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Abstract

Entity standardization maps noisy mentions
from free-form text to standard entities in a
knowledge base. The unique challenge of this
task relative to other entity-related tasks is the
lack of surrounding context and numerous vari-
ations in the surface form of the mentions, es-
pecially when it comes to generalization across
domains where labeled data is scarce. Previous
research mostly focuses on developing models
either heavily relying on context, or dedicated
solely to a specific domain. In contrast, we pro-
pose CoSiNES, a generic and adaptable frame-
work with Contrastive Siamese Network for
Entity Standardization that effectively adapts a
pretrained language model to capture the syntax
and semantics of the entities in a new domain.

We construct a new dataset in the technology
domain, which contains 640 technical stack en-
tities and 6,412 mentions collected from indus-
trial content management systems. We demon-
strate that CoSiNES yields higher accuracy and
faster runtime than baselines derived from lead-
ing methods in this domain. CoSiNES also
achieves competitive performance in four stan-
dard datasets from the chemistry, medicine, and
biomedical domains, demonstrating its cross-
domain applicability.

Code and data is available at
https://github.com/konveyor/
tackle-container-advisor/tree/main/
entity_standardizer/cosines

1 Introduction

The automatic resolution of mentions in free-form
text to entities in a structured knowledge base is
an important task for understanding and organiz-
ing text. Two well-recognized tasks tackle entity
mentions in text. Entity matching concerns resolv-
ing data instances that refer to the same real-world
entity (Li et al., 2020). The data instances usually
comprise a specific schema of attributes, such as
product specifications. Entity linking, also known

Figure 1: Examples of various mentions referring to the
same entity from two different domains. Top: technol-
ogy, bottom: medical.

as entity disambiguation, associates ambiguous
mentions from text with entities in a knowledge
base, where precise attributes and relationships
between entities are curated (Alam et al., 2022).
Both tasks involve rich context surrounding the
mention and the underlying entity (Li et al., 2020;
Alam et al., 2022). Much effort in deep learning
approaches focuses on ways to leverage and en-
code the context surrounding mentions in text and
attributes associated with entities in the knowledge
base. However, little work has been done on scenar-
ios where such rich context and precise information
are not available. In domains such as finance, biol-
ogy, medicine, and technology, mentions involve
specialized jargon, where no context is associated
with the mentions and often no attribute of the enti-
ties is available other than the mentions themselves.

We tackle the challenge of missing context for
entity standardization (ES) mapping, which in-
volves mapping mentions to entities in the knowl-
edge base across multiple domains. Due to the lack
of a public dataset for ES and to foster research on
the problem, we manually construct a dataset in the
technology domain geared to application modern-
ization. We propose an approach called CoSiNES
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for the dataset and then evaluate the generalization
of CoSiNES in the biomedical domain.

Application modernization consists in migrating
legacy applications to the cloud. It relies on a faith-
ful assessment of the technical components of such
applications. Much technical information is con-
tained in free-form textual application descriptions,
but automatic extraction of such knowledge is non-
trivial due to variations in how the same entities
are mentioned (Kalia et al., 2021).

Compared to the two aforementioned tasks of en-
tity matching and linking, ES presents unique chal-
lenges. First, the mentions could have acronyms,
numbers, symbols, alias, punctuation, and mis-
spellings. Figure 1 shows two examples of multiple
mentions referring to the same entity. Second, there
is a lack of context surrounding the mentions, and
there are no attributes or relationships for entities in
the knowledge base, which the previous approaches
heavily rely on. Third, large deep learning models
require massive training datasets, which are not
available for specialized domains. Therefore, ar-
chitectures that are suited for zero-shot or few-shot
learning are of great value for this task.

Another challenge is how to perform entity stan-
dardization at scale. A naive way is to have exhaus-
tive comparisons between each possible mention
and entity pair, which is inefficient. Previous deep
learning models for entity matching and entity link-
ing usually have multiple stages (Papadakis et al.,
2020): first stage, such as blocking in entity match-
ing, reduces the number of comparison pairs via a
coarse-grained criterion so that the latter stages can
focus on filtered candidate pairs. This multistage
approach leads to globally inferior performance
due to the errors accumulated along the pipeline.

We tackle these challenges with a generic frame-
work based on Contrastive Siamese Network which
efficiently adapts domain-agnostic pretrained lan-
guage models (PLMs) to specific domains using
a limited number of labeled examples. Language
models have shown great capacity to capture both
syntactic and semantic variations of text. Our
framework decouples the comparison of mention-
entity pairs for training and inference so that the
model can be used as a standalone encoder after
training. Therefore, the embeddings of the entity
from the knowledge base can be precomputed and
hashed. At inference time, the running time is lin-
ear in the size of query mentions, and we can lever-

age existing tools, such as FAISS,1 for efficient and
large-scale similarity search.

Our contributions are the following.

• A generic, scalable, and adaptable framework
that leverages domain-agnostic pretrained lan-
guage models.

• A method for generating anchored contrastive
groups and a training scheme with a hybrid of
batch-all and batch-hard online triplet mining.

• A dataset curated for application moderniza-
tion, where various mentions for technical
components are manually labeled.

We validate these contributions via comprehensive
experiments with various hyperparameters, loss
functions, and training schemes and show the ro-
bustness and effectiveness of the framework on our
custom dataset in the technology domain. With
optimal settings on our dataset, we further evaluate
the framework on four datasets from the biomed-
ical domain. We show that the framework can be
adapted to other domains with minimal changes.

2 Related Work

Various forms of entity-related tasks have been
studied by previous research, of which three are
most relevant to our task.

Entity Matching (EM) identifies if different
mentions refer to the same real-world entity, and is
an important step in data cleaning and integration
(Christen, 2012). The targets of EM are records
from a database, where records follow a specific
schema of attributes. The goal is to find pairs of
records from two databases that refer to the same
entity. Whereas early approaches of EM mostly
apply rule-based heuristics, recent research often
relies on deep neural network (Nie et al., 2019;
Mudgal et al., 2018; Li et al., 2020; Ebraheem et al.,
2018). As the number of pairwise comparisons
grows quadratically, a preprocessing step (block-
ing) is usually applied to reduce the number of
candidate matches. The matcher then takes a pair
of a mention and an entity as input and produces
a probability of a match. In contrast, entity stan-
dardization comes with a predefined set of standard
entities, and the mentions come with no attributes.
Our method involves learning a metric function,
where the model can be used as an encoder to em-
bed mentions and entities in the same space.

1https://github.com/facebookresearch/faiss
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Figure 2: System overview of CoSiNES.

Entity Linking (EL) is the process of linking a
mention in context with an entity in a knowledge
base. Unlike entity standardization, the entities in
the knowledge base, such as WikiData (Vrandečić
and Krötzsch, 2014) and Freebase (Bollacker et al.,
2008), usually have well-structured attributes and
precisely defined relationships between them. The
mention comes with rich context and unstructured
raw text. To leverage these two different types of
contextual information, separate context-mention
and graph-entity encoders are designed to produce
embeddings respectively, and another neural net-
work is used to combine and project these two em-
beddings to the same space (Shahbazi et al., 2019;
Yamada et al., 2022; Radhakrishnan et al., 2018).
Due to the lack of context for both the mention and
entity for entity standardization, we propose to use
a single unified model as the encoder, which can
reduce the complexity of the pipeline.

Entity Normalization (EN) is widely used in
the biomedical domain. The task is to map noisy
mentions to entities in a well-defined reference set,
such as ontologies and taxonomies (Ferré et al.,
2020; Ferré et al., 2020). The mentions usually
have no context, and the entities come with no at-
tributes, but there is a hierarchical structure in the
reference set. Unlike entity standardization in the
technology domain, the variations of mentions in
life science are fairly standardized and synonyms
are rare. The task can be well addressed with a
sufficient number of training examples for each en-
tity category, which is not the case in our setting.
Fakhraei et al. (2020) propose a similar idea using
a Siamese neural network for EN. Our approach
differs in the following aspects: the designed train-

ing batch-generation algorithm, the computation of
the contrastive loss, and the usage of PLMs in our
specialized training scheme.

3 Methodology

3.1 Problem Formulation

We denote the set of query mentions asQ ≡ {mq},
and the set of standard entities as S ≡ {es}. Each
entity in S is associated with zero or more men-
tions referring to it es ← {ms}. Importantly, there
should be no overlap between the query mention
set Q and the mentions associated with the stan-
dard entity set S. The task is to retrieve an entity
e ∈ S given m ∈ Q such that e is the entity m
refers to.

We tackle this task with contrastive learning
by learning an embedding encoder such that men-
tions and entities are encoded to the same high-
dimensional embedding space. The property of
the embedding space is that the cosine distance be-
tween mentions of the same entity is smaller than
mentions of different entities.

We design a BERT-based Siamese neural net-
work architecture, which acts as the embedding en-
coder after training. The training is conducted with
a hybrid of batch-all and batch-hard online triplet
mining schemes. Figure 2 gives an overview of
CoSiNES. The training (top) phase has the goal of
pulling similar mentions together and pushing dis-
similar mentions far away in the embedding space.
After training, the inference (bottom) phase has the
goal of using a Siamese neural network to project
entities in the knowledge base and query mentions
to the same embedding space. At inference time,
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nearest neighbor search algorithms can be used to
retrieve the target entity.

3.2 Contrastive Learning and Triplet Loss
Contrastive Learning (Khan et al., 2022; Reth-
meier and Augenstein, 2022; Smith and Eisner,
2005) aims to group similar data points together
and push dissimilar data points far apart in a high-
dimensional embedding space. Equation 1 shows
the core idea of contrastive learning. Here x repre-
sents any data point in the domain, x+ is a positive
sample that is similar to x (or from the same class
as x), and x− is a negative sample that is dissimilar
to x. E is an encoder, which could be any neural
network. And, dis is a distance measure between
the embedding vectors.

dis(E(x), E(x+))≪ dis(E(x), E(x−)) (1)

As shown in Equation 2, triplet loss is calculated
based on triplets {x, x+, x−}, which consist of two
samples from the same class and a third sample
from a different class. The intuition is that the dis-
tance d(x, x−) should be larger than the distance
d(x, x+) by a margin. The margin is a hyperpa-
rameter that needs to be tuned.

L = max(d(x, x+)− d(x, x−) + margin, 0) (2)

Based on the difference between d(x, x−) and
d(x, x+), we can classify triplets into three cat-
egories: easy, semihard, and hard. See appendix B
for detailed definitions.

3.3 Online Triplet Mining
There are two different strategies of mining triplets
for contrastive learning. Offline mining generates
triplets at the beginning of training. The embed-
dings of the whole training dataset are computed,
then hard and semihard triplets are mined based
on the embeddings. Offline mining is highly ineffi-
cient. First, it requires computing the embeddings
for all the training data to mine the triplets. Second,
as the model starts to learn, the hard and semihard
triplets may turn into easy triplets. Therefore, at
least for a few epochs, we need to update the triplet
set frequently. Online triplet mining (Schroff et al.,
2015) seeks to generate triplets on the fly within
a batch. There are two strategies to mine triplets
from a batch, i.e., batch all and batch hard. We

adopt the same idea in our model and propose a
hybrid online mining scheme which is shown to be
superior to single-mining strategy.

3.3.1 Batch–All
To form valid triplets, a batch of training data
should always include samples from more than one
class, and each class should contain at least two
samples. Suppose the size of the batch is B and the
number of all possible triplets is B3. However, not
all of these triplets are valid as we need to make
sure each triplet comprises two distinct samples
from the same class and one sample from another
class. For all valid triplets in the batch, we simply
select all hard and semihard triplets and compute
the average loss over them. We do not include easy
triplets in computing the average as it will make
the loss too small. The calculations are based on
the embeddings of the batch after they pass through
the model.

3.3.2 Batch–Hard
This strategy always selects the hardest positive
and negative for each anchor in the batch. Each
data instance in the batch can be used as an anchor.
Therefore, the number of triplets is always equal
to the size of the batch. The hardest positive has
the largest d(x, x+) among all positives, and the
hardest negative has the smallest d(x, x−) among
all negatives.

3.3.3 Contrastive Group Generation
Based on the above discussion, a batch should in-
clude multiple samples from multiple classes. We
sample batches with two steps. First, we randomly
generate groups of samples from the same class
with size g, and second, we randomly sample b
classes of groups to form a batch. Therefore, the
effective batch size would be B = g ∗ b.

3.4 BERT-Based Siamese Neural Network

The canonical Siamese neural network is an ar-
chitecture that consists of two towers with shared
weights working in parallel on two different inputs.
The outputs are passed on to a distance function
to learn comparable output vectors. We extend the
same idea to a batch of inputs instead of a pair of
inputs. We sample the batch as described in Sec-
tion 3.3 and feed the sampled triplets through the
network. The output embeddings of the batch are
used to generate valid triplets and compute the loss.
The backbone of the Siamese model could be any
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neural network. We use the pretrained language
model BERT (Devlin et al., 2019) as the backbone.

3.5 Hashing and Retrieval

Once the Siamese model is trained, it can be used
as a standalone encoder to compute the embed-
dings of entities and mentions. We precompute the
embeddings for all entities and save them for com-
parisons at inference time. For each query mention,
we use the same Siamese model to get the embed-
ding and our task is to retrieve the entity with the
closest distance to the mention in the embedding
space. For a query set of size q, we need to run the
Siamese model only q times, avoiding exhaustive
pairwise running of the Siamese model. Potentially,
we still need to conduct a pairwise nearest neigh-
bor search over the mention and entity embeddings.
Tools such as FAISS can be leveraged to efficiently
perform large-scale nearest neighbor search.

4 Experimental Setup

4.1 Dataset

We curate a dataset (ESAppMod) on application
modernization that comprises named entities with
respect to the technical stack of business applica-
tions. There are a total number of 640 unique enti-
ties, covering a variety of technical component cate-
gories, such as Operating System (OS), Application
Server, Programming Language, Library, and Run-
time. We manually extract and label 6,412 unique
mentions associated with the entities in AppMod
from real application descriptions. All annotations
are done by domain experts. We split the men-
tions 60–40 into train and test sets, which yields
3,973 and 2,439 mentions in the training and test-
ing splits, respectively. The mentions associated
with each entity are not evenly distributed, ranging
from one to over a hundred.

4.2 Hyperparameter Tuning

Implementing our framework involves many de-
sign choices and hyperparameters. To facilitate
performance at scale, the tradeoff between accu-
racy and inference time is crucial. We experi-
mented with different sizes of BERT as the back-
bone of CoSiNES, including BERT-tiny, BERT-
mini, BERT-small, BERT-medium, and BERT-base.
For triplet mining, we evaluated batch–all, batch–
hard, and a hybrid of the two. For the measure of
distance, we investigated cosine, Euclidean, and
squared Euclidean distance. For the hyperparame-

Model T@1 T@3 T@5 Inf. Time

TF-IDF 69.94 85.36 88.44 60
GNN 67.20 79.29 82.49 29
BERT 32.64 47.23 54.82 17
GPT3 77.24 90.24 93.56 240
CoSiNES 80.40 88.68 90.98 11

Table 1: Experimental results on ESAppMod. T@1:
top-1 retrieval accuracy. Inf. Time refers to total infer-
ence time in seconds.

ters, we evaluated different values of margin, learn-
ing rate, and batch size detailed in appendix C.
All training experiments were carried out on an
NVIDIA A100 GPU with 40GB memory. We use
the tool Ray.tune2 for hyperparameter tuning. Infer-
ence times were computed as the cumulative time
to predict all 2,439 mentions in the test set on the
CPU of Macbook pro with 2.3 GHz Quad-Core
Intel Core i7, 32 GB 3733 MHz LPDDR4X RAM.
We report the median inference time of 10 runs.

4.3 Baselines

We compare CoSiNES with four baselines.
TF-IDF A model that computes TF-IDF embed-

dings learned from training data(Kalia et al., 2021).
GNN A graph neural network that treats each

entity or mention as a chain. Each character repre-
sents a node in the graph and its embedding repre-
sentation is learned during training. The average
of the character embeddings are used to represent
entity names and mentions (Fan et al., 2022).

BERT We use the mean of last layer outputs
of all tokens from BERT_small (Bhargava et al.,
2021) to represent entities and mentions. This is
the same backbone used to train CoSiNES.

GPT33 We use the embedding GPT-3 api from
OpenAI to compute the embeddings using model
embedding-ada-002.

5 Results and Discussions

Table 1 shows the comparative results on our
dataset. Our model outperforms all baselines
by a significant margin in terms of top–1 re-
trieval accuracy: 10.46% over TF-IDF, 13.2% over
GNN, 47.76% over BERT, and 3.16% over GPT3.
Through comprehensive experimentation, we ob-
serve that the best performance model has the

2https://docs.ray.io/en/latest/tune/index.html
3https://beta.openai.com/docs/guides/embeddings/
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BERT-small as the backbone. The learning rate
is set to 1e−5, contrastive group size is 10, and
the batch size of groups is 16, which makes the
effective batch size 160. We set the margin to 2.

Figure 3: Five–fold cross–validation with different
learning rates on training data.

5.1 Learning Rate
To investigate how different learning rates affect the
convergence of the Siamese model on our dataset,
we run five-fold cross-validation with four learn-
ing rates (1e−4, 5e−5, 1e−5, and 1e−6) on the
training data, as shown in Figure 3. For each learn-
ing rate, we experiment with different numbers of
epochs, ranging from 10 to 200 with an interval
of 10. The X axis is the number of epochs for
each experiment and the Y axis is the top–1 accu-
racy. The average of the five-fold top–1 accuracy
is shown for each dot in the figure, together with
the standard deviation across five folds. As we can
see, the learning rate affects how fast and stably the
model converges, and most of them reach similar
performance when trained for enough number of
epochs. This indicates that the Siamese model is
robust with respect to the learning rate. We set the
learning rate to be 1e-5 as it tends to have a smaller
deviation of performance.

5.2 Hybrid Triplet Mining
We propose a hybrid of batch–all and batch–hard
triplet mining during training. Figure 4 shows the
training process with 200 epochs with the above
three learning rates, of which the first 100 epochs
apply batch–all triplet sampling and the second
100 epochs employ batch–hard triplet sampling.
The result shows that for the first batch–all 100
epochs, the training of 1e−4 and 5e−5 is unstable
and performance oscillates greatly. When batch–
hard mining comes into play, the training becomes

much smoother and the performance continues to
improve steadily for all three learning rates. This
experiment shows that the hybrid mining scheme
improves the top–1 accuracy by around 2% com-
pared to the single-mining strategy.

5.3 Model Size
Normally, there is a tradeoff between model ac-
curacy and efficiency. Therefore, we experiment
with different sizes of BERT as backbone to find
a balance between performance and running time.
Figure 5 shows the inference time on the testing
set with top–1 accuracy. The results show that
CoSiNES with BERT-small achieves the best per-
formance and fast inference time. Although the
GPT3 embeddings achieve performance close to
CoSiNES, running inference using the GPT3 Ope-
nAI api is inefficient.

5.4 ROC Curve
For a comprehensive comparison between our
model and the baselines, we conduct an experi-
ment to compute the receiver operating character-
istic (ROC) curve. We add 420 previously unseen
relevant but negative mentions from the technol-
ogy domain that do not refer to any entities in the
training set, and calculate the false positive rate
under different thresholds. Figure 6 shows that our
proposed model has a larger area under the curve,
which demonstrates its superior performance over
the baselines.

5.5 Qualitative Error Analysis
We examine the predictions from CoSiNES on
ESAppMod and categorize the following error
types. Table 2 shows a few examples for each
of these types.

Misspelling. When a mention has an error in
the spelling, the tokens returned by PLMs could be
very different, which leads to mismatch. This is a
challenge for PLMs, whereas human could easily
handle, e.g. “Andriod" vs “Android".

Acronym. Linking acronyms to full expres-
sions seem to be a trivial task for humans, how-
ever, CoSiNES falls short of this capability. The
rescue might be to design a task specialized for
recognizing acronyms for PLMs.

Multi-match. This is the most common error
where multiple entities partially match with the
mention in the surface form. One way to address
this issue is to enrich the training dataset with var-
ious mentions, which is not always within easy
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Figure 4: Hybrid triplet mining with different learning rates for five-fold cross validation.

Figure 5: Accuracy versus efficiency between the pro-
posed models on the ESAppMod dataset. The CoSiNES
line represents different size of BERT as backbone.

Figure 6: ROC Curves on the ESAppMod dataset.

reach. Another potential approach is to integrate
external knowledge about entities so that the model
can refer to.

No-match. When the entity and mention have
no match at all in the surface form, it is unlikely for
the model to retrieve the correct target, especially
no context can be leveraged. Therefore, external
knowledge could be particularly useful in this case.

6 Adaptation to Biomedical Domain

We show how to adapt our framework to the
biomedical domain with minimal changes.

6.1 Datasets

We consider four public datasets, ncbi, bc5cdr-
disease, bc5cdr-chemical, and bc2gm, covering
three types of entities: chemicals, diseases, and
genes. Details and statistics regarding the datasets
can be found in apprendix A.

6.2 Baselines

We compare our framework with three models.
TF-IDF Like the baseline for ESAppMod, we

implement a straightforward TF-IDF model (Kalia
et al., 2021) based on the knowledge database for
each dataset and apply nearest-neighbor search for
testing.

BioBERT ranking Use BioBERT (Lee et al.,
2019) to encode concepts and mentions with-
out fine-tuning. BioBERT is a large biomedi-
cal language representation model pretrained with
PubMed abstracts and PMC full-text articles.

BioSyn BioSyn (Sung et al., 2020) is the state-of-
the-art model for biomedical entity normalization
with synonym marginalization and iterative can-
didate retrieval. The model leverages sparse em-
bedding from TF-IDF and dense embedding from
BioBERT.

6.3 Domain Adaptation

For domain adaptation, it would be ideal if we can
make none or a few changes to the model architec-
ture and training process. Therefore, we follow all
experimental settings, such as learning rate, mar-
gin, contrastive group generation, and hybrid train-
ing scheme from the experiments on our proposed
datasets. The most significant change is that to
adapt to a new domain, we use dmis-lab/biobert-
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Error type Mention Target entity Top-5 retrieved entities

Misspelling Andriod Android IBM ILOG Views / Oracle Real-Time Decisions (RTD) / BeOS / Ingres / etcd
Visusal Basic Visual Basic Clarify|Clear Basic / BASIC / IBM Basic Assembly Language / Pervasive PSQL / ADABAS

Acronym NES Netscape Enterprise Server Mobile / SAS / iOS / Powershell / MinIO
IIB IBM Integration Bus Visual Basic / VB.NET / Clarify|Clear Basic / IIS|* / Ada

Multi-match Cordova Android Apache Cordova Android / Apache Cordova / Cisco IOS / Perl|Oraperl / Keycloak
MQ 9.1 IBM Websphere MQ Microsoft MQ / MQ Client / IBM Websphere MQ / Qiskit / IBM WebSphere MQ Telemetry
Open Liberty WebSphere Liberty OpenROAD / WebSphere Liberty / Virtual Appliance /

OpenVPN / Microsoft System Center Endpoint Protection

No-match AS400 IBM Power Systems DB400 / Asterisk / Primavera P6 / EAServer / Microsoft Excel
EAP JBoss XAMPP / F5 Secure Web Gateway Services / Java|Java Web Start /

UltiDev Web Server Pro (UWS) / A-Auto Job Scheduling Software

Table 2: Examples for each type of errors on ESAppMod.

v1.14 in replacement of the regular BERT as our
backbone. We conduct all experiments on two
NVIDIA A100 GPUs and adjust the batch size for
each dataset based on the lengths of the mentions.

6.4 Results

The results are shown in Table 3. We reproduce the
BioBERT experiment reported by (Tutubalina et al.,
2020a) using the embedding of the [CLS] token as
the representation. The results are almost identical.
The minor differences might be due to different
versions of the pretrained language model.

The performance of BioSyn reported by Sung
et al. (2020) is high. However, as pointed out by
Tutubalina et al. (2020a), the original testing splits
used by Sung et al. (2020) have significant overlap-
ping mentions with the knowledge base. Therefore,
Tutubalina et al. removed all the duplicates and
produced refined testing splits. We follow the per-
formance of BioSyn reported by them.

The results show that CoSiNES significantly out-
performs the baselines of TF-IDF and BioBERT
ranking in terms of top-k accuracy. CoSiNES
achieves competitive results with BioSyn on all
the datasets. Given that we didn’t change any hy-
perparameters or architectures of CoSiNES, and
directly applied the framework to new domains,
we demonstrate the cross-domain applicability of
CoSiNES.

7 Conclusion

We propose a generic, scalable, and adaptable
framework CoSiNES for the entity standardization
task, which maps various mentions to standard enti-
ties in the knowledge base. We first construct a new
dataset ESAppMod in the technology domain and
demonstrate the superiority of our framework over

4https://huggingface.co/dmis-lab/biobert-v1.1

ncbi bc5cdr-d bc5cdr-c bc2gm

TF-IDF@1 59.31 61.34 71.76 67.01
TF-IDF@3 69.61 69.41 76.24 76.55
TF-IDF@5 74.02 73.21 78.59 79.90

BioBERT@1 47.55 64.23 79.55 68.12
BioBERT@3 57.35 74.89 81.65 74.11
BioBERT@5 61.77 79.45 82.82 76.04

BioSyn@1 72.5 74.1 83.8 85.8
BioSyn@3 - - - -
BioSyn@5 - - - -

CoSiNES@1 72.55 73.52 81.65 85.79
CoSiNES@3 80.39 78.39 85.88 90.66
CoSiNES@5 81.37 80.52 87.76 91.68

Table 3: Results on four datasets from the biomedical
domain. @1: top-1 accuracy. Here, bc5cdr-d means
bc5cdr-disease and bc5cdr-c means bc5cdr-chemical.

four other models. We conduct comprehensive ex-
periments regarding batch size, learning rate, mar-
gin, loss calculation and different sizes of BERT,
with our designed contrastive group generation and
hybrid triplet mining, and show that the framework
is rather robust with respect to hyper-parameters.
With the optimal setting on our dataset, we further
show that our model can be easily adapted to new
domains with minimal changes by achieving com-
petitive performance on four benchmark datasets
from the biomedical domain covering three differ-
ent types of entities.

After examining the errors produced by the
framework on our proposed dataset, we categorize
four different types of errors and defer to future
work with the following directions: (1) integrat-
ing the framework with external knowledge. For
multi-match errors, where multiple entities partially
match with the mention, it would be ambiguous to
retrieve the target entity. For no-match errors, exter-
nal knowledge could provide extra information; (2)
Adversarial training for misspellings. For technical

116



terms, misspelling could lead to completely dif-
ferent tokenization of the mentions; (3) Construct
new or augment the existing training dataset with
acronym samples. The pretrained language models
are not specialized in recognizing acronyms. There-
fore, it would be worthwhile endowing PLMs with
such capability.

Limitations

We focuses on resolving various mentions from dif-
ferent domains. Although we have tested our frame-
work on multiple datasets, it relies on a human-
annotated dataset and effort should be taken to
investigate how the model performs with emerg-
ing domains without human-annotated data. Our
model works with mentions that have been ex-
tracted from raw text. It would be more practical
if the model could work with raw text directly and
interact with another mention-extraction module.
The performance of the model is largely affected
by the surface form of the mentions, although our
framework is robust to variations in the surface
form, it would be more beneficial to further inves-
tigate how adversarial turbulence in the mentions
could affect the behaviors of the framework.

Ethics Statement

The domain and data we work with don’t involve
any personal information and are all publicly avail-
able. However, as the work could be potentially
applied in the medical domain to resolve mentions
of disease, discretion is advised when any medical
decisions or diagnostics are made with the assis-
tance of the model.
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A Biomedical Datasets Descriptions and
Statistics

Detailed descriptions of the datasets can also be
found in Tutubalina et al. (2020b) and Sung et al.
(2020).

NCBI Disease Corpus NCBI Disease Corpus
(Dogan et al., 2014) contains manually annotated
disease mentions extracted from 793 PubMed ab-
stracts and their corresponding concepts in the
MEDIC dictionary (Davis et al., 2012). The July 6,
2012 version of MEDIC has 11,915 CUIs (concept
ids) and 71,923 synonyms (mentions).

BioCreative V CDR BioCreative V CDR
(BC5CDR) (Li et al., 2016) is a challenge for
extracting chemical-disease relations. There are
manual annotations for both chemical and disease
from 1,500 PubMed abstracts. Like the NCBI dis-
ease corpus, disease mentions are mapped into
the MEDIC dictionary. The chemical mentions
are mapped into the Comparative Toxicogenomics
DataBase (CTD) (Davis et al., 2018). The Nov 4,
2019 version of CTD contains 171,203 CUIs and
407,247 synonyms.

BioCreative II GN BioCreative II GN (BC2GN)
(Morgan et al., 2008) contains human gene and
gene product mentions from PubMed abstracts.
It has 61,646 CUIs and 277,944 synonyms (Tu-
tubalina et al., 2020a).

KG entity KG mention Test mention

ncbi 12,554 73,024 204
bc5cdr-d 12,511 73,126 657

bc5cdr-c 171,284 407,600 425
bc2gm 67,370 277,944 985

Table 4: Diomedical datasets statistics. Here, KG means
knowledge base, bc5cdr-d means bc5cdr-disease and
bc5cdr-c means bc5cdr-chemical.

B Triplet Types

As shown in Equation 3, triplet loss is calculated
based on triplets {x, x+, x−}, which always con-
sist of two samples from the same class and a third
sample from a different class. We usually call x the
anchor of the triplet, x+ the positive sample, and
x− the negative sample. The intuition behind the
loss function is that the distance d(x, x−) between
the anchor and negative should be larger than the
distance d(x, x+) between the anchor and positive

by a margin. The margin is a hyperparameter that
needs to be tuned.

L = max(d(x, x+)− d(x, x−) + margin, 0) (3)

Based on the difference between d(x, x−) and
d(x, x+), we can classify triplets into three cat-
egories.

Figure 7: Different types of triplet samples.

• Easy triplets, which have a loss of zero based
on Equation 2. Therefore, easy triplets pro-
vide no learning signal to the model.

d(x, x−)− d(x, x+) > margin

• Semihard triplets, which have a loss less than
the margin.

0 < d(x, x−)− d(x, x+) < margin

• Hard triplets, which are most informative for
the model.

d(x, x−)− d(x, x+) < 0

C Hyperparameter Search

We have done the following hyperparameter search
grid on ESAppMod

Batch Size 4, 8, 16, 32
Learning Rate 1e−3, 1e−4, 1e−5, 1e−6
Margin 0.5, 1, 2, 5, 10

Table 5: Hyperparameter search on ESAppMod
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