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Abstract

We formulate and test a technique to use Emer-
gent Communication (EC) with a pre-trained
multilingual model to improve on modern Un-
supervised NMT systems, especially for low-
resource languages. It has been argued that
the current dominant paradigm in NLP of pre-
training on text-only corpora will not yield ro-
bust natural language understanding systems,
and the need for grounded, goal-oriented, and
interactive language learning has been high-
lighted. In our approach, we embed a multilin-
gual model (mBART, Liu et al., 2020) into an
EC image-reference game, in which the model
is incentivized to use multilingual generations
to accomplish a vision-grounded task. The
hypothesis is that this will align multiple lan-
guages to a shared task space. We present two
variants of EC Fine-Tuning (Steinert-Threlkeld
et al., 2022), one of which outperforms a
backtranslation-only baseline in all four lan-
guages investigated, including the low-resource
language Nepali.

1 Introduction

While neural machine translation (NMT) systems
are one of the great success stories of natural lan-
guage processing (Sutskever et al., 2014; Bahdanau
etal., 2015; Wu et al., 2016), typical methods rely
on large quantities of parallel text (i.e. existing hu-
man translated texts) as gold data for supervised
learning. These approaches are thus difficult to
apply to low-resource languages, which lack large
bodies of such data (Joshi et al., 2020). To ex-
tend this vital language technology to low-resource
languages, many have focused on Unsupervised
NMT (UNMT) — the task of building NMT sys-
tems without any parallel text (Artetxe et al., 2018;
Lample et al., 2018a,c; Lample and Conneau, 2019;
Conneau et al., 2020).

*Equal contribution. We also include a detailed Author
Contribution Statement at the end of the paper.
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Figure 1: Illustration of our modeling process. For
the pre-training stage, we use the off-the-shelf mBART
(Lewis et al., 2020). We fine-tune the model for transla-
tion with Emergent Communication.

Typical approaches to UNMT rely on large pre-
trained multilingual models (Lample and Conneau,
2019; Conneau et al., 2020; Liu et al., 2020; Song
et al., 2019) and the method of back-translation
(Sennrich et al., 2016b) to iteratively generate syn-
thetic parallel text. These approaches, however,
still rely on plain text information alone. For that
reason, the resulting models are considered un-
grounded (there is no link between the text and
the external world). This may limit model abilities.

Despite NLP breakthroughs stemming from
large-scale pre-training on raw text corpora with
self-supervised learning (Howard and Ruder, 2018;
Peters et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Conneau et al., 2020; Liu et al., 2020; Brown
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et al., 2020, i.a.), several recent results suggest
limitations in model generalization (McCoy et al.,
2019; Niven and Kao, 2019; Ettinger, 2020; Rogers
et al., 2020, i.a.). More fundamentally, several
have argued that pre-training on text alone will not
deliver fully general and robust NLP systems.

For example, using several detailed thought ex-
periments, Bender and Koller (2020) argue that
models trained on text alone will not, in principle,
be able to recover either the conventional mean-
ing of expressions or the communicative intent of
an expression in context. Their arguments high-
light the importance of the interaction between
linguistic expressions and extra-linguistic commu-
nicative intents (e.g. acting in the world, executing
programs).” Similarly, Bisk et al. (2020) articu-
late progressively broader world scopes in which
language use is embedded, and argue that present
pre-training methods work at a relatively limited
scope. They too emphasize the importance of em-
bodied interaction with the environment and with
the social world for future NLP systems.>

In this paper, we propose to use methods from
the field of emergent communication (EC) (Wagner
et al., 2003; Skyrms, 2010; Lazaridou and Baroni,
2020) to improve UNMT systems. EC studies ar-
tificial agents communicating with each other to
accomplish particular environmental goals. EC is
a subfield of reinforcement learning, wherein lan-
guage (i.e. the communcation protocol) is shaped
by rewards determined by interacting with an ex-
ternal environment and with other agents. Typ-
ical work in this area starts from a tabula rasa
and studies under what conditions —e.g. environ-
ments, tasks/goals, social settings—the resulting
communication protocols among agents resembles
human language, along axes like word length econ-
omy (Chaabouni et al., 2019a), word-order biases
(Chaabouni et al., 2019b), and compositionality
(Andreas, 2019; Chaabouni et al., 2020; Steinert-
Threlkeld, 2020; Geffen Lan et al., 2020), among
others (Mu and Goodman, 2021).

Our approach leverages the insight that people

'This is largely what (Linzen, 2020) calls the pre-
training Agnostic Independently Distributed (PAID) evalu-
ation paradigm. We discuss pre-training on multimodal (i.e.
not text-only) datain § 7.

2See Merrill et al. (2021) for a formalization of argument
in Bender and Koller (2020) about learning a programming
language from form alone.

3As noted by Bender and Koller (2020), many of these
arguments can be seen as detailed elaborations of the need for

NLU systems to solve the symbol grounding problem (Harnad,
1990; Taddeo and Floridi, 2005).

learn new languages by using them to do things
(e.g. order food, buy train tickets); our machines
should do the same. We improve upon a standard
UNMT system by taking a large pre-trained mul-
tilingual model (mBART) and embedding it in an
EC task, having it participate in goal-directed com-
munication (in addition to back-translation). Com-
munication should promote translation in the fol-
lowing way. Translation can be viewed as ‘align-
ing’ model representations for sentences in sev-
eral languages. In the supervised case, parallel
text instructs the model how to do this alignment.
In the unsupervised case, through communication,
each model aligns its language representations with
the same shared environment, thereby promoting
alignment between the languages themselves. This
work is thus an instance of the wider framework
of Emergent Communication Fine-tuning (EC-FT)
(Steinert-Threlkeld et al., 2022).

In what remains, we describe our pipeline for EC
fine-tuning (Section 2) and the experiments that we
conduct to demonstrate its benefit for UNMT (Sec-
tion 3), overview our experimental results, in which
we show EC yields benefits for every language we
study with particularly strong gains for the low-
resource language Nepali (Section 4). We then
study some manipulations on our training pipeline
(Section 5) before discussing the implications of
these experiments (Section 6), and situating them
in the context of existing work (Section 7).

Our contributions are the following: (i) We
demonstrate that EC-FT can be used to improve
upon UNMT baselines. (ii) We give a proof-of-
concept for the viability of using modern pre-
trained language models in an EC scenario. (iii)
We articulate a view for EC-FT as a generalized
and parameterizable framework.

2 Methodology

As shown in Figure 1, the pipeline that we intro-
duce here consists of three main phases: (1) Begin
with a pre-trained multilingual model, which ei-
ther already has an encoder and decoder, or from
which this seq2seq stack can be initialized. (2)
Conduct emergent-communication training using
image and/or text embeddings (Figure 2). (3) Use
iterative backtranslation (Sennrich et al., 2016a;
Section 7) to tune the model for translation.*

*The code to run all experiments described here
can be found at https://github.com/CLMBRs/
communication-translation.
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Figure 2: Emergent Communication Fine-Tuning: the task is a standard image reference game from the EC literature,
but with the sender and receiver initialized from a pre-trained multilingual decoder and encoder. The communication
language alternates between the two languages in the translation pair that is being fine-tuned.

For step (2), we test two versions of the EC
fine-tuning task. In the first (I2I-EC), the EC step
uses only image embeddings, and the model must
select the original input image from among distrac-
tors, based on a text generation (akin to a caption).
In the second (T2I-EC), the communication game
involves gold captions, instead of only image fea-
tures: based on a caption, the model must generate
a translation of it, on the basis of which the original
image must be selected from amongst distractors.

First, we introduce some notation. We use F,,
and D,,, for the multilingual encoder and decoder,
respectively, which are parameterized by 0 and
0p. xg € RV*IVI and xp € REXIVI are se-
quences of symbols of length /V and K respectively.
En(xg;0p) € RVXdm where d,, is the model
hidden dimension, is the encoder output. Similarly,
the decoder output is D,,(xp,e;0p) € REXIVI,
where e € RV s a set of vectors for cross-
attention of the decoder.

This formulation of our pipeline leaves many
concrete choices open. In the remainder of this
section, we describe the specific implementation of
this process used in our experiments.

2.1 Pipeline Components

Pre-trained Model We use mBART(-large) (Liu
et al., 2020), which has demonstrated strong un-
supervised translation performance in several lan-
guages. mBART employs seq2seq pre-training,
encoding a “noised” input sequence and then re-
constructing the original sequence with the de-
coder, over a collection of 25 languages. mBART’s
encoder-decoder architecture and corresponding
seq2seq training make it a natural fit for our EC ex-

periments, in which a multilingual decoder and en-
coder are used to send and receive natural language
messages. We use 0, to denote the parameters
of the pretrained encoder, and mutatis mutandis for
the pretrained decoder.

Backtranslation Iterative backtranslation allows
a model (usually pre-trained) to achieve some level
of translation performance while only training on
monolingual data (Section 7). Our baseline system
is mBART fine-tuned with backtranslation only.
In the EC-FT case, backtranslation is always per-
formed last so that the model is tuned for translation
immediately before it is evaluated.

Image-to-Image EC (I2I-EC) Our emergent
communication framework consists of two main
subtasks. First, an agent (the sender, a decoder)
must take in an image encoding and produce a
natural language description of it. The generation
language may vary; there will be several in our
experiments. Next, another agent (the receiver, an
encoder) takes in the generated text and uses it to
pick the described image from a set of distractors.
In the EC literature, this is referred to as a standard
image reference game (see Figure 2).5

Let i € R% be an image embedding (d; is the
dimension of these embeddings, which may come
from a vision model). We also assume that we have

SThe image reference game, as used in much of the EC
literature, is very similar to? training an image caption module
to produce discriminative captions via self-retrieval, as pur-
sued in (Liu et al., 2018). They first train the text-to-image
pipeline from gold captions, and then pursue training a caption
generator via image selection both with and without supervi-
sion from gold captions. We thank an anonymous reviewer
for calling our attention to this work.
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a reshaper R(i;0r) which maps images to R%m.

Because mBART is not natively multi-modal,
some adaptations are made to allow it to generate
a description of an image. In particular, the im-
age embedding cannot simply be the first token to
the sender since mBART reserves this for a spe-
cial language identification token. Further, it is not
obvious that a pre-trained transformer decoder’s
cross-attention can be “turned off”” without effect-
ing overall performance. For these reasons, we
pass the image embedding into an “unroller” U
(one auto-regressive transformer layer) to generate
a sequence of embeddings U (R(i); /) € RM*dm
where M is a hyperparameter. This sequence is
then used as the keys and values in the sender’s
cross-attention.

We auto-regressively generate from the sender’s
distributions S := D,,, ((LID,T<k),U(R(i))) €
RE*IVI where LID is a language ID token and
T. i is the prefix of text T generated at the pre-
vious time step. The sampling required for dis-
crete generation is not differentiable, so we use the
straight-through Gumbel-Softmax estimator (Jang
et al., 2017; Maddison et al., 2017) with tempera-
ture 7 = 1.0. 7' := GS-ST(5) is the sequence of
one-hot vectors sampled in this way.

The receiver consumes this generated ‘caption’:
E,,(T) € REXdm To produce a single representa-
tion of the image, we use an ‘aggregator’ A which
takes this sequence of representations and pools
them into a single one A(E,,(T);04) € R%m.6

The score for each of the candidate images is the
inverse of the mean squared error between the im-
age and the receiver’s final representation. The loss
for the image selection task is then cross-entropy
among the image candidates. This loss partially
follows Lee et al. (2018), though they jointly train
on supervised caption generation during EC.

Given the original image i, and a set {4, }}_;
of distractor images, let the image selection loss be

ls (1,0) :=
1
[A(En (T)) — R(3)|

— log softmax

2 (1

2
where © = {0p,0p,0r, 04,0y} and the softmax
is taken over the distractor images { R(iy,)}.
Finally, because EC can cause significant lan-
guage drift (Lee et al., 2018, 2019; Lu et al., 2020;
Lazaridou et al., 2020), we use KL regularization

SPilot experiments suggested that a small aggregator
worked better than simply using mean pooling.

(Havrylov and Titov, 2017; Baziotis et al., 2020) to
ensure that the sender’s output distribution does not
drift too far from the distribution of an auxiliary
causal language model (CLM; this model is not
trained as part of EC):’

1
bk, = e gKL (Sk || Dewm ((LID, T<y)),.)
2)

Combining equations (1) and (2) and averaging
over iterations of the game, the final EC loss is

Lc = E; [lis + Mk ] 3)

with A a hyperparameter.

Text-to-Image EC (T2I-EC) The text-to-image
EC task is identical to I12I-EC, except in what is pre-
sented to the sender via cross-attention. In T2I-EC,
monolingual gold captions are used in the cross-
attention for the emergent generation after being
embedded by the encoder F,,.

In other words, given c; as a caption for image 1,
T2I-EC still uses Lgc (equation (3)), but without
the unroller for the sender. Now, we have S =
Dm (<LID, S<K>, Em(ci; QE))

As in I2I-EC, the image descriptions are gener-
ated in either the caption language (here, English)
or another translation target language. Importantly,
the emergent generation need not be identical to
the gold caption. This is desirable, since there
may be several valid paraphrases of a given transla-
tion/caption. Similarly, we only require gold cap-
tions in one language, not every language; for this
reason, there is no implicitly parallel text data and
so the translation task can still be considered unsu-
pervised.

The motivation for this version of EC comes
from the observation that the encodings used in
the sender’s cross-attention should be fairly similar
to those generated by the model’s encoder, since
the model is being fine-tuned to be an encoder-
decoder translation model. Generating into varying
target languages incentivizes the model to use the
same encodings for generating different languages,
rather than copying the input text to the output.
In contrast, there is no guarantee that the image
encodings used in I2I-EC are at all similar to those
produced by the model’s encoder.

"We finetune the original mBART decoder as a CLM for
this purpose; see the end of Appendix A for details.
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Initial Supervision Because multilingual EC is
a complicated task with sparse training signal, we
first ground the agents in their visual sub-tasks in-
dependently of the combined communication task.
We train the sender to produce gold-standard cap-
tions in a high-resource language (English in our
experiments) while simultaneously training the re-
ceiver to pick out the correct image based on the
gold-standard caption. Critically, this stage only
assumes that you have gold-standard captions in
one language. The model is never trained on gold
captions in non-English languages. This step is
conducted independently, before EC.

2.2 Data

Training We use two main sources of training
data: monolingual corpora for backtranslation, and
pairings of images and captions in a single high-
resource language. We train translation systems
between English and four other languages: Chinese
(zh), German (de), Nepali (ne), and Sinhala (si).

Backtranslation creates synthetic translation
pairs by generating sentences in the second lan-
guage given natural sentences in the first. Follow-
ing experiments using mBART for unsupervised
translation (Liu et al., 2020), we use small portions
of the Common Crawl 25 dataset, which is the pre-
training data for mBART. In this way, no novel data
is introduced to establish our UNMT baseline.

For the EC stage, the data required differs be-
tween I2I-EC and T2I-EC. The former requires
only image embeddings. The latter requires paired
images and captions, since the true caption is used
to prompt the sender’s generation. As mentioned,
we assume that captions are only available for one
language. Since English is in every translation
pair, we use English captions. Our image-caption
pairs come from the MS-COCO dataset (Lin et al.,
2014), and our image embeddings are extracted
from ResNet 50 (He et al., 2016b) (these are also
used during the supervised captioning stage).

Validation and Test Translation validation and
test sets are the only parallel data used in our ex-
periments. For Nepali and Sinhala, we use the
standard splits of the FLoRes evaluation datasets
(Guzman et al., 2019). For Chinese and German,
we use the newstest2018 and newsdev2019 splits
of the WMT’19 release as validation data (Barrault
et al., 2019). For test data in these two languages,
we sample 4096 examples from News Commentary
v14 subset of the same release.

3 Experiments

We evaluate a UNMT baseline and our two pro-
posed EC-FT pipelines on translation performance
for each language pair. Checkpoints are picked
by highest mean BLEU on the validation set. We
first describe these models and then our evaluation.
More extensive details can be found in Appendix A.

Baseline For our UNMT baseline, we start with
mBART-25 and perform iterative backtranslation
for 8192 steps in each direction. mBART employs
language control tokens at the beginning of se-
quences, but it is not pre-trained to decode one
language from another (Liu et al., 2020), which is
a key feature of (back-)translation. To overcome
the model’s tendency to copy the input sequence to
the output, we establish language-controlled gener-
ation using language control tokens and language
masks (Liu et al., 2020). Concretely, we obtain
token counts from the mBART training data, and
these are used to create a logit mask, only allowing
the model to generate tokens which make up the
top p percent of the probability mass of the data in
the given language. For the first 2048 backtransla-
tion steps, we use a masking threshold of p = 0.9.
After that, we raise the threshold to p = 0.99.

(I2I/T2D)-EC In both of our EC-FT models, we
keep the total number of backtranslation steps the
same (8192), and add 2048 steps each of super-
vised caption training and EC-FT. The language
of generation can also be controlled during EC, so
we use language-control tokens and a logit mask
to ensure the sender generates in the specified lan-
guage. The language of the emergent generation is
selected uniformly at random per example.

Evaluation For our final evaluation, we report
both BLEU and COMET (Rei et al., 2020) scores
in both translation directions for each language
pair. COMET provides the output of a regres-
sion model trained to predict the human direct-
assessment translation quality score of a transla-
tion pair. Based on normalized quality scores, a
COMET score of 0 means the translation is pre-
dicted to be of average quality. Postive scores indi-
cate above-average quality, and vice-versa. We use
the wmt22-comet-da model.

4 Results

Table 1 shows the results from our main experiment.
Firstly, our UNMT baseline based on iterative back-
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Model Language BLEU COMET
en—X X—en mean A en—X X-—en mean
zh 18.45 11.36 14.90 - 0.03 0.15 0.09
) de 19.06 25.73 22.39 - 0.20 0.38 0.29
baseline (mBART + BT) ne 214 507 360 - 024  -034 -0.29
si 1.18 4.73 2.95 - -0.18 -0.28 -0.23
zh 18.72 11.88 1530 +3% 0.04 0.17 0.10
DI-EC de 1826 25.60 21.93 2% 0.20 0.40 0.30
ne 1.51 5.34 3.43 -5% -0.24 -0.31 -0.28
si 0.01 0.08 0.04 -99% -1.31 -1.05 -1.28
zh 19.25 1191 15.58 +5% 0.06 0.18 0.12
T2LEC de 18.64 2620 2242 +0.1% 0.19 0.41 0.30
i ne 2.36 5.92 414 +15% -0.20 -0.27  -0.24
si 1.29 4.76 3.02 +2% -0.18 027  -0.22

Table 1: Results of our main experiment. Values reported here are the maximum across 3 random seeds per row;
see Appendix C for full variation. T2I-EC shows consistent improvement for each language in terms of both mean
BLEU and COMET. A shows percent improvement over the baseline.

translation (BT) shows a marked decrease in per-
formance from the two higher-resource languages
(Chinese and German) to the two lower-resource
languages (Nepali and Sinhala). This is expected
since BT-based UNMT often requires a strong ini-
tialization (Lample et al., 2018c) and multilingual
models (like mBART) do not perform as well for
lower-resource languages (Wu and Dredze, 2020).

Our model fine-tuned with both backtranslation
and I2I-EC remains close to or exceeds the baseline
for the two higher-resource languages and Nepali
but achieves very poor performance on Sinhala. It
appears that EC provides a worse initialization for
backtranslation for this language.

In contrast, our “text-to-image” variant of EC-
FT (T2I-EC) yields the best performing model
in terms of mean BLEU for all four of our lan-
guages. In particular, we see significant gains for
both lower-resource languages. Most striking is
the Nepali-English pair, which sees a +15% BLEU
improvement over the baseline. While there are im-
provements in both directions, the Nepali—English
direction has the largest gain. By contrast, Sinhala
shows improvements in both directions, with the
larger improvement in the to-Sinhala direction (par-
tially due to a stronger baseline). The improve-
ments are smallest for German, which is both very
high-resource and the most similar to English of
our languages. The COMET scores were broadly
correlated with BLEU scores in all of our settings.

These results show that EC-FT of a pre-trained
multilingual model can provide real improvement
over a backtranslation-only baseline, giving proof-
of-concept of communication for fine-tuning.

5 Manipulations

To better understand which components of the
pipeline affect the results in T2I-EC, we conducted
several follow-up experiments. For each manipu-
lation, we looked at one high-resource language
(German) and one low-resource langauge (Sinhala).
See Appendix B for full methodological details.

Image Encoder To test the effect of the image
encoder, we replaced the ResNet image encoder
with the best performing one from CLIP (Radford
et al., 2021). This image encoder is based on the
Vision Transformer (Dosovitskiy et al., 2021) ar-
chitecture and trained jointly with a text encoder
via a contrastive loss to pair image encodings with
caption encodings.

Initial Backtranslation Because the EC compo-
nent of training is the first time that language 1D
codes are being used to generate text from the de-
coder with input other than representations of the
same language from the encoder, we experimented
with splitting the backtranslation training into two
parts. Instead of doing all 8192 steps after EC, we
did 2048 steps after image supervision but before
EC, and the final 6144 steps after EC.
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Interleaved Training Inspired by Lowe et al.
(2020), who showed that inter-leaving EC with a su-
pervised learning objective can improve EC results,
we ran a version of our training pipeline where we
alternated between EC and BT four times. The
total number of training steps remained the same
(2048 and 8192, respectively), but this was now
done in 4 equal-sized EC-to-BT pieces.

Results Table 2 shows the results of these abla-
tions. Evaluation is in terms of BLEU on the test
set, and the A column reports the percent differ-
ence from the best value for a language in Table 1.
We find significant reduction in translation qual-
ity with the CLIP image encoder and inconsistent
performance for both an initial BT phase and in-
terleaved training, with performance dropping for
German but slightly increasing for Sinhala when
compared to T2I-EC (as seen in the A column).

Manipulation Lang en—X X-—en mean A
CLIP-img de 18.52 2593 2223 -1%
CLIP-img si 1.05 4.18 261 -14%
Init BT de 1820 2539 2180 -3%
Init BT si 1.24 484  3.04 +0.6%
Interleave de 1829 2569 2199 -2%
Interleave si 1.25 4.84 305 +1%

Table 2: Results from several training pipeline manip-
ulations. BLEU scores reported; A is the percentage
difference from the corresponding mean value in T2I-
EC in Figure 1.

6 Discussion

We have demonstrated that (at least one variant of)
EC fine-tuning provides improvement on unsuper-
vised translation over a standard backtranslation
baseline. The gains are especially pronounced for
the low-resource language Nepali, which is ideal
since under-resourced languages constitute the ex-
pected use case for unsupervised translation tech-
niques. Furthermore, since the hyperparameters for
the EC-FT portion of our pipeline were mostly de-
termined empirically, our approach may be under-
optimized, meaning future work may yield further
improvement using the same technique.

I2I-EC However, it is also clear that our formu-
lation and implementation of “standard” EC (I2I-
EC) does not improve upon the baseline, and even
degrades performance in many cases. Our interpre-
tation of this behavior is linked to our motivation

for formulating T2I-EC in the first place.

As mentioned in Section 2.1, the image repre-
sentations used in the sender’s cross-attention, in
the image-to-image setup, are not guaranteed to be
at all similar to the representations that the receiver
learns to encode. Because we seek to fine-tune for
a standard seg2seq task (translation), it is desirable
that the sender (mBART decoder) be trained to use
the same or similar representations to those pro-
duced by the receiver (mBART encoder). Thus,
we hypothesize that the null and negative effects
of I2I-EC may be due to this mismatch between
the representations the sender is trained to use, and
those that the receiver is trained to produce.

However, we do not believe we have shown that
I2I-EC will not be useful under slightly different
formulations. In particular, the image representa-
tions may be able to be constrained to be similar
to those of the receiver, either during EC or dur-
ing the initial supervision phase. This could be
accomplished using an auxillary distance loss, or
by normalizing the mean and variance of the repre-
sentations in both places.

EC Fine-Tuning Lastly, we view EC fine-tuning
as a broader framework in which we have tested
two distinct formulations (Steinert-Threlkeld et al.,
2022). We will assume that the invariant element
of EC is a model’s use of discrete, natural-language
generations as input to a second model, which must
use them to accomplish some task.

Given this definition, there are several choice
points for applying EC-FT. The parameter we ex-
plicitly explore in our experiments is whether the
input to the sender is image-based or text-based. In
both of our formulations, the receiver is trained by
a contrastive image-choice loss. Another parameter
for future work concerns whether this loss applies
to images or texts. The receiver could be trained to
choose the correct sentence out of a set of distrac-
tors via the similarity of the sentence embeddings.

A third parameter is whether the receiver is
trained by a contrastive loss or a generative one
(i.e. exactly reproducing a target sequence, as in
seq2seq training).® In fact, an EC parameterization
with text input, text output, and generative loss has
already been formulated elsewhere, though it is not
referred to as such. Niu et al. (2019) design a for-
mulation of backtranslation, in which the artificial
intermediate text is generated with straight-through

8Known as “reference game” versus “reconstruction game”
in the EC literature (Lazaridou and Baroni, 2020).
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Gumbel Softmax, instead of generated separately
first. Future work will explore using this method
with pre-trained models, i.e. in an EC-FT context.

These and other parameter choices leave exten-
sive room for exciting future work with EC-FT as
a general framework, both for UNMT and beyond.

7 Related Work

UNMT Unsupervised NMT uses only monolin-
gual texts in each language of interest. Lample et al.
(2018c) describe three principles for successful
UNMT systems: 1. initialization, the initial model
must leverage aligned representations between lan-
guages; 2. language modeling, there should be a
strong “data driven prior” over the text patterns of
each language; and 3. backtranslation which turns
the unsupervised problem into a noisily-supervised
one, through the use of semi-synthetic translations.

Significant progress has been made in improving
each of these aspects of UNMT. Pre-trained mul-
tilingual language models (Lample and Conneau,
2019; Conneau et al., 2020; Liu et al., 2020; Song
et al., 2019) have vastly improved the tractability
of principles 1 and 2, largely replacing initializa-
tion techniques using inferred bilingual dictionaries
(e.g. Lample et al., 2018b).

For the third principle, iterative backtranslation
is widely used (Sennrich et al., 2016a; He et al.,
2016a; Lample et al., 2018a; Haddow et al., 2022).
On this approach, synthetic data is generated “on
the fly”, during training. The model is updated
before each new batch of synthetic text is generated,
leading to simultaneous incremental improvement
in generated data quality and model quality.

In this work, we adhere to all three principles,
but add EC as a training signal. It has been
noted that UNMT baselines still perform relatively
poorly for low-resource languages (Guzmaén et al.,
2019). We improve upon low-resource UNMT
pipelines by leveraging goal-directed, multimodal
fine-tuning via emergent communication.

EC and NLP A few other papers combine EC
and NMT specifically. Lee et al. (2018) use EC and
image captioning to build UNMT models, show-
ing that EC promotes better translation than the
multimodal alignment technique of Nakayama and
Nishida (2017). Our approach differs in several im-
portant respects: we initialize our EC environment
with pre-trained language models; we use both EC
and backtranslation; and we do not simultaneously
train on the EC objective and image captioning

objective. Moreover, because we use one multi-
lingual model, our caption grounding only uses
one language, instead of all languages. Our results
show that EC promotes unsupervised translation
in the context of advanced methods that combine
pre-training with backtranslation.

Li et al. (2020b) use emergent communication
as a pre-training step for NMT systems. They have
agents play an EC game, and then use those param-
eters to initialize an NMT system. They find that
(together with adapters and weight-distance regu-
larization) EC pre-training improves in BLEU over
a standard NMT baseline, with especially large
gains coming in the few-shot setting. While this
shows that EC can provide a good initialization for
a recurrent NMT system, our present work shows
that EC can provide a good fine-tuning signal for a
pre-trained multilingual language model. We also
note two differences with respect to both works:
(i) they use recurrent networks, whereas we start
from a pre-trained transformer, and (ii) they use
separate models for each language, whereas we use
one multilingual model.

Lee et al. (2019) cast translation as a commu-
nication game with a third pivot language as the
latent space in order to study (i) language drift from
a pre-trained supervised MT model and (ii) using
visual grounding (via gold image captions) plus
language modeling to counter such drift. This ap-
proach thus does use EC with a pre-trained model,
but it is a small model trained on the target task
(translation). Our approach encourages using EC in
conjunction with large-scale pre-trained language
models which are intended to be general-purpose.

Finally, Lazaridou et al. (2020) study various
ways of combining EC with a standard vision-
language task, namely image captioning. They
identify several forms of language drift and ex-
plore ways of incorporating auxillary losses. This
work heavily inspires our own, since many of their
settings correspond to using a pre-trained image-
caption system. Our focus, however, has been on
using EC to fine-tune large-scale pre-trained mod-
els on a language-only task, which introduces its
own challenges and has its own benefits.

Multimodal pre-training Recently, efforts in
multimodal pre-training are surging, especially in
vision-language (V-L) pre-training (Du et al., 2022).
Most of the works create joint V-L representations
through a fusion encoder (Li et al., 2020a, 2019;
Tan and Bansal, 2019), where the fused represen-
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tation is the joint representation of image and text,
as learned by a single encoder. Other recent works
such as CLIP (Radford et al., 2021) and ALIGN
(Jiaet al., 2021) attempt to use different encoders
for images and text to make the framework more
efficient. While V-L pre-training models image
and text data jointly (Du et al., 2022; Wang et al.,
2021), we start with an existing pre-trained lan-
guage model and further train it through the com-
munication process in an image referential game.
Although we expect the alignment between image
and text to arise through this process, we view the
visual modality as an additional signal to ground
the multilingual communication process.

We also note that most previous work on V-L
pre-training is evaluated solely on vision or V-L
tasks (Li et al., 2019; Radford et al., 2021; Jia et al.,
2021). The advantage of this joint pre-training for
language-only tasks remains unclear (Yun et al.,
2021; Pezzelle et al., 2021). In this paper, we fo-
cus on a language-only task (UNMT) to evaluate
whether visual grounding can improve such tasks.

Finally, we note that EC-FT is more general
than typical approaches to multimodal pre-training.
While the image-based task we employ here works
by promoting multimodal alignment, the range of
possible tasks that can be used in EC-FT is huge,
from directing other agents (Mordatch and Abbeel,
2018) to controlling a robot (Das et al., 2019) to
playing games and reasoning about social dilem-
mas (Jaques et al., 2019). This wide range of tasks
can incorporate many dimensions of communica-
tion that should be beneficial for NLP systems—
e.g. other agents with their own private goals, so-
cial context, embodied control—that are not easily
captured by multimodal pre-training (Bender and
Koller, 2020; Bisk et al., 2020). In terms of Bisk
et al. (2020)’s world scopes mentioned in the in-
troduction, multimodal pre-training corresponds to
world scope 3 (perception); EC-FT has the ability
to move us much closer towards the final scopes 4
(embodiment and action) and 5 (the social world).

Multimodal Fine-tuning A related body of work
focuses on adapting pre-trained language-only
models for use in multi-modal tasks. For exam-
ple, Tsimpoukelli et al. (2021) show that using
a frozen language model and adapting a visual
encoder to produce embeddings aligned with the
LM’s can be useful for few-shot learning in multi-
modal tasks like visual question answering. Liang
et al. (2022) make this approach more modular by

additionally freezing the visual encoder and learn-
ing separate prompt vectors. In the EC-FT context,
these works suffer some of the same limitations in
world scope, but could provide very useful meth-
ods for the environment-to-sender adapter step dis-
cussed in Section 2.1.

8 Conclusion

We have shown that Emergent Communication can
be used as a fine-tuning signal for a large pre-
trained multilingual model; this grounding in a
goal-oriented multimodal task yields improvements
over an unsupervised NMT baseline in all four lan-
guages studied. There is likely room to further
improve upon the specific EC variants we propose
here, since we believe the EC process is under-
optimized for hyperparameters. We have further
noted that the framework we propose leaves exten-
sive room for further experimentation, since there
are many choice points of the general EC setup
that we have not yet tested, and may be promising
avenues for future improvement. The general EC-
FT framework may also be applied to other tasks
beyond UNMT in future work.
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Limitations

One limitation of our work concerns analysis.
Much remains to be learned about the mechanisms
by which EC can help translation. By evaluating
the model more comprehensively, we could gain
insight into whether and how the grounding helps
task performance. Based on such analysis, a better
version of the pipeline could be developed.
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We observed significant variability across ran-
dom seeds in our EC training; methods for stabi-
lizing this variability could ensure the reliability of
EC as a fine-tuning process for models.

Finally, we investigated only four non-English
languages, two ‘high-resource’ and two ‘low-
resource’. It would be valuable to explore a wider
range of typologically diverse languages to vali-
date that these methods apply across the board and,
if not, to understand what language factors drive
success.

Ethics Statement

This work on unsupervised translation should have
a positive impact on many under-served language
communities by extending the reach of a core lan-
guage technology (translation) to languages which
lack the extensive parallel data required for super-
vised translation systems.

That being said, there are ethical risks with the
present approach. The pre-training of mBART de-
pends on the CommonCrawl dataset, so there might
be some offensive language and even identity leak-
age due to CommonCrawl’s preprocessing pipeline.
It is possible that the model will generate toxic and
biased utterances in our experiments. We didn’t
evaluate the toxicity of our generation. Our intu-
ition is that the caption grounding will bias the
model towards descriptive captions and thus sup-
press the toxic generation.
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A Main Experiments Training Details
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protocol for the results reported in Section 4. Our
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pending on the languages. The combined training
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time for caption grounding and emergent commu-
nication is within 1 hour.

Baseline As discussed in section 3, our UNMT
baseline is established by starting with mBART and
performing 8192 steps of iterative backtranslation
for each translation pair. We use a batch size of 32
and a maximum generated sequence length of 64.
See more hyperparameter choices in Table 3.

I2I-EC  For our I2]-EC fine-tuned model, training
consists of the following pipeline

1. 2048 steps of backtranslation

2. 2048 steps of supervised captioning training
(English-only)

3. 2048 steps of EC fine-tuning

4. 6144 steps of backtranslation

Backtranslation uses the same exact hyperpa-
rameters as in the baseline, but with training split
between the first 2048 and last 6144 steps (Table 3).

Supervised caption training is described in Sec-
tion 2.1. We have 8 choices for the image se-
lection task (7 distractors and 1 correct choice).
As part of Sender agent, we use a one-layer auto-
regressive transformer to serialize (or, “unroll”) a
single ResNet image representation to a sequence
of vectors to imitate the sequential data mBART
observes during its pre-training. The unrolled se-
quence is used in the sender’s cross-attention, and
the sender is trained to generate the gold-standard
caption.

Also during the supervised captioning stage, the
receiver takes in the gold-standard caption, and a
one-layer RNN is used to aggregate its final hidden
states and choose the correct image. The image se-
lection (cross-entropy) loss is scaled with A, before
being added to the caption-generation loss. Full
hyperparameter choices are detailed in Table 4.

I2I-EC fine-tuning is also described in Sec-
tion 2.1. Different from caption grounding, we
have a total of 16 image choices instead of 8. The
adapter unrolls the ResNet image representation
to a length of 32. The emergent generation is
language-constrained as described in Section 3
with a threshold. A repetition penalty is applied to
the generations, and they are constrained to not re-
peat any 4-grams or longer. KL-regularization with
a separate mBART instance fine-tuned on causal
language modeling is applied with a A parameter.
Full hyperparameter choices are detailed in Table 5.

T2I-EC For our T21-EC fine-tuned model, train-
ing is performed slightly differently for empirical
reasons

1. 2048 steps of supervised captioning training
(English-only)

2. 2048 steps of EC fine-tuning
3. 8192 steps of backtranslation

T2I-EC hyperparameters are very similar to 121-
EC. See full parameters in Tables 3, 4, and 5.

Auxiliary CLM To have a language model for
use in KL regularization (see equation (2)), we
fine-tuned just the mBART decoder on the same
common crawl data used for its pretraining in all
of the languages of interest. We trained for 100000
steps, batch size 32, sequence length 96, and learn-
ing rate of 6 x 1076, This model was then frozen
during EC training and only used to compute the
KL divergence which was used in updating the
sender’s parameters.

B Manipulations Training Details

All manipulations are performed on the main T2I-
EC process. Interleaved training uses versions of
the the learning rate schedules used for the main
experiments shortened by a factor of 4.

C Full results

In Table 6, we include full results for our main ex-
periment (summarized in Table 1). Although we
found the EC process to help with machine trans-
lation, it also leads to instability in model training.
We a systematic study of this variation to future
work.

In Table 7 we show experiments with a more
modern choice of image encoder — CLIP-Large
(Mullenbach et al., 2021). We find that the CLIP-
Large encoder under-performs ResNet.

The full results from our manipulation experi-
ments (Section 5) are found in Table 8.
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Name

Values

optimizer

LR scheduler

grad_clip

batch_size

evaluate_bleu_every

|validation_set|

#beams

first #vocab_constrained_steps

threshold (after #vocab_constrained_steps)
#warmup_steps

Adam(betas=(0.9, ©.999)) (default in PyTorch)
constant_w_warmup

1.0

32

256

4096

5

2048

0.99

i~#M£ps

(a) Backtranslation shared parameters

(b) Baseline
Name Values
Learning rate ~ 2.0e-5
#steps 8192
first_threshold  0.90
(¢) I2I-EC (Initial BT)
(d) I2I-EC (Secondary BT)
Nz.lme Values Name Values
Leaming rate  1.0e-3 Learning rate  1.0e-5
frsteps 2048 #steps 6144
first_threshold ~ 0.96 P
(e) T2I-EC
Name Values
Learning rate  1.0e-5
#steps 8192
first_threshold  0.96

Table 3: Hyper-parameters for backtranslation.
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Name

Values

optimizer

#steps

learning rate

LR scheduler

#warm-up steps
batch_size

#distractors

Reshaper (Sender & Receiver)
Dropout (anywhere)
Image Unroll

Image Unroll length
Receiver aggregation
Sender

Receiver

beam_width
temperature
gumble_softmax sample
repetition_penalty
max_seq_length

Adam(betas=(0.9, 0.999)) (default in PyTorch)
2048

4.0e-5

linear_w_warmup

0

16

7

linear projection

0.0

one (auto-regressive) transformer layer
32

RNN

no freezing

no freezing

1 (Greedy)

1.0

one-hot

1.0

32
(a) Captioning shared parameters

(b) I2I-EC (c) T2I-EC
Name Values Name Values
Image selection loss A 4.0 Image selection loss A 8.0
grad_clip 1.0 grad_clip 0.5

Table 4: Hyper-parameters for caption grounding part of emergent communication.
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Name Values

optimizer Adam(betas=(0.9, 0.999)) (default in PyTorch)
#steps 2048

LR scheduler linear_w_warmup

#warm-up steps 0

batch_size 12

#distractors 15

Reshaper (Sender & Receiver) linear projection

Dropout (anywhere) 0.0

Image Unroll one (auto-regressive) transformer layer
Image Unroll length 32

Receiver aggregation RNN

Sender no freezing

Receiver no freezing

beam_width 1 (Greedy)

temperature 1.0

gumble_softmax sample one-hot
vocab_constraint_threshold 0.99

repetition_penalty 1.0

max_seq_length 32

(a) Emergent communication shared parameters

(c) T2I-EC. *: length of text string in place of series of

(b) I2I-EC "pseudo-images" from image unroller
Name Values Name Values
Language modeling loss A 0.125 Language modeling loss A 0.0625
Learning rate 6.0e-6 Learning rate 1.0e-6
grad_clip 1.0 grad_clip 0.5

max_text_seq_length* 128

Table 5: Hyper-parameters for emergent communication.
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Model Language Seed BLEU COMET
en—X X—en mean en—X X-—en mean
1 17.21 11.35 1428 -0.04 0.14 0.05
zh 2 18.38 11.39 14.89 0.02 0.14 0.08
3 18.45 11.36 1490 0.03 0.15 0.09
1 18.66 25.83 2224 0.18 0.39 0.29
de 2 19.06 25.73 2239 0.20 0.38 0.29
baseline (mBART + BT) 3 18.79 25.88 2233 0.22 0.40 0.31
1 1.94 4.74 3.34 -0.19 -0.36  -0.27
ne 2 1.84 4.94 3.39 -0.20 -0.34  -0.27
3 2.14 5.07 3.60 -0.24 -0.34  -0.29
1 1.29 4.53 291 -0.29 -0.31 -0.30
si 2 1.18 4.73 2.95 -0.18 -0.28 -0.23
3 1.21 4.35 2.78 -0.20 -0.32  -0.26
1 17.31 1096 14.13 -0.03 0.12 0.05
zh 2 17.03 11.24 14.14 0.00 0.15 0.07
3 18.72 11.88 15.30 0.04 0.17 0.10
1 1822 2541 21.81 0.18 0.39 0.29
de 2 1826 2560 2193 0.18 0.39 0.29
I2I-EC 3 18.06 2528 21.67 0.20 0.40 0.30
1 1.24 5.13 3.19 -0.25 -0.31 -0.28
ne 2 1.22 5.30 3.26 -0.25 -0.36 -0.31
3 1.51 5.34 3.43 -0.24 -0.33  -0.29
1 0.01 0.08 0.04 -1.63 -1.05 -1.34
si 2 0.00 0.02 0.01 -1.31 -1.28  -1.30
3 0.01 0.05 0.03 -1.40 -1.15  -1.28
1 19.25 1191 1558 0.06 0.18 0.12
zh 2 0.09 0.11 0.10 -1.75 -1.60 -1.68
3 18.60 12.27 1543 0.05 0.18 0.11
1 1791 2572 21.81 0.18 0.38 0.28
de 2 18.64 2620 2242 0.19 0.41 0.30
T21-EC 3 18.56 25.82 22.19 0.19 0.39 0.29
1 0.06 0.03 0.04 -1.27 -1.14  -1.20
ne 2 0.02 0.11 0.07 -1.33 -1.06 -1.20
3 2.36 5.92 4.14 -0.20 -0.27 -0.24
1 1.10 4.33 2.72 -0.25 -0.29 -0.27
si 2 0.01 0.19 0.10 -1.42 -1.12 -1.27
3 1.28 4.76 3.02 -0.18 -0.27  -0.22

Table 6: Full results of our main experiment with ResNet image representation.
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Model Language Seed BLEU COMET

en—X X—en mean en—X X-—en mean

1 17.21 11.35 1428 -0.04 0.14 0.05

zh 2 18.38 11.39 14.89 0.02 0.14 0.08

3 18.45 11.36 1490 0.03 0.15 0.09

1 18.66 25.83 2224 0.18 0.39 0.29

de 2 19.06 25.73 2239 0.20 0.38 0.29

baseline (mBART + BT) 3 18.79 25.88 2233 0.22 0.40 0.31
1 1.94 4.74 3.34 -0.19 -0.36  -0.27

ne 2 1.84 4.94 3.39 -0.20 -0.34  -0.27

3 2.14 5.07 3.60 -0.24 -0.34  -0.29
1 1.29 4.53 291 -0.29 -0.31 -0.30

si 2 1.18 4.73 2.95 -0.18 -0.28 -0.23

3 1.21 4.35 2.78 -0.20 -0.32  -0.26

1 16.66 1094 13.80 -0.07 0.13 0.03

zh 2 17.46 10.87 14.16 -0.01 0.13 0.06

3 18.84 11.64 1524 0.03 0.16 0.10

1 18.64 26.17 2240 0.22 0.40 0.31

de 2 1798 2520 21.59 0.20 0.38 0.29

I2I-EC 3 18.09 2535 21.72 0.20 0.40 0.30
1 1.02 4.68 2.85 -0.41 -0.38 -0.39

ne 2 1.87 5.19 3.53 -0.26 -0.33  -0.29

3 1.79 5.29 3.54 -0.20 -0.34  -0.27

1 0.30 1.64 0.97 -1.14 -0.59 -0.87

si 2 0.16 0.55 0.36 -0.88 -0.88 -0.88

3 0.76 4.88 2.82 -0.37 -0.29 -0.33

1 0.04 0.09 0.07 -1.69 -143  -1.56

zh 2 17.77 12.02 1490 0.00 0.18 0.09

3 1724 11.23 1424 -0.03 0.13 0.05
1 10.45 14.14 1229 -0.42 -0.30 -0.36

de 2 18.52 2593 2223 0.20 0.40 0.30

T21-EC 3 1826 25.61 2194 0.19 0.38 0.28
1 0.75 2.49 1.62 -0.85 -0.58 -0.71

ne 2 0.09 0.07 0.08 -1.37 -1.18  -1.28
3 0.02 0.04 0.03 -1.35 -1.17 -1.26
1 0.02 0.15 0.09 -2.00 -145  -1.72

si 2 0.04 0.19 0.12 -2.02 -1.32 -1.67
3 1.05 4.18 2.61 -0.33 -0.28 -0.30

Table 7: Full results of our main experiment with CLIP-Large image representation.
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Manipulation Language Seed BLEU COMET
en—X X—en mean en—X X-—en mean
1 1045 14.14 1229 -042 -0.30 -0.36
de 2 18.52 2593 2223 0.20 0.40 0.30
CLIP-img 3 18.26 25.61 21.94 0.19 0.38 0.28
1 0.02 0.15 0.09 -2.00 -1.45  -1.72
si 2 0.04 0.19 0.12 -2.02 -1.32  -1.67
3 1.05 4.18 2.61 -0.33 -0.28  -0.30
1 18.49 2587 22.18 0.19 0.40 0.30
de 2 17.28 24.890 21.08 0.12 0.32 0.22
. 3 18.20 25.39 21.80 0.22 0.40 0.31
Init BT
1 0.94 4.56 2.75 -0.43 -0.27 -0.35
si 2 1.24 4.84 3.04 -0.28 -0.25  -0.27
3 0.09 0.62 0.35 -1.24 -0.84 -1.04
1 1823 2556 2190 0.15 0.39 0.27
de 2 18.29 2569 2199 0.18 0.38 0.28
3 17.93 2581 21.87 0.16 0.39 0.27
Interleave
1 0.01 0.02 0.02 -1.57 -1.34 -146
si 2 1.25 4.84 3.05 -0.34 -0.25 -0.30
3 1.04 4.37 2770  -0.46 -0.28 -0.37

Table 8: Results from several T2I-EC training pipeline manipulations.
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