (pol), Czech (ces), and Slovak (slk), which are 
relatively scarce in parallel sentence pair resources to Chinese (zho), are selected and their 
morphological processing tools are implemented respectively. Finally, a prototype system for 
MT experiments from these 15 languages to Chinese was built. 

A total of 15 NMT models need to be trained to support MT from the 15 low-resource 
languages to Chinese in the experimental prototype system, which have been successfully de-
ployed as web application systems at present2. During the training of these models, we fixed 
the total number of loops and the increment of sentence pairs (TopN) to 11 and 1,000,000 
respectively. The parallel sentence corpus (STCor0) for each language and Chinese, that is, the 
initial training set, contains 5,000,000 sentence pairs, while the final training set will contain 
15,000,000 sentence pairs after the 11 loop executions. At the same time, in order to train spe-
cific sequence-to-sequence NMT models, we also equip an additional 100,000 sentence-pair 
development set and 100,000 sentence-pair test set for each language. For each language, the 
initial training set is exactly the same distribution as the development set and the test set, which 
are divided from the same corpus by simple random sampling. While the crawler captures from 
open domain to form the monolingual sentence corpus (SCor0), which is independent of the 
initial training set. In order to ensure the high availability of the Top1,000,000 pseudo-corpus, 
monolingual sentences at least 10 times TopN is captured in each loop, and then the 
Top1,000,000 sentence pairs are truncated based on the Levenshtein similarity. 

                                                      
1  https://github.com/tensorflow/nmt 
2  http://nmt.cpolar.cn 
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Figure 3. BLEU trend curves. 

After 15 months of training, the BLEU trend curves of the above 15 MT models are shown 
in Figure 3. Where, the abscissa axis represents the loop ordinal, and the ordinate axis repre-
sents the BLEU value. Among them, Loop=0 represents the sequence to sequence NMT model 
obtained from the initial training set of 5,000,000 sentence pairs without pseudo corpus, which 
is used as the benchmark model for the following effect comparison. We find from the curves 
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in Figure 3: (i) The BLEU value of each curve increases approximately linearly with the num-
ber of loops (increment of 1,000,000 sentence pairs per loop). This shows that the MIB has a 
general promotion effect on low-resource MT lack of bilingual sentence pair resources. The 
reason is that with the extension of the corpus, the vocabulary space is more complete and the 
model is more generalized. (ii) Almost the linear growth rate of each curve around the Loop=5 
point will change slightly, and the linear growth rate in the first half is greater than that in the 
second half. Among them, the vie-zho curve is the most obvious. This shows that when the 
scale of real corpus is larger than that of pseudo-corpus, the enhancement effect of pseudo-
corpus is more significant. Because the fixed test set often has the best fit model, when the 
proportion of the pseudo-corpus is too large, it may cause overfitting. (iii) There is a significant 
difference among the BLEU values of the initial model Loop=0 in different languages, with a 
maximum difference of over 10, while the BLEU increment (ΔBLEU) between the final model 
and the initial model is basically maintained at around 10. This is because different languages 
have different entropy, so the information contained in the same scale corpus is not equal, re-
sulting in uneven performance of the initial model trained by sentence pairs of the same scale. 

Source-
Target 
Language 

Vocabulary Size of 
Source Language of 

Loop 10 

Vocabulary Size of 
Target Language of 

Loop 10 
BLEU of 
Loop 10 

ΔBLEU between 
Loop 10 and 

Loop 0 
ind-zho 604,869 8,960 45.90 9.55  
msa-zho 357,264 8,168 34.32 10.38  
vie-zho   66,242 8,293 38.51 11.71  
tha-zho     8,110 6,980 38.95 11.45  
khm-zho 128,930 6,995 37.77 11.22  
lao-zho 149,478 6,913 32.12 10.07  
fil-zho 201,835 6,393 45.74 12.01  
mya-zho   24,384 6,907 32.60 9.93  
ita-zho 884,503 9,759 41.57 10.11  
kaz-zho 699,425 7,017 38.26 10.44  
kir-zho 740,651 7,007 35.03 11.18  
ukr-zho 627,365 7,023 44.94 12.69  
pol-zho 541,620 6,929 44.85 12.04  
ces-zho 550,807 6,931 45.14 12.02  
slk-zho 576,679 6,930 44.79 13.11  

Table 1. Final vocabulary size and BLEU values. 

The final vocabulary size and corresponding BLEU values are shown in Table 1. Where, 
the Chinese vocabulary size is relatively fixed, with value ranging from 6,000 to 10,000. Each 
“word” in the Chinese vocabulary is a single Chinese character or other token. But there are 
two forms of uppercase and lowercase in Latin, Cyrillic or other alphabet languages, which use 
a lowercase vocabulary for MT to Chinese. Observing the final BLEU values, we found that 
the BLEU value of the NMT model from Indonesian, Filipino and Czech to Chinese exceeded 
45. Among them, the BLEU value of Indonesian-Chinese NMT model reaches the highest of 
45.90. Observing the ΔBLEU values between Loop=10 model and Loop=0 model, it is found 
that the BLEU values of 15 low-resource languages to Chinese NMT models can be improved 
between 9.55 and 13.11 by using the proposed method. The BLEU value of the Slovak-Chinese 
NMT model increased the most, while that of the Indonesian-Chinese NMT model increased 
the least. It can be seen that the higher the performance of Loop=0 model, the higher the final 
performance can be obtained by adopting the MIB method. In summary, the experimental re-
sults prove that our proposed MIB is effective for low-resource MT. 

5. Conclusion 

The incremental pseudo-corpus in the MIB of this paper is derived from the newly trained MT 
models, while the MT models are trained from the training set enhanced by newly produced 
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pseudo-corpus, which is a closed-loop self-lifting idea based on the homogeneous MT models. 
The experimental results on multiple languages prove that the language resources expanded by 
this idea can effectively improve the performance of low-resource MT. 

The next research will concern an open-loop mutual-lifting idea based on heterogeneous 
MT models. That is, the source and output MT models of incremental pseudo-corpus are two 
different excellent MT models. It is hoped that an excellent MT model will enhance another 
one through the produced corpus transmission. In addition, we also hope to transfer the general 
MIB framework of this paper to low-resource MT in other languages and precise domain MT. 
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