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Abstract

Mixture-of-experts (MoE) architecture has
been proven a powerful method for diverse
tasks in training deep models in many applica-
tions. However, current MoE implementations
are task agnostic, treating all tokens from differ-
ent tasks in the same manner. In this work, we
instead design a novel method that incorporates
task information into MoE models at differ-
ent granular levels with shared dynamic task-
based adapters. Our experiments and analysis
show the advantages of our approaches over the
dense and canonical MoE models on multitask
multilingual machine translations. With task-
specific adapters, our models can additionally
generalize to new tasks efficiently.

1 Introduction

Mixture-of-Experts (MoE), while not being a novel
machine learning algorithm (Yüksel et al., 2012),
has revived to combine with deep learning, partic-
ularly transformer (Vaswani et al., 2017) and has
recently pushed forward various tasks such as natu-
ral language processing, computer vision, speech
recognition, multimodal and multitask learning due
to its advantage in scalability in distributed environ-
ments (Fedus et al., 2022). The main advantages of
MoE stem from its ensemble design while maintain-
ing the sparsity in computation (Fedus et al., 2021).
And with proper design such as using sharded ex-
perts (Lepikhin et al., 2020; Fedus et al., 2021), the
possibility for enterprise-level scalability is almost
boundless. As a result, this method has been more
and more widely adopted in many applications that
require distributed and intensive workloads.

However, most of the current methods are task-
agnostic, only optimizing for performance based
on lower levels in the architecture such as at sys-
tem or communication levels (Rajbhandari et al.,
2022). In the case of multitask learning where a
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single model is required to learn from heteroge-
neous tasks, however, the task-specific data could
be inherently diverse and vary largely from one to
another (Wu et al., 2020). As a result, treating data
from such different sources the same makes the
learning ineffective, as also evidenced recently by
the interference between different task data (Pfeif-
fer et al., 2022).

As a result, in this work, we design a novel MoE
approach where task information is used during
training and inference for assigning experts based
on individual task information. The intuition is to
make the training more task-aware so those similar
tasks would be routed to the same group of experts
and vice versa. From the architectural perspec-
tive, we incorporate high-level application-specific
information with the system-level information to
make the model become task-aware and hence have
a better strategy in allocating experts based on the
characteristics of distinct tasks, as also illustrated
in Figure 1.

Our proposed architecture allows for grouping
experts based on the similarity of tasks, i.e. similar
tasks should use a similar group of experts and
otherwise for different tasks, by using shared-task
adapters. Our design of putting those adapters on
top of MoE layers allows for flexibility in future
extensions: if we want the model to acquire new
tasks while still having similar resources, we only
finetune new adapters, and if we want to scale the
hardware resources, e.g. for more speed, we simply
deal with MoE layers with such new resources.

Our experiments and analysis show the advan-
tages of using task information in MoE architec-
tures in multiple settings including multitask mul-
tilingual machine translations, as well as its gen-
eralization in few-shot learning. In summary, our
contributions are as follows.

• First, we design novel MoE architectures that
dynamically allocate experts based on task in-
formation in the context of multilingual mul-
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Figure 1: Extended from the typical MoE approaches
that do not discriminate tokens from different tasks,
we create shared task-related adapters that are trained
to route tokens from similar tasks to the same shared
adapters, and vice versa.

titask machine translation, with many varia-
tions.

• Second, we thoroughly study the pros and
cons of our approaches in training from
scratch, finetuning as well as transfer learning.

• Third, we implement our models on top
of well-proven infrastructres for practicality
and scalability including deepspeed (Rasley
et al., 2020), fairseq (Ott et al., 2019) and
transformer (Vaswani et al., 2017).

2 Related Work

MoE Basic Transformer-based Mixture-of-
Experts (MoE) architecture essentially sparsifies
transformer architecture by replacing the heavy
feed-forward network (FFN) with a sparse MoE
layer with top-1 or top-2 gates (Shazeer et al.,
2017). However, increasing the number of experts

does not simply increase the performance (Fedus
et al., 2021; Clark et al., 2022), many approaches
have been proposed together to tackle the large-
scale MoE deployment, such as in (Kim et al.,
2021). In large-scale deployment, however, ad-
ditional techniques should also be employed to
battle with memory issues such as “sharding” ex-
perts (Lepikhin et al., 2020) or stabilizing the train-
ing (Zoph et al., 2022), since the models are of-
ten deployed on separate nodes that mainly used
GPUs with limited memory. The architecture in
this work inherits all of those techniques, and in
addition incorporates task information into MoE
routing, which in turn directs data into separate
task adapters. This kind of routing is, however,
hardware-agnostic, unlike some other work such as
in (Zheng et al., 2022; Chen et al., 2023; Zeng and
Xiong, 2023).

MoE Routing Techniques Gating is critical
to MoE layer, which works as a weighted sum of
the experts and serves for the ultimate purpose of
load balancing of all available experts during both
training and inference. Unlike the originally pro-
posed top-k experts (Shazeer et al., 2017; Du et al.,
2021), it was studied in SwitchTransformer that
a single expert can preserve the quality if chosen
properly, while significantly reducing the communi-
cation and computation cost (Fedus et al., 2021). In
more detail, SwitchTransformer first divides evenly
amongst all experts with an optional buffer for im-
balanced cases and then applies an auxiliary loss
to enforce load balancing. Another alternative ap-
proach, which is more computationally efficient is
to get rid of such extra-heavy complicated loss and
instead use a hash function to route every token
to its matched expert, which tends to balance the
output (Roller et al., 2021). Another interesting
approach is to permit each token to appear in the
top-k list of multiple experts (Zhou et al., 2022),
which has been proven to help, although not ap-
plicable for auto-regressive applications. Yet be-
cause of the inherent problem of load imbalance,
another approach is to replace the gating mecha-
nism with a stochastic selection method, which ran-
domly activates an input during processing (Zuo
et al., 2021). The intuition is somewhat similar
to the hash approach since it relies on the “fair”
randomness to solve the balance problem while
keeping the blueprint more lightweight than enforc-
ing an auxiliary loss. Along similar lines, research
directions have explored the random dropping of
outputs from MoE layers (Liu et al., 2022; Elbayad
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et al., 2022). Unlike all of those routing techniques
which are application agnostic, our proposed model
connects the application level (i.e. task informa-
tion) with the lower-level MoE layers for better
dealing with interference of different tasks in the
context of multilingual multitask applications.

Task-level Routing Recently task information
has been used for improving MoE, e.g. in (Liu
et al., 2023). Our model is, however, much simpler
and can be trained end-to-end unlike their approach,
which requires clustering to be made for off-the-
shelf shared representation learning. Probably the
most related work to ours is Mod-Squad (Chen
et al., 2022) which shares the motivation with us
while having several differences. First, their ap-
proach has multiple aids to make the task-based
MoE work with an additional loss for regulariza-
tion, while we instead rely mainly on the simple
motivation of incorporating task information into
MoE. Second, we still stick to a single gate for
routing, while they allocate multiple gates, each
per task. Third, they additionally have MoE atten-
tion blocks, which make their architecture more
complicated. Finally, our focused application is
text-based machine translation, unlike computer
vision settings in both works mentioned.

3 Models

Transformer architecture (Vaswani et al., 2017) has
been proven to be the core backbone of the per-
vasive successes in natural language processing,
computer vision, and other artificial intelligence
fields. The main bottleneck to this architecture is,
however, its heavy blueprint leading to intensive re-
sources in training and inference, and is difficult to
scale up. MoE is one powerful method to alleviate
those problems in transformers.

3.0.1 Sparse Mixture-of-Experts (MoE)
MoE, which was first introduced before the deep
learning era (Jacobs et al., 1991), was recently bor-
rowed to address those drawbacks in transformer
architecture (Lepikhin et al., 2020). In a nutshell,
MoE creates an ensemble of experts in multi-layer
transformer blocks in place of a single expert, typi-
cally in the form of a feed-forward neural network
(FFN) that is dense with many parameters.

In terms of formality, given an original FFN
layer called Ẽ, we clone it into another layer con-
taining a set of N experts with exactly the same
architecture {Ei}Ni=1. Likewise, the number of pa-
rameters for this particular layer is increased by a

factor of N .
The typical granular level of applying those ex-

perts in the context of natural language processing
is the token level. Given a token x, its learned
representation before MoE layer is a vector x, its
post-MoE output y is the weighted average of those
experts’ output

oi = Ei(x) (1)

y =

N∑

i=1

Wioi, (2)

where Wi is the weight (importance) of the corre-
sponding expert Ei.

The key to MoE power and its well-proven suc-
cesses in tandem with transformer architecture is
its sparsity design: only one or few experts are ac-
tivated (i.e. having non-zero weight) at any point
in time in spite of many more parameters just in-
troduced due to the ensemble. Typically the com-
ponent responsible for this sparsity is a gate that
was co-trained with experts to route tokens to their
target expert(s), and eventually assigns only a sin-
gle or few non-zero weights across all experts per
token to its output G(x) typically using softmax
and top-k method

gout = softmax (Wgx) (3)

G(x) = Top_K (gout) (4)

With G(x) being a set of K chosen experts, equa-
tion 2 becomes

y =
∑

i∈G(x)

Wioi (5)

The main architectural problem with this design
is its scalability: the memory will be quickly used
up as we increase experts, given the limitation
of current compute resources allocated to a sin-
gle compute node in any distributed environment.
GShard (Lepikhin et al., 2020) was born to fix this
issue by trading the memory for communication:
allocating each expert to a single node and only
aggregating them when needed, e.g. gradient aver-
aging in training or weight averaging when saving
a model. This elegant design has unlocked MoE’s
unlimited scalability and practicality in enterprise-
level deployments, especially with the following-
up work in optimizing for better architecture in
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computation and communication, as mentioned in
Section 2.

3.1 Task-based Adapters

Yet another problem on which we are focusing is
not at the system level but more at the higher appli-
cation level. As mentioned, in the multitask setting,
the interference amongst tasks that are inherently
different from each other could lead to the ineffec-
tiveness of training. As a result, we employ task-
based adapters to separate those different tasks into
different adapters. Likewise, data (or tokens) from
similar tasks should be routed to a similar group of
adapters. There are three modes for those adapters.

First and the simplest is to allocate each adapter
for each individual task. Although this setting is
straightforward and requires no additional compu-
tation for data routing, it has the drawback of ac-
quiring new unseen tasks. The reason is the model
has to allocate a new adapter for each new task and
fine-tune it with some amount of new data. Another
potential problem is memory limitation if we want
to extend to many new tasks in the future. This
mode is called static, as shown in Figure 2a.

To enforce efficient learning of representation
of similar task data, as well as alleviating memory
problems, we have dynamic (Figure 2b) where the
number of adapters is less than the number of tasks.
As a result, we intentionally guide the model to
learn better cross-task representation in terms of
similarity and dissimilarity. In other words, data
from similar tasks should be routed to the same
adapters and vice versa. In practice, we choose the
number of adapters to be log2(n) with n being the
number of tasks.

3.2 Task-based Adapters with MoE

In this section, we formulate the task-based
adapters mentioned in Section 3.1 in combination
with MoE, both of which are our core architecture
components.

Given M tasks, we allocate them into L shared-
task adapters (L < M ). For every single token
x, we have the associated task information t that
makes up an input tuple (x, t) per token. As before,
x is the representation vector from input, and t
is the task representation vector learned by task
embedding.

Similar to MoE, we use a learnable task gate Gt

that is responsible for this routing with input being
the concatenation of the input components

Gt(x, t) = Top_K(x⊕ t) (6)

y =
∑

i∈Gt(x,t)

Wioi (7)

And since the number of adapters L < M , the
number of tasks, we call this setting dynamic, as
demonstrated in Figure 2b, as opposed to static
(Figure 2a), where each task will go to each indi-
vidual adapter.

Our main model uses the shared task embedding
representation for the task gate as well as MoE
gate, which we call shared-dynamic, as shown in
Figure 2c.

4 Experiment Setup

4.1 Data
We tackle the problem of multitask multilingual
machine translation using the data consisting of 10
different languages ranging from high-resource to
low-resource ones including English (En), French
(Fr), German (De), Czech (Cs), Finnish (Fi), Lat-
vian (Lv), Estonian (Et), Romanian (Ro), Hindi
(Hi), Turkish (Tr), and Gujarati (Gu). In more de-
tail, the data for training, validation, and testing are
listed in Table 1 where we can see besides the high-
resource ones, we have low-resource languages
such as Estonian, Hindi, or Gujarati.

Those data are in the form of Bitext in which
there is always English. As a result, we denote EX
as the translation from English (E) to another lan-
guage (X), and similarly for the other way around,
XE. Those data are populated from the popular
WMT corpus 1. For the given 1 English and 9 other
languages, there are consequently 9 EX and 9XE
tasks. More information about data can be found
in Table 4 in Appendix A.

4.2 Task and Model Training
In this section, we describe the task information,
evaluation metrics, and how we deal with data and
models for training.

Task Our task is multitask multilingual machine
translation (MMMT) which uses the EX and XE
pairs. Our single model is trained with two main
capacities. First, this single model can translate all
the training pairs with high accuracy. Second, the
model is able to quickly acquire new translation
pairs with only zero or a few shots.

1https://www.statmt.org/wmt20/index.html
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Figure 2: Our MoE models with variants. (a) Static means for each task, there is a separate adapter associated
with it. (b) In the Dynamic mode, there is less number of adapters than the number of tasks, in order to learn the
shared representation of similar tasks. (c) The last variant is Shared-Dynamic where the gates for task adapters and
MoE share the same embedding for their routing decisions.

Task Data
Split Unit de-en fr-en cs-en et-en fi-en gu-en hi-en lv-en ro-en

Training M 4.6 10 10.3 0.7 4.8 0.9 0.3 1.4 0.5
Validation K 3.0 3.0 3.0 2.0 1.4 2.0 0.5 2.0 2.0

Testing K 3.0 3.0 3.0 2.0 1.4 2.0 0.5 2.0 2.0

Table 1: Training, Validation, and Testing sizes for all XE tasks (the data for EX are exactly the same). Note that the
unit for training is million (M) while that for both validation and testing are thousand (K), and the sizes are the same
for validation and testing.

XE Tasks
Model de-en fr-en cs-en et-en fi-en gu-en hi-en lv-en ro-en Avg

1. Dense 29.9 31.2 28 22.4 21.4 22.3 21.4 24.5 36.1 26.4
2. MoE Token 27.9 29.5 26.3 19.9 19.6 18.9 17.7 22.3 33.8 24.0

3. MoE Sentence 27.9 29.9 26.2 21.4 19.9 17.9 15.9 23.2 34.4 24.1
4. MoE Task-Static 32.1 33.3 30.7 24.3 23.4 20.6 22.5 27.2 38.8 28.1

5.MoE Task-Dynamic 31.4 32.0 29.1 23.4 22.1 18.9 20.5 25.5 37.2 26.7
EX Tasks

en-de en-fr en-cs en-et en-fi en-gu en-hi en-lv en-ro
1. Dense 25.4 28.3 22.4 23.3 20.9 28.4 29.0 26.5 31.5 26.2

2. MoE Token 22.9 25.1 19.5 20.1 17.9 26.2 26.3 24.0 29.0 23.4
3. MoE Sentence 23.2 25.7 20.4 22.4 18.7 26.4 27.1 24.2 29.7 24.2

4. MoE Task-Static 29.5 32.5 27.9 27.4 25.8 28.8 30.8 32.2 34.6 29.9
5.MoE Task-Dynamic 27.3 29.6 25.0 24.7 22.7 27.7 29.3 28.4 32.7 27.5

Table 2: Comparison of task-based MoE models (models 4 & 5) to task-agnostic MoE models (models 2 & 3) and
the non-MOE (Dense) model (model 1) in BLEU scores. With the help of task information, task-based MoE models
show their outperforming BLEU scores over all other types across most of the tasks including both high-resource
and low-resource ones.

Evaluation While there are many evaluation
metrics, we mainly use BLEU score due to its pop-
ularity and credibility in evaluating machine trans-
lation tasks. This evaluation is implemented by

SacreBLEU2. We note that, unlike all available
public implementations that we found, our imple-
mentation evaluates all BLEU scores on the fly
along with the training, so there is no disruption for

2https://github.com/mjpost/sacrebleu
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offline evaluation. That also helps in early stopping
based on the BLEU scores on the validation sets.

Pre-Processing and Post-Processing In terms
of preprocessing, we first encode the data using
the Byte-Pair encoding (BPE) method and gen-
erate shared dictionaries where all the language
pairs use the same vocabulary of size 64K, before
feeding to the model. To get accurate scores, for
post-processing, we again use BPE decoding for
reconstructing the whole translated sentences be-
fore comparing them with the original sentences
before BPE pre-processing. Likewise, we treat all
the processing and model manipulation as a black
box for calculating the scores.

Model Configuration and Implementation
We use transformer architecture (Vaswani et al.,
2017) with 12 layers for both encoder and decoder
phases, each of which uses a word embedding layer
of dimension 1024 and a non-linear layer of dimen-
sion 4096. There are 16 attention heads and a
dropout rate of 30%. For MoE, all jobs are trained
on Azure cloud machines with 8 GPUs, each of
which takes around 2 weeks for a model cover-
ing 18 aforementioned tasks to reach decent scores.
We apply early stopping based on the validation
BLEU scores, in which a non-increasing score af-
ter 2 epochs is the condition. For task-based in-
formation, we have a task embedding dimension
of 64 and a task adapter hidden dimension of 256
for every single task adapter. Our implementation
inherits the lower-level infrastructure code from
Microsoft Deepspeed and Fairseq. 3

As for the implementation, an important practi-
cal issue with MoE is load balancing among experts
for the best utilization of the infrastructure systems.
For enforcing the training to have a balanced load,
as a result, we employ the auxiliary loss from Lep-
ikhin et al. (2020).

4.2.1 Baselines
In order to show the performance of the task-based
MoE models, the following baselines are selected:

Dense This is the traditional transformer model
without any MoE layer, i.e., no change to the fully
connected (FFN) layer in each layer of encoders or
decoders.

MoE - Token This is the MoE model that is
usually considered the default option where each
FFN layer is replaced by an MoE layer. In our
experiments, each MoE layer comprises 8 experts

3https://github.com/facebookresearch/fairseq

(each has the same size as the original FFN being
replaced) and a gate for routing purposes.

MoE - Sentence This is yet another MoE archi-
tecture with exactly the same architecture configu-
ration as the MoE - Token baseline. The difference
is in the routing layer, which functions at a different
granularity: sentences instead of tokens. In more
detail, while the gate decides which expert for each
token separately in MoE - Token model, it instead
routes all tokens belonging to a single sentence to
the same chosen expert.

5 Results and Discussions

5.1 Multitask Multilingual Machine
Translation

We first present the main results for models capa-
ble of translating 18 tasks (see Section 4.2) concur-
rently. As shown in Table 2, our models that incor-
porate MoE layers and are enhanced with task infor-
mation show great advantages over all the baseline
models on most tasks, in both directions EX and
XE, in accordance with our hypothesis that using
task adapters in conjunction with MoE is helpful
in multilingual multitask translation.

An outstanding drawback with which the task-
based MoE models are facing, however, is for the
low-resource translation pairs, e.g. Gu-En, Hi-En,
or En-Gu. As we can see from the results in Table 2,
training those pairs with Dense models seems to
benefit more than with MoE models. We hypoth-
esize the problem is due to the undersampling of
the training data for those languages, which have
much less data than their high-resource counter-
parts. In more detail, our training routine con-
catenates all the tasks’ data in a single big dataset
before drawing batches. However, without adjust-
ing the sampling process, high-resource language
pairs are being trained significantly more given
their much larger data in place. In particular, for
the case of Gujarati where the Task-Dynamic MoE
model underperforms in comparison to the base-
lines, our hypothesis is that linguistically, this lan-
guage is the most different from all other languages,
which makes the models very hard to learn effective
shared representation with any other pairs.

In the future, we plan to explore ideas such
as custom sampling or contrastive representation
learning to tackle with such issues with the low-
resource language pairs, in order to make MoE
work as well for those languages as in high-
resource pairs.
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Model Design Routing Tasks Average
MoE | Task MoE Task de-en fr-en et-en fi-en

MoE Y N Token - 32.4 33.7 24.2 23.6 28.5

Dense + Task Static
N Y

Task

Static 32.2 33.7 21.0 22.8 27.4
Dense + Task Dynamic Dynamic 31.9 33.0 22.0 22.5 27.4

MoE + Task Static
Y Y

Static 30.7 32.0 19.9 20.8 25.9
MoE + Task Dynamic Dynamic 32.6 33.9 24.0 23.9 28.6

MoE + Task Shared-Dynamic Shared-Dynamic 32.2 33.3 24.3 24.5 28.6

Table 3: Performance of different models with changes on whether MoE layers exist, whether Task Adapters
exist, and how routing for those components is undertaken. The scores better than the baseline are highlighted.
Task-based MoE shows advantages, especially with shared-dynamic adapters between MoE and Task Adapters on
the low-resource language pair.

(a) model 1 (b) model 2 (c) merged model

Figure 3: Ablation study about merging 2 checkpointed models of different capabilities. Model 1 is trained with 4
tasks: de-en, fr-en, et-en and fi-en. Model 2 is trained with the other 4 tasks: cs-en, gu-en, en-et, and en-fi. Although
those 2 models are under-trained with only a few thousand steps, in the merged model that has the capabilities of
those two combined, many pairs have quickly picked up to a similar levels as in the previous single models.

5.2 Ablation Study

5.2.1 Implications of Different Task Layers
and MoE Layers

In this study, we limit the number of tasks to four
(De-En, Fr-En, Et-En, and Fi-En), which can be
divided into 2 groups of similar tasks: (De-En,
Fr-En) is the first group and (Et-En, Fi-En) is the
second one, to study the performance implications
of different model variants when there is a task
layer and/or MoE layer.

As illustrated in Table 3, we again see that com-
bining MoE and Task Adapters yields the best mod-
els, the same trend as shown in Table 2, particularly
when the dynamic adapters are used to enforce sim-
ilar tasks to share the same representations.

However, when task adapters are not used in
conjunction with MoE, the performance is worse
than MoE alone. This also means MoE should be
the foundational infrastructure, and on top of that,
task adapters should be used. It concurs with the
motivation that the interference of different tasks
or languages makes the training of experts difficult.

In other words, there is not so much help when
there is only one expert for all the tasks (i.e. Dense
models).

5.2.2 Flexibility of Task-based MoE in
Merging Two Trained Models

One of the important capabilities in multitask learn-
ing and in general learning problems is how to
quickly acquire new capabilities given current mod-
els with minimal resources and effort. Aligned with
this goal, this ablation explores how quickly our
task-based MoE models can be merged with each
other from 2 different models to newly establish
only 1 model that has the combination of their ca-
pabilities.

In merging those two models, we restore two
respective checkpoints and merge layer-by-layer
as follows. First, task-based adapters are kept
and combined with each other: each model has
2 adapters (for 4 tasks in the model) and the com-
bined model has 4 adapters (for 8 tasks in com-
bination). Second, the task routers will also be
merged and changed so that the routing of each
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data will now have 4 selections instead of 2 outputs
as in the previous models. Finally, the rest of the
transformer and MoE layers will have their weights
averaged.

The tasks in the original two models are hand-
picked as in Section 5.2.1 to have 2 different groups,
each of which has 2 similar tasks. Model 1 has de-
en, fr-en, et-en, and fi-en, while Model 2 has cs-en,
gu-en, en-et and en-fi.

As shown in Figure 3, while two original models
have been trained with just a few thousand steps (a
couple of hours), the combined model shows that it
can quickly pick up their original capabilities with
just a few hundred steps after merging. Although
there are a few uncommon pairs that seem to fail,
such as gu-en or en-et, the chart shows the opti-
mistic result of combining trained models with our
flexible task-based MoE architectures.

6 Conclusion

In the era of large language models, more efficient
and effective modeling techniques are essential to,
where MoE in combination with transformer-based
models has proven its great advantages. It is, how-
ever, complicated to enable that implementation in
practice due to the difficulties of training a single
model serving diverse tasks. The proposed task-
based MoE, which employs both task adapters in
tandem with MoE has shown its promising advan-
tages in the application of multitask multilingual
machine translations. This novel design enforces
shared representation of similar tasks and separates
different task data to counter the interference ef-
fects. In addition, it also offers the flexibility of
changing adapters based on new tasks or changing
the MoE infrastructure without affecting the appli-
cation level. Besides outperforming the traditional
approaches using Dense models, however, our MoE
models still need to improve on low-resource lan-
guage pairs. To tackle that issue, in the future,
exploring custom sampling for those pairs, and
enforcing the shared representation learning explic-
itly using such additional techniques as contrastive
learning or mutual information are worth exploring.
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Table 4: More details about our datasets for comparison
and reproducibility.

172

https://arxiv.org/abs/2205.14336
https://arxiv.org/abs/2205.14336
https://arxiv.org/abs/2205.14336
https://api.semanticscholar.org/CorpusID:259298822
https://api.semanticscholar.org/CorpusID:259298822
https://api.semanticscholar.org/CorpusID:91184134
https://api.semanticscholar.org/CorpusID:91184134
https://arxiv.org/pdf/2205.06266.pdf
https://arxiv.org/pdf/2205.06266.pdf
https://api.semanticscholar.org/CorpusID:245986500
https://api.semanticscholar.org/CorpusID:245986500
https://api.semanticscholar.org/CorpusID:221191193
https://api.semanticscholar.org/CorpusID:221191193
https://api.semanticscholar.org/CorpusID:221191193
https://api.semanticscholar.org/CorpusID:235367626
https://api.semanticscholar.org/CorpusID:235367626
https://arxiv.org/pdf/1701.06538.pdf
https://arxiv.org/pdf/1701.06538.pdf
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:213745217
https://api.semanticscholar.org/CorpusID:213745217
http://www.ee.hacettepe.edu.tr/~eyuksel/Publications/2012_TwentyYearsofMixtureofExperts.pdf
https://api.semanticscholar.org/CorpusID:259298614
https://api.semanticscholar.org/CorpusID:259298614
https://api.semanticscholar.org/CorpusID:246411250
https://api.semanticscholar.org/CorpusID:246411250
https://api.semanticscholar.org/CorpusID:246411250
https://api.semanticscholar.org/CorpusID:247011948
https://api.semanticscholar.org/CorpusID:248496391
https://api.semanticscholar.org/CorpusID:248496391
https://arxiv.org/abs/2110.04260
https://arxiv.org/abs/2110.04260

