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Abstract

Despite their impressive scale, knowledge
bases (KBs), such as Wikidata, still contain
significant gaps. Language models (LMs) have
been proposed as a source for filling these gaps.
However, prior works have focused on promi-
nent entities with rich coverage by LMs, ne-
glecting the crucial case of long-tail entities.
In this paper, we present a novel method for
LM-based-KB completion that is specifically
geared for facts about long-tail entities. The
method leverages two different LMs in two
stages: for candidate retrieval and for candidate
verification and disambiguation. To evaluate
our method and various baselines, we introduce
a novel dataset, called MALT, rooted in Wiki-
data. Our method outperforms all baselines in
F1, with major gains especially in recall.

1 Introduction

Motivation and Problem. Knowledge base com-
pletion (KBC) is crucial to continuously enhance
the scope and scale of large knowledge graphs
(KGs). It is often cast into a link prediction task:
infer an O(bject) argument for a given S(ubject)-
P(redicate) pair. However, the task is focused on
the KG itself as the only input, and thus largely
bound to predict SPO facts that are also derivable
by simple logical rules for inverse predicates, tran-
sitive predicates etc. (Akrami et al., 2020; Sun
et al., 2020). To obtain truly new facts, more re-
cent methods tap into large language models (LMs)
that are learned from huge text collections, includ-
ing all Wikipedia articles, news articles and more.
The most promising approaches to this end gener-
ate cloze questions for knowledge acquisition and
ask LMs to generate answers (Petroni et al., 2019).
The LM input is often augmented with carefully
crafted short prompts (e.g., a relevant Wikipedia
paragraph) (Shin et al., 2020; Jiang et al., 2020b;
Qin and Eisner, 2021).

* Work done during an internship at Max Planck Institute
for Informatics
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However, notwithstanding great success for
question answering to humans, the LM-based ap-
proach falls short on meeting the high quality re-
quirements for enriching a KG with crisp SPO
facts. Even if most answers are correct, there is
a non-negligible fraction of false or even ‘“hallu-
cinated” outputs by the LM, and large KGs, like
Wikidata (Vrandeci¢ and Krotzsch, 2014), cannot
tolerate error rates above 10 percent. Moreover,
even correct answers are not properly canonical-
ized: they are surface phrases and not unique en-
tities in the KG. These problems are further ag-
gravated when the to-be-inferred O arguments are
long-tail entities, with very few facts in Wikidata.
Here, we call an entity long-tail when it has less
than 14 triples in Wikidata, because nearly 50%
of the Wikidata entities have fewer than 14 triples.
These are exactly the pain point that calls for KBC.
This paper addresses this problem.

As an example, consider the late Canadian singer
Lhasa de Sela. Wikidata solely covers basic bio-
graphic facts and selected awards, nothing about
her music. However, text sources such as her
Wikipedia article or other web pages provide ex-
pressive statements about her albums, songs, col-
laborations etc. For example, we would like to spot
the facts that (Lhasa de Sela, collaboratedWith,
Bratsch) and (Lhasa de Sela, performedSong, Any-
one and Everyone). Note that capturing these as
SPO facts faces the challenge of having to capture
and disambiguate multi-word names (“Lhasa de
Sela’) and common-noun phrases ( “anyone and
everyone”). When trying to extract such statements
via cloze questions or more refined prompts to LMs
such as GPT-3 (Brown et al., 2020) or chatGPT, the
outputs would often be “Lhasa”, which is highly
ambiguous, or “everyone”, which is incomplete
and impossible to interpret.

Approach and Contribution. This paper devises

a novel method for knowledge base completion
(KBCQO), specifically geared to cope with long-tail
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QA Context
Lhasa de Sela

Lhasa de Sela said that the song was about inner happiness and

“feeling my feet in the earth, having a place in the world, of things
taking care of themselves.” In May 2009, her collaboration
L0

with Patrick Watson was released ...... T ‘\‘}
WikipepiA
Question Prompt Candidate
who collaborated with Lhasa de Sela ? Generation
Output
1) Yves Desrosiers-> (! 0.93)
2) Hamel - None
3) Patrick Watson - 0.91)
Corroboration
11) Ibrahim Maalouf -> (1 ,0.001)

and
Canonicalization

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Candidate List

she sang for five years in bars, collaborating with rock guitarist Yves |1

1 Yves Desrosiers 0.91 N
Desrosiers.

2 Hamel 063 a previously unpublished conversation between Hamel and Lhasa
;
3 patrick Watson 0.4 | 'May 2009, her collaboration with Patrick Watson was released: the ||
song "Wooden Arms '

the BBC cited Ibrahim Maalouf's "alluring Arabic trumpet" on the

11 | Ibrahim Maalouf | 0.007 song as "just one stunning moment" among many within Lhasa's

album

._{

Iterate over each candidate

[Context Sentence] + the person Lhasa de Sela collaborated with
[START_ENT] this person [END_ENT].

Corroboration Prompt

Figure 1: The framework of our two-stage KBC method.

entities. Although we will present experimental
comparisons to prior works on relation extraction
from text, we believe that ours is among the first
works to successfully cope with the challenge of
noise and ambiguity in the long tail.

Our method leverages Transformer-based lan-
guage models in a new way. Most notably, we
employ two different LMs in a two-stage pipeline,
as shown in Figure 1. The first stage generates
candidate answers to input prompts and gives cues
to retrieve informative sentences from Wikipedia
and other sources. The second stage validates (or
falsifies) the candidates and disambiguates the re-
tained answer strings onto entities in the underlying
KG (e.g., mapping “Lhasa” to Lhasa de Sela, and
“Bratsch” to Bratsch (band)).

The novel contributions of this work are the fol-
lowing:

e the first KBC method that leverages LMs to
cope with long-tail entities;

e a new dataset, called MALT, to benchmark
methods with long-tail entities;

e experimental comparisons with baselines, us-
ing the MALT data.

Our code and data are available at https://
github.com/tigerchen52/long_tail_kbc.

2 Related Work

Knowledge Base Completion. This task, KBC for
short, has mostly been tackled as a form of link
prediction: given a head entity S and a relation
P, predict the respective tail entity O, using the
KG as sole input. A rich suite of methods have

been developed for this task, typically based on
latent embeddings computed via matrix or tensor
factorization, neural auto-encoders, graph neural
networks, and more (see, e.g., surveys (Chen et al.,
2020; Ji et al., 2022) and original references given
there). However, the premise of inferring missing
facts from the KG itself is a fundamental limitation.
Indeed, several studies have found that many facts
predicted via the above KBC techniques are fairly
obvious and could also be derived by simple rules
for transitivity, inverse relations etc. (Akrami et al.,
2020; Sun et al., 2020).

Language Models as Knowledge Bases. The
LAMA project (Petroni et al., 2019) posed the hy-
pothesis that probing LMs with cloze questions is
a powerful way of extracting structured facts from
the latently represented corpus on which the LM
was trained. A suite of follow-up works pursued
this theme further and devised improvements and
extensions (e.g., (Heinzerling and Inui, 2021; Jiang
et al., 2020a; Kassner and Schiitze, 2020; Roberts
et al., 2020; Shin et al., 2020; Zhong et al., 2021)).
This gave rise to the notion of “prompt engineering”
for all kinds of NLP tasks (Liu et al., 2021). In
parallel, other works studied biases and limitations
of the LM-as-KB paradigm (e.g., (Cao et al., 2021;
Elazar et al., 2021; Razniewski et al., 2021; Jiang
et al., 2020b)). In this work, we investigate the fea-
sibility of leveraging LMs to complete real-world
KBs, and mainly focus on long-tail facts.

3 Two-Stage KBC Method

We propose an unsupervised method for KBC that
taps into LMs as latent source for facts that can-
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Subject Type Relation Wikidata ID Triples multi-token (%) ambiguous (%) long-tail (%)

Business founded by P112 5720 97.3 21.1 91.2

MusicC it performer P175 1876 91.1 62.0 473

usiclomposition composer P86 3016 98.2 59.8 88.5

place of birth P19 13416 23.6 81.6 99.3

place of death P20 7247 259 84.8 99.6

Human employer P108 3503 96.5 374 81.4

educated at P69 13386 99.6 387 722

residence P551 886 32.1 87.1 96.4

Micro-Avg 65.3 58.6 87.0

Table 1: Statistics for MALT dataset.
Dataset SPO triples ~ Long-tail fraction Candidate Corroboration and Canonicalization.
DocRED (2019) 63K 32.0 % The first stage yields a scored list of candidates
LAMA-TREx (2019) 34K 39.6 % in the form of pairs (“O”, s) with an entity name
X-FACTR (2020a) 46K 49.6.% and a Wikipedia sentence s. In the corroboration
MALT (Ours) 49K 87.0 % p :

Table 2: Estimated fractions of long-tail S entities across
different datasets, where long-tail means at most 13
triples in Wikidata. The estimations are based on 200
samples across 8 relations.

not be inferred from the KG itself. Our method
operates in two stages:

1. For a given S-P pair, generate candidate facts
(S,P“O”) where “O” is an entity name and
possibly a multi-word phrase.

2. Corroborate the candidates, retaining the ones
with high confidence of being correct, and dis-
ambiguate the “O” argument into a KG entity.

Candidate Generation. We devise a generic
prompt template for cloze questions, in order to
infer an “O” answer for a given S-P pair. This
merely requires a simple verbalizer for the relation
P:

“(S-type) S (P-verb) which (O-type)?”

(e.g., “the song (S) is performed by which per-
son?” for the predicate performer). The S-type
and O-type are easily available by the predicate
type-signature from the KG schema. As additional
context we feed a Wikipedia sentence from the S
entity’s article into the LM. This is repeated for
all sentences in the respective Wikipedia article.
Specifically, we employ the SpanBERT language
model (Joshi et al., 2020), which is fine-tuned on
on the SQuUAD 2.0 (Rajpurkar et al., 2018) !. Note
that all of this is completely unsupervised: there is
no need for any fine-tuning of the LM, and there is
no prompt engineering.

lhttps://huggingface.co/mrm8488/
spanbert-large-finetuned-squadv2

stage, the candidates are fed into a second LM for
re-ranking and pruning false positives. Specifically,
we employ the generative entity disambiguation
model GENRE (De Cao et al., 2020), which in turn
is based on BART (Lewis et al., 2020) and fine-
tuned on BLINK (Wu et al., 2020) and AIDA (Hof-
fart et al., 2011). We construct the input by the
template:

“(S-type) S (P-verb) [ENT] this (O-type) [ENT]”
(e.g., “the song Anyone and Everyone is performed
by [ENT] this person [ENT]”), contextualized with
the sentence s. GENRE generates a list of answer
entities E, taken from an underlying KG, like Wiki-
data, that is, no longer just surface names. If the
candidate name “O” approximately matches a gen-
erated E (considering alias names provided by the
KG), then the entire fact, now properly canonical-
ized, is kept. Since we may still retain multiple
facts for the same S-P input and cannot perfectly
prevent false positives, the inferred facts are scored
by an average of the scores from stage 1 and stage
2.

4 MALT: New Dataset for Benchmarking

Benchmarks for KBC and LM-as-KB cover facts
for all kinds of entities, but tend to focus on promi-
nent ones with frequent mentions. Likewise, bench-
marks for relation extraction (RE) from text, most
notably TACRED (Zhang et al., 2017), DocRED
(Yao et al., 2019) and LAMA (Petroni et al., 2019)
do not reflect the difficulty of coping with long-tail
entities and the amplified issue of surface-name
ambiguity (see Table 2. Therefore, we developed
a new dataset with emphasis on the long-tail chal-
lenge, called MALT (for “Multi-token, Ambiguous,
Long-Tailed facts”).
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Relation ID Candidate Generation Corroboration and Canonicalization
founded by P112  the business [x] is founded by which per-  the business [x] is founded by [ENT] this
son? person [ENT]
performer P175 the song [x] is performed by which per- the song [x] is performed by [ENT] this
son? person [ENT]
composer P86  the song [x] is composed by which per- the song [x] is composed by [ENT] this
son? person [ENT]
place of birth P19  the person [x] was born in which place?  the person [x] was born in [ENT] this
place [ENT]
place of death P20 the person [x] died in which place? the person [x] died in [ENT] this place
[ENT]
employer P108  the person [x] worked in which place? the person [x] worked in [ENT] this place
[ENT]
educated at P69 the person [x] graduated from which the person [x] graduated from [ENT] this
place? place [ENT]
residence P551  the person [x] lived in which place? the person [x] lived in [ENT] this place

[ENT]

Table 3: Prompts for relations in MALT. [x] is a placeholder for the subject entity and [ENT] is a special token

for the mention.

Relation ID NER + RC (CNN) REBEL KnowGL GenlE Ours
P R F|P R F|P R Fl|P R Fl|P R F
founded by ~ P112 | 13.5 212 165|428 273 333| 00 00 00 |591 79 139|570 445 500
performer ~ P175| 52 101 69 |253 281 266| 00 00 00 |473 191 272|427 156 229
composer P86 | 173 205 188 |37.9 277 320|376 257 30.6|700 166 268|673 656 664
place of birth P19 | 47 47 47 |493 205 289|494 234 317|641 92 161|479 614 538
place of death P20 | 125 47 68 |526 118 192|666 94 165|475 30 56 |466 482 474
employer P108 | 87 49 63 |500 49 88 |00 00 00 |540 01 02 |300 293 296
educated at P69 | 89 84 77 |154 1.1 21 |222 1.1 22 [467 01 02 429 395 412
residence  P551 | 0.0 00 00 |[333 83 133|333 83 133|444 02 04 |192 417 263
Micro-Avg [ 267 137 137|383 162 206|262 85 118|522 69 112|442 432 422

Table 4: Performance comparison on MALT data.

To construct the dataset, we focus on three types
of entities: Business, MusicComposition and
Human, richly covered in Wikidata and often involv-
ing long-tail entities. We randomly select subjects
from the respective relations in Wikidata, and keep
all objects for them. We select a total of 8 predi-
cates for the 3 types; Table 1 lists these and gives
statistics.

The dataset contains 65.3% triple facts where
the O entity is a multi-word phrase, and 58.6%
ambiguous facts where the S or O entities share
identical alias names in Wikidata. For example,
the two ambiguous entities , “Birmingham, West
Midlands (Q2256)” and “Birmingham, Alabama
(Q79867)”, have the same Label value “Birming-
ham”. In total, 87.0% of the sample facts have S
entities in the long tail, where we define long-tail
entities to have at most 13 Wikidata triples.

5 Experimental Evaluation

Baselines. To the best of our knowledge, there
is no prior work on KBC or LM-as-KB that is
specifically geared for coping with long-tail entities.
As a proxy, we thus compare to several state-of-the-
art methods for relation extraction (RE) from text.
At test time, these methods receive the retrieved
Wikipedia sentences for a ground-truth SPO fact
and the SP pair as input, and are run to extract the
withheld O argument (sentence-level extraction).

We compare to the following baselines:

e NER + RC (CNN) uses TNER (Ushio and
Camacho-Collados, 2022) to recognize entity
mentions in context sentences, followed by a
CNN-based relation classifier Nguyen and Gr-
ishman (2015). The RC component is trained
on REBEL (Cabot and Navigli, 2021).

e REBEL (Cabot and Navigli, 2021) is an end-
to-end relation extraction for more than 200
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different relation types in Wikidata.

o KnowGL (Rossiello et al., 2023) is an open-
source system that can convert text into a set of
Wikidata statements.

e GenlE (Josifoski et al., 2022) is an end-to-end
closed triplet extraction model, which is trained
on REBEL dataset (Cabot and Navigli, 2021).
GenlE uses Wikidata as the target KB and can
extract 5,891,959 entities and 857 relations.

Setup. There are two hyper-parameters for all
competitors, the number of candidates k£ (or the
“top-k” hyper-parameter for baseline models) and
the threshold « for cutting off the extracted triples.
For our framework, k is 20 for all competitors and
the threshold « is learned by using a hold-out (20%)
validation set. We report results for precision, re-
call and F1, with the original Wikidata triples as
ground truth. Although MALT provides canonical-
ized entities, we consider the extracted O to be a
correct prediction as long as it appears in the alias
table because some baselines themselves cannot do
disambiguation.

Our method is completely unsupervised, and

the only additional cost is prompt. We manually
design one template for each relation (as shown in
Table 3).
Results. Table 4 shows the results from this exper-
imental comparison. We observe that the GenlE
baselines does well in terms of precision, but has
very poor recall. In contrast, our two-stage method
achieves both good precision and recall. Regarding
precision, it is almost as good as GenlE (44% vs.
52%); regarding recall, it outperforms GenlE and
the other baselines by a large margin (43% vs. 7%).
Our method still leaves substantial room for further
improvement, underlining the challenging nature
of inferring facts for long-tail entities. We think of
our method as a building block to aid a human cu-
rator by judicious suggestions for facts that would
augment the KG.

Many of the inferred SPO facts are indeed com-
pletely missing in Wikidata; so they are also not
in the withheld ground-truth samples for the above
evaluation. To estimate how many facts we could
potentially add to the KG and how good our au-
tomatically inferred predictions are, we picked 25
samples for each relation, a total of 250 fact candi-
dates, and asked human annotators to assess their
correctness. Over all relations, this achieved an
average precision of 61%. For the relation educated
at, our method even has 76% precision, and this

is a case where the KG has enormous gaps: out
of 10M sampled entities of type Human, only 65%
have facts for this relation. For this case, our KBC
method collected 1.2M candidate facts, showing
the great potential towards closing these gaps.

6 Conclusion

We highlighted the challenge of knowledge base
completion (KBC) for long-tail entities, introduced
the MALT dataset for experimental comparisons
and fostering further research, and presented a
completely unsupervised method for augmenting
knowledge bases with long-tail facts. Our method
operates in two stages, candidate generation and
candidate corroboration (incl. disambiguation),
and leverages two different LMs in a complemen-
tary way. Experimental results show substantial
gains over state-of-the-art baselines, and highlight
the benefits of our two-stage design with two LMs
complementing each other.

Limitations

Although our dataset presents a significant advance-
ment over previous benchmarks, it is still limited
in that it only contains entities already known to
Wikidata. One could argue that the very long tail is
what is even beyond Wikidata.

In the second stage, our method harnesses an LM
pre-trained for entity disambiguation. Therefore,
our methodology, in its current form, cannot predict
objects that are not already known to that LM and
its underlying KB.
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A Appendix

A.1 The Motivation of Our Two-stage KBC
Method

In this section, we explain how we design the two-
stage KBC method. Existing approaches use cloze-
style prompts to query masked language models.
However, they cannot cope with multi-token facts
well and suffer from the long-tail issue. Therefore,
we experiment with a series of prompts for query-
ing LMs, and experiments can be categorized into
two classes: Context-Free and Context-Based.
Context-Free experiments evaluate the capabili-
ties of LMs to generate facts by only using prompt
queries. We consider the following baselines.
Cloze: As prior methods, this baseline uses a
cloze-style prompt to query masked LMs (the first
frame in Figure Al). Here, two types of LMs
are compared in this experiment. Left-to-Right
LMs predict the upcoming words based on a se-
quence of words, and GPT-1 (Radford et al., 2018)
and Transformer-x1 (Dai et al., 2019) are used.
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Input Query: <

, 7>

Input Context Sentence: Lhasa de Sela also collaborated with the French gypsy music group Bratsch

Prompt: the person "
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Output: Bratsch
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Output: Bratsch

Output: Entailment

Figure Al: An illustration of different prompts for querying language models. The dashed lines mean the context

sentence is optional.

Masked LMs aim to predict masked text pieces
based on the surrounding context, and BERT-base
and BERT-large (Devlin et al., 2019) are used. To
enable BERT to handle multi-token facts, we also
introduce the decoding strategy proposed in X-
FACTR (Jiang et al., 2020a) for comparison.

ED: Because the Cloze-style prompt cannot gen-
erate multi-token facts directly, we propose to use
Language Models with Entity Disambiguators as
knowledge bases, i.e., LMED-as-KB. As shown
in Figure A1, we can design such a prompt “the
person Lhasa de Sela collaborated with [ENT] this
person [ENT].”, where the mention is surrounded
by special tokens [ENT] and [ENT]. After we use
the prompt to query the generative disambiguation
model, and it is able to disambiguate the mention
“this person” and output the correct canonicalized
entity “Bratsch (band)”, although the mention is
not “this band”. The core benefit of introducing
LMED is that it can output disambiguated entity
names with multiple tokens. Here, we use the
Encoder-Decoder entity disambiguation model
GENRE (De Cao et al., 2020), which is fine-tuned
on BLINK (Wu et al., 2020) and AIDA (Hoffart
etal., 2011).

In Context-based experiments, prompts are com-
bined with additional context information to better
retrieve facts from LMs, which has been demon-
strated to substantially improve the cloze-style per-
formance of LMs (Petroni et al., 2020). Apart from
Cloze and ED baselines, we introduce another two
methods.

QA: Question-Answering models are able to ex-
tract answers to a question from a given document,
and we adapt them to extract facts by designing
question prompts. As shown in the third frame of
Figure A1, given the input context and the question
prompt “the person Lhasa de Sela collaborated
with which person?”, a QA model successfully out-
puts the correct answer. For experiments, we use
two LMs fine-tuned on the SQuAD 2.0 (Rajpurkar
et al., 2018), RoBERTa-large (Liu et al., 2019) 2
and SpanBERT-large (Joshi et al., 2020) 3. Besides,
we use GPT3 (Brown et al., 2020) as another QA
baseline.

TE: Textual Entailment models can judge whether
a premise entails a hypothesis. To adapt TE for
extracting facts from context, we first use a Named
Entity Recognition model and then apply a tex-
tual entailment model to this entity and sentence
for judging the entailment relation. For example,
given the context “Lhasa de Sela also appeared as
a guest of the French gypsy music group Bratsch”,
the entity “Bratsch” is recognized and we use the
prompt: context — the person Lhasa de Sela col-
laborated with Bratsch. If the premise entails the
hypothesis, we can regard this as a correct tail en-
tity. Here, we add type constraints for particu-
lar relations. Two LMs fine-tuned on TE datasets,
RoBERTa-large (Liu et al., 2019)4 and DeBERTa-

https://huggingface.co/deepset/
roberta-large-squad2

Shttps://huggingface.co/mrmg8488/
spanbert-finetuned-squadv2

4https://huggingface.co/ynie/
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Model Prompt  Size  Multi-token Disambiguated P R Fl

GPT-1 Cloze  110M X X 03 32 07
Transformer-xI ~ Cloze ~ 257TM X X 24 39 29
BERT- base Cloze  110M X X 71 49 42

w/ decoding  Cloze  110M v X 11 12 17
BERT-large Cloze  340M X X 190 37 47

w/decoding  Cloze  340M 4 X 87 2.1 24
GENRE ED  406M v 4 191 54 74

Table Al: Context-Free performances of different lan-
guage models on MALT.

Model Prompt  Size  Multi-token Disambiguated P R F1

BERT:- base Cloze  110M X X 1.1 124 117
BERT- large Cloze  340M X X 118 144 123
RoBERTa-large QA 355M v X 56 451 97
SpanBERT-large QA 340M v X 12 662 24
GPT-3 0A  175B v X 109 115 79
RoBERTa-large ~ TE ~ 355M v X 132 197 134
DeBERTa-large TE  304M v X 135 222 146
GENRE ED  406M v 4 16,5 309 189

Table A2: Context-Based performances of different
language models on MALT.

large (He et al., 2020)°, are used in this experiment.
The NER model is TNER (Ushio and Camacho-
Collados, 2022).

Technically speaking, QA and TE are not LM-
as-KB methods because they cannot generate facts
without the help of context. However, these two
methods have a unified pattern with Cloze and ED
under the context-based setting, we, therefore, in-
clude them for comparison.

A.1.1 Can LMs Generate Facts?

In this context-free experiment, we aim to answer
whether LMs can generate facts and various models
are evaluated on MALT. The experimental results
are shown in Table A1. We first observe all mod-
els perform poorly on MALT-Wikidata because it
contains a large number of multi-token and long-
tail entities. Left-to-Right and Masked LMs have
difficulties in dealing with these facts, even with
the introduction of multi-token decoding. More-
over, we observe that GENRE outperforms other
baselines consistently and this confirms the fea-
sibility of the usage of LMED-as-LM. Overall, a
single query does not retrieve facts from LMs very
effectively, and the reasons are twofold: 1) the
capacity of LMs for storing world knowledge is
limited by model size, i.e., LMs with tens or hun-
dreds of billions of parameters can memorize all

roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli
https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli

Original

401 Original + ED

354
304

25 A
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204

159

10

T T
QA TE
Prompt

T
Cloze

Figure A2: Improvements of adding the ED Prompt.

facts in Wikidata (Heinzerling and Inui, 2021); 2)
proper prompts are needed for a better recall, e.g.,
by additional information or prompt engineering.

A.1.2 Can Context help?

In this context-based experiment, context sentences
are introduced for assessing the capability of LMs
to generate facts by exploiting context. Concretely,
we traverse the sentences in Wikipedia for relevant
entities and each context sentence is combined with
a corresponding prompt to compose a new query.
Next, facts are retrieved or extracted by using differ-
ent LMs. For duplicated outputs, we merge them
and average the score. The experimental results
are shown in Table A2. We can see that adding
context can remarkably improve the performances
on MALT-Wikidata, e.g., BERT-large (4.7 — 12.3)
and GENRE (7.4 — 18.9 ). GENRE consistently
outperforms other baselines in terms of F1 while
QA mode can obtain very high recalls. For TE
methods, they are a workable approach while still
lagging behind our framework.

A.1.3 Our Two-stage KBC Method

Based on the above analyses, we find that ED
prompts can generate disambiguated and relatively
high-quality facts while QA prompts have the high-
est recall. Hence, a question naturally appears:
“Can we synergize the two components to yield bet-
ter facts?”

To answer this question, we apply the ED prompt
method to the facts generated by the other three
methods, Cloze, QA, and TE. The post-processing
step of ED prompt serves to verify and re-rank
the candidates of the first step. The experimental
results are shown in Figure A2. We observe the
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combination can bring consistent improvements
and the pipeline of “QA + ED” achieves the best
score. Therefore, we leverage two different LMs
in a two-stage pipeline. The first stage generates
candidate answers by using a high-recall question-
answering model. The second stage employs an
entity disambiguation model for validating the can-
didates.
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