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Abstract

In contrast to large text corpora, knowledge
graphs (KG) provide dense and structured rep-
resentations of factual information. This makes
them attractive for systems that supplement
or ground the knowledge found in pre-trained
language models with an external knowledge
source. This has especially been the case for
classification tasks, where recent work has fo-
cused on creating pipeline models that retrieve
information from KGs like ConceptNet as addi-
tional context. Many of these models consist of
multiple components, and although they differ
in the number and nature of these parts, they all
have in common that for some given text query,
they attempt to identify and retrieve a relevant
subgraph from the KG. Due to the noise and
idiosyncrasies often found in KGs, it is not
known how current methods compare to a sce-
nario where the aligned subgraph is completely
relevant to the query. In this work, we try to
bridge this knowledge gap by reviewing current
approaches to text-to-KG alignment and eval-
uating them on two datasets where manually
created graphs are available, providing insights
into the effectiveness of current methods. We
release our code for reproducibility.1

1 Introduction

There is a growing interest in systems that com-
bine the implicit knowledge found in large pre-
trained language models (PLMs) with external
knowledge. The majority of these systems use
knowledge graphs (KG) like ConceptNet (Speer
et al., 2017) or Freebase (Bollacker et al., 2008)
and either inject information from the graph di-
rectly into the PLM (Peters et al., 2019; Chang
et al., 2020; Wang et al., 2020; Lauscher et al.,
2020; Kaur et al., 2022) or perform some type of
joint reasoning between the PLM and the graph,
for example by using a graph neural network on

1https://github.com/SondreWold/graph_impact

the graph and later intertwining the produced repre-
sentations (Sun et al., 2022; Yasunaga et al., 2021;
Zhang et al., 2022; Yasunaga et al., 2022). Beyond
their competitive performance, these knowledge-
enhanced systems are often upheld as more inter-
pretable, as their reliance on structured information
can be reverse-engineered in order to explain pre-
dictions or used to create reasoning paths.

One of the central components in these systems
is the identification of the most relevant part of a
KG for each natural language query. Given that
most KGs are noisy and contain idiosyncratic phras-
ings, which leads to graph sparsity (Sun et al., 2022;
Jung et al., 2022), it is non-trivial to align entities
from text with nodes in the graph. Despite this,
existing work often uses relatively simple methods
and does not isolate and evaluate the effect of this
component on the overall classification pipeline.
Furthermore, due to the lack of datasets that con-
tain manually selected relevant graphs, it is not
known how well current methods perform relative
to a potential upper bound where the graph pro-
vides a structured explanation as to why the sample
under classification belongs to a class. Given that
this problem applies to a range of typical NLP
tasks, and subsequently can be found under a range
of different names, such as grounding, etc., there
is much to be gained from reviewing current ap-
proaches and assessing their effect in isolation.

In this paper, we address these issues by provid-
ing an overview of text-to-KG alignment methods.
We also evaluate a sample of the current main ap-
proaches to text-to-KG alignment on two down-
stream NLP tasks, comparing them to manually
created graphs that we use for estimating a po-
tential upper bound. For evaluation, we use the
tasks of binary stance prediction (Saha et al., 2021),
transformed from a graph generation problem in
order to get gold reference alignments, and a sub-
set of the Choice of Plausible Alternatives (COPA)
(Roemmele et al., 2011) that contain additional ex-

1

https://github.com/SondreWold/graph_impact


is a

is located in

Paris

capital
has a

Country

is a
France

is a

India

is located at

is a

Notre-Dame

has contextChurch Religion
Is a

Islam

Figure 1: An example of a multi-relational knowledge graph.

planation graphs (Brassard et al., 2022). As the
focus of this work is not how to best combine struc-
tured data with PLMs, but rather to report on how
current text-to-KG alignment methods compare to
manually created graphs, we use a rather simple
integration technique to combine the graphs with
a pre-trained language model. Through this work,
we hope to motivate more research into methods
that align unstructured and structured data sources
for a range of tasks within NLP, not only for QA.

2 Background

Combining text with structured knowledge is a
long-standing challenge in NLP. While earlier work
focused more on the text-to-KG alignment itself,
using rule-based systems and templates, recent
work often approaches the problem as a part of a
system intended for other NLP tasks than the align-
ment itself, such as question answering (Yasunaga
et al., 2021), language modelling (Kaur et al., 2022)
and text summarization (Feng et al., 2021).

As a consequence, approaches to what is essen-
tially the same problem, namely to align some
relevant subspace of a large KG with a piece of
text, can be found under a range of terms, such
as: retrieval (Feng et al., 2021; Kaur et al., 2022;
Sun et al., 2022; Wang et al., 2020), extraction
(Huang et al., 2021; Feng et al., 2020), KG-to-
text-alignment (Agarwal et al., 2021), linking (Gao
et al., 2022; Becker et al., 2021), grounding (Shu
et al., 2022; Lin et al., 2019), and mapping (Yu
et al., 2022). Although it is natural to use multi-
ple of these terms to describe a specific technique,
we argue that it would be beneficial to refer to the
task itself under a common name and propose the
term text-to-KG alignment. The following sections
formalise the task and discuss current approaches
found in the literature.

2.1 Task definition
The task of text-to-KG alignment involves two in-
put elements: a piece of natural text and a KG. The
KG is often a multi-relational graph, G = (V,E),
where V is a set of entity nodes and E is the set
of edges connecting the nodes in V . The task is to
align the text with a subset of the KG that is relevant
to the text. What defines relevance is dependent on
the specific use case. For example, given the ques-
tion Where is the most famous church in France
located? and the KG found in Figure 1, a well-
executed text-to-KG alignment could, for example,
link the spans church and France from the text to
their corresponding entity nodes in the KG and re-
turn a subgraph that contains the minimal amount
of nodes and edges required in order to guide any
downstream system towards the correct behaviour.

2.2 Current approaches
Although the possibilities are many, most current
approaches to text-to-KG alignment base them-
selves on some form of lexical overlap. As noted in
Aglionby and Teufel (2022); Becker et al. (2021);
Sun et al. (2022), the idiosyncratic phrasings often
found in KGs make this problematic. One specific
implementation based on lexical overlap is the one
found in Lin et al. (2019), which has been later
reused in a series of other works on QA without
any major modifications (Feng et al., 2020; Ya-
sunaga et al., 2021; Zhang et al., 2022; Yasunaga
et al., 2022; Sun et al., 2022).

In the approach of Lin et al. (2019), a schema
graph is constructed from each question-answer
pair. The first step involves recognising concepts
mentioned in the text that exists in the KG. Al-
though they note that exact n-gram matches are not
ideal, due to idiosyncratic phrasings and sparsity,
they do little to improve on this naive approach
besides lemmatisation and filtering of stop words,

2



Figure 2: An example of the different graph construction approaches for COPA-SSE (Brassard et al., 2022). Here,
the premise and answer options are: P: The bodybuilder lifted weights; A1: The gym closed; A2: Her muscles
became fatigued, from left to right: Purple: Gold annotation, Brown: Approach 3, Green: Approach 2, and Blue:
Approach 1.

leaving it for future work. The enhanced n-gram
matching produces two sets of entities, one from
the question and one from the answer, Vq and Va.
The graph itself is then constructed by adding the
k-hop paths between the nodes in these two sets,
with k often being 2 or 3. This returns a graph
that contains a lot of noise in terms of irrelevant
nodes found in the k-hop neighbourhoods of Vq

and Va and motivates some form of pruning ap-
plied to Gsub before it is used together with the
PLM, such as node relevance scoring (Yasunaga
et al., 2021), dynamic pruning via LM-to-KG atten-
tion (Kaur et al., 2022), and ranking using sentence
representations of the question and answer pair and
a linearized version of Gsub (Kaur et al., 2022).

Another approach based on lexical matching is
from Becker et al. (2021), which is specifically de-
veloped for ConceptNet. Candidate phrases are
first extracted from the text using a constituency
parser, limited to noun, verb and adjective phrases.
These are then lemmatized and filtered for articles,
pronouns, conjunctions, interjections and punctu-
ation. The same process is also applied to all the
nodes in ConceptNet. This makes it possible to
match the two modalities better, as both are nor-
malised using the same pre-processing pipeline.
Results on two QA dataset show that the proposed
method is able to align more meaningful concepts
and that the ratio between informative and unin-
formative concepts are superior to simple string
matching. For the language modelling task, Kaur
et al. (2022) uses a much simpler technique where a
Named Entity Recognition model identifies named
entity mentions in text and selects entities with the
maximum overlap in the KG.

For the tasks of text summarisation and story
ending generation, Feng et al. (2021) and Guan

et al. (2019) use RNN-based architectures that read
a text sequence word by word, and at each time
step the current word is aligned to a triple from
ConceptNet (We assume by lexical overlap). Each
triple, and also its neighbours in the KG, is encoded
using word embeddings and then combined with
the context vector from the RNN using different
attention style mechanisms.

As an alternative to these types of approaches
based on some form of lexical matching for the
alignment, Aglionby and Teufel (2022) experi-
mented with embedding each entity in the KG us-
ing a PLM, and then for each question answer pair
find the most similar concepts using euclidean dis-
tance. They conclude that this leads to graphs that
are more specific to the question-answer pair, and
that this helps performance in some cases. Wang
et al. (2020) also experimented with using a PLM
to generate the graphs instead of aligning them, re-
lying on KGs such as ConceptNet as a fine-tuning
dataset for the PLM instead of as a direct source
during alignment. In a QA setting, the model is
trained to connect entities from question-answer
pairs with a multi-hop path. The generated paths
can then be later used for knowledge-enhanced sys-
tems. This has the benefit of being able to use
all the knowledge acquired during the PLMs pre-
training, which might result in concepts that are
not present in KGs.

3 KG and Datasets

This section explains the data used in our own ex-
periments.

ConceptNet As our knowledge graph, we use
ConceptNet (Speer et al., 2017) — a general-
domain KG that contains 799, 273 nodes and
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Figure 3: An example graph from ExplaGraphs (Saha
et al., 2021) generated by a PLM for the belief argument
pair: Organ transplant is important; A patient with
failed kidneys might not die if he gets organ donation.

2, 487, 810 edges. The graph is structured as a col-
lection of triples, each containing a head and tail
entity connected via a relation from a pre-defined
set of types.

ExplaGraphs ExplaGraphs (Saha et al., 2021) is
originally a graph generation task for binary stance
prediction. Given a belief and argument pair (b,a),
models should both classify whether the argument
counters or supports the belief and construct a struc-
tured explanation as to why this is the correct label.
An example of this can be seen in Figure 3.

The original dataset provides a train (n = 2367)
and validation (n = 397) split, as well as a test set
that is kept private for evaluation on a leaderboard.
The node labels have been written by humans using
free-form text, but the edge labels are limited to the
set of relation types used in ConceptNet. We con-
catenate the train and validation split and partition
the data into a new train, validation and test split
with an 80–10–10 ratio.

COPA-SSE Introduced in Brassard et al. (2022),
COPA-SSE adds semi-structured explanations cre-
ated by human annotators to 1500 samples from
Balanced COPA (Kavumba et al., 2019) — which
is an extension to the original COPA dataset from
Roemmele et al. (2011). In this task, given a sce-
nario as a premise, models have to select the al-
ternative that more plausibly stands in a causal
relation with the premise. An example with a man-
ually constructed explanation graph can be seen
in Figure 4. As with ExplaGraphs, COPA-SSE
uses free-form text for the head and tail entities of
the triples and limits the relation types to the ones
found in ConceptNet.

The dataset provides on average over six expla-

Figure 4: An example of a manually created graph from
COPA-SSE (Brassard et al., 2022) for the premise and
options: P: The man felt ashamed of a scar on his face;
A1: He hid the scar with makeup; A2: He explained the
scar to strangers.

nation graphs per sample. Five annotators have
also rated the quality of each graph with respect
to how well it captures the relationship between
the premise and the correct answer choice. As we
only need one graph per sample, we select the one
with the highest average rating. As the official
COPA-SSE set does not contain any training data,
we keep the official development split as our train-
ing data and split the official test data by half for
our in-house development and testing set.

4 Alignment approaches

As mentioned, the general procedure for grounding
text to a graph is three-fold: we first have to identify
entities mentioned in the text, then link them to enti-
ties in the graph, and lastly construct a graph object
that is returned to the inference model as additional
context to be used together with the original text.
For QA the text aligned with the graph is typically
a combination of the question and answer choices.
As our two downstream tasks are not QA, and also
different from each other, we have to rely on differ-
ent pre-processing techniques than previous work.
The following section presents the implementation
of three different text-to-KG alignment approaches
that we compare against manually created graphs.
An illustration of the different approaches applied
to the same text sample can be seen in Figure 2.

4.1 Approach 1: Basic String Matching

Our first approach establishes a simple baseline
based on naive string matching. For ExplaGraphs,
we first word-tokenize the belief and argument
on whitespace, and then for each word we check
whether or not it is a concept in ConceptNet by
exact lexical overlap. This gives us two sets of
entities: Cq and Ca. The graph is constructed by
finding paths in ConceptNet between the concepts
in Cq and Ca. For COPA-SSE, we do the same but
create Cq from a concatenation of the premise and
the first answer choice, and Ca from a concatena-
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tion of the premise and the second answer choice.
We use Dijkstra’s algorithm to find the paths (Dijk-
stra, 1959).2 The reason to use this rather simple
approach, also pointed out by Lin et al. (2019) and
Aglionby and Teufel (2022), is that finding a min-
imal spanning graph that covers all the concepts
from Cq and Ca, which seems like a more obvious
choice, would be to solve the NP-complete "Steiner
tree problem" (Garey and Johnson, 1977), and this
would be too resource demanding given the size of
ConceptNet.

As many of the retrieved paths are irrelevant to
the original text, it is common to implement some
sort of pruning. We follow Kaur et al. (2022) and
linearize the subject-relation-object triples
to normal text and then embed them into the same
vector space as the original context using the Sen-
tenceTransformer (Reimers and Gurevych, 2019).
We then calculate the cosine similarity between the
linearized graphs and the original text context and
select the one with the highest score.

4.2 Approach 2: Enhanced String Matching
Our second approach is based on the widely used
method from Lin et al. (2019), found in the works
of Feng et al. (2020); Yasunaga et al. (2021); Zhang
et al. (2022); Yasunaga et al. (2022); Sun et al.
(2022), but modified to our use case. We construct
the set of entities Cq and Ca using n-gram match-
ing enhanced with lemmatisation and filtering of
stop words.3 As in Approach 1, for ExplaGraphs,
Cq is constructed from the belief, and Ca from
the argument; for COPA-SSE, Cq is based on a
concatenation of the premise and the first answer
choice, while Ca is based on a concatenation of the
premise and the second answer choice.

The graph is constructed by finding paths in Con-
ceptNet from concepts in between Cq and Ca using
the same method as in Approach 1. However, we
limit the length of the paths to a variable k. In the
aforementioned works, k is set as to retrieve ei-
ther two or three-hop paths, essentially finding the
2-hop or 3-hop neighbourhoods of the identified
concepts. For our experiments, we set k = 3.

As with Approach 1, many of the retrieved paths
are irrelevant to the original text which warrants
some sort of pruning strategy. In the aforemen-
tioned works, this is done by node relevance scor-
ing. We follow Approach 1 and use sentence repre-

2Using the implementation from https://networkx.org
3We use the implementation from Yasunaga et al. (2021)

to construct Cq and Ca

sentations via linearization and cosine similarity in
order to prune irrelevant paths from the graph.

4.3 Approach 3: Path Generator
Our third approach is based on a method where a
generative LM is fine-tuned on the task of generat-
ing paths between concepts found in two sets. We
use the implementation and already trained path
generator (PG) from Wang et al. (2020) for this
purpose. This model is a GPT-2 model (Radford
et al., 2019) fine-tuned on generating paths between
two nodes in ConceptNet. 4 One advantage of this
method is that since GPT-2 already has unstruc-
tured knowledge encoded in its parameters from
its original pre-training, it is able to generate paths
between entities that might not exist in the original
graph.

For both ExplaGraphs and COPA-SSE, we take
the first and last entity identified by the entity linker
from Approach 2 as the start and end points of the
PG. As the model only returns one generated path,
we do not perform any pruning. For the follow-
ing example from COPA-SSE, P: The man felt
ashamed of a scar on his face; A1: He hid the
scar with makeup; A2: He explained the scar to
strangers., the PG constructs the following path:
masking tape used for hide scar, masking tape is a
makeup.

4.3.1 Start and end entities
We also experiment with the same setup, but with
the first and last entity from the gold annotations
as the start and end points for the PG. We do this
to assess the importance of having nodes that are
at least somewhat relevant to the original context
as input to the PG. In our experiments, we refer to
this sub-method as Approach 3-G.

4.4 Integration technique
As the focus of this work is not how to best com-
bine structured data with PLMs, but rather to report
on how current text-to-KG alignment methods com-
pare to manually created graphs, we use a rather
simple integration technique to combine the graphs
with a pre-trained language model and use it uni-
formly for the different alignment approaches. We
conjecture that the ranking of the different linking
approaches with this technique would be similar
to a more complex method for reasoning over the
graph structures, for example using GNNs. By not

4See Wang et al. (2020) for details on the fine-tuning pro-
cedure.
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relying on another deep learning model for the in-
tegration, we can better control the effect of the
graph quality itself.

For each text and graph pair, we linearize the
graph to text as in Kaur et al. (2022). For example,
the graph in Figure 4 is transformed to the string
masking tape used for hide scar, masking tape is
a makeup. As linearization does not provide any
natural way to capture the information provided by
having directed edges, we transform all the graphs
to undirected graphs before integrating them with
the PLM 5. For a different integration technique,
such as GNNs, it would probably be reasonable to
maintain information about the direction of edges.

For ExplaGraphs, which consists of belief and
argument pairs, we feed the model with the follow-
ing sequence: BELIEF [SEP] ARGUMENT [SEP]
GRAPH [SEP], where [SEP] is a model-dependent
separation token and the model classifies the se-
quence as either support or counter.

For COPA-SSE, which has two options for each
premise, we use the following format: PREMISE +
GRAPH [SEP] A1 [SEP] and PREMISE + GRAPH

[SEP] A2 [SEP], where + just adds the linearized
graph to the premise as a string and the model has
to select the most likely sequence of the two.

5 Graph quality

The following section provides an analysis of the
quality of the different approaches when used to
align graphs for both ExplaGraphs and COPA-SSE.

Table 1 and Table 2 show the average number
of triples per sample identified or created by the
different approaches for the two datasets, as well
as how many triples we count as containing some
form of error (’Broken triples’ in the table). The
criterion for marking a triple as broken includes
missing head or tail entities inside the triple, having
more than one edge between the head and tail, and
returning nothing from ConceptNet. It is, of course,
natural that not all samples contain an entity that
can be found in ConceptNet, and consequently,
we decided to not discard the broken triples but
rather to include them to showcase the expected
performance in a realistic setting.

As can be seen from the tables, the approach
based on the Path Generator (PG) from Wang et al.
(2020) (Approach 3) returns fewer triples than the
other approaches for both ExplaGraphs and COPA-

5In practice, this is done by simply removing the under-
score prepended to all reversed directions.

SSE. When using the entities from Approach 2 as
the start and end points, denoted by the abbrevia-
tion Approach 3, the number of triples containing
some form of alignment error is over twenty per-
cent. When using the gold annotation as the start
and end point of the PG, abbreviated Approach
3-G, this goes down a bit but is still considerably
higher than the approaches based on lexical overlap.
Approach 2 is able to identify some well-formatted
triple in all of the cases for both tasks, while Ap-
proach 1 fails to retrieve anything for five percent
of the samples in COPA-SSE and two percent for
ExplaGraphs.

In order to get some notion of semantic similarity
between the different approaches and the original
context they are meant to be a structural representa-
tion of, we calculate the cosine similarity between
the context and a linearized (see Section 4.4 for
details on this procedure) version of the graphs.
The scores can be found in Table 3. Unsurprisingly,
the similarity increases with the complexity of the
approach. The basic string matching technique of
Approach 1 creates the least similar graphs, fol-
lowed by the tad more sophisticated Approach 2,
while the generative approaches are able to cre-
ate a bit more similar graphs despite having a low
number of average triples per graph. All of the
approaches are still far from the manually created
graphs — which are also linearized using the same
procedure as the others.

Approach Avg. number of triples Broken triples

Approach 1 2.90 0.05
Approach 2 2.90 0.00
Approach 3 1.39 0.20
Approach 3-G 1.64 0.12

Gold 2.12 0.00

Table 1: Statistics for the different approaches on the
training set of COPA-SSE. The number of broken triples
is reported as percentages.

Approach Avg. number of triples Broken triples

Approach 1 2.99 0.02
Approach 2 3.03 0.00
Approach 3 1.34 0.21
Approach 3-G 1.58 0.15

Gold 4.23 0.00

Table 2: Statistics for the different approaches on the
training set of ExplaGraphs. The number of broken
triples is reported as percentages.
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Approach ExplaGraphs COPA-SSE

Approach 1 0.39 0.32
Approach 2 0.45 0.42
Approach 3 0.48 0.45
Approach 3-G 0.55 0.46

Gold 0.75 0.57

Table 3: The different graphs and their average cosine
similarity with the original text.

distinct fromWomen

has context

Man

Computinghas contextCatch

Figure 5: The graph aligned with ConceptNet for both
the approaches based on lexical overlap. The original
COPA-SSE context is Premise: The women met for
coffee Alt 1: The cafe reopened in a new location; Alt 2:
They wanted to catch up with each other

6 Experiments

We now present experiments where we compare
the discussed approaches to text-to-KG alignment
for ExplaGraphs and COPA-SSE. As our PLM, we
use BERT (Devlin et al., 2019) for all experiments.
We use the base version and conduct a hyperparam-
eter grid search for both tasks. We do the same
search both with and without any appended graphs
as the former naturally makes it easier to overfit
the data, especially since both ExplaGraphs and
COPA-SSE are relatively small in size. The grid
search settings can be found in Appendix A.2 and
the final hyperparameters in Appendix A.3. We run
all experiments over ten epochs with early stopping
on validation loss with a patience value of five.

As few-sample fine-tuning with BERT is known
to show instability (Zhang et al., 2021), we run
all experiments with ten random seeds and report
the mean accuracy scores together with standard
deviations. We use the same random seeds for both
tasks; they can be found in Appendix A.4.

We find that the experiments are highly suscep-
tible to seed variation. Although we are able to
match the performance of some previous work for
the same PLM on some runs, this does not hold
across seeds. Consequently, we also perform out-
lier detection and removal. Details on this proce-
dure can be found in Appendix A.5.

Approach ExplaGraphs COPA-SSE

No graph 69.67±3.36 67.05±2.07

Approach 1 66.46±8.48 51.20±2.08

Approach 2 70.03±2.71 53.33±1.80

Approach 3 73.55±1.66 56.20±8.39

Approach 3-G 70.57±3.27 85.86±0.75

Gold 80.28±2.31 96.60±0.28

Table 4: Results of the different approaches on Expla-
Graphs and COPA-SSE. Results are reported as average
accuracy over ten runs together with standard deviations
after outlier removal, if any.

7 Results

Table 4 shows the results on ExplaGraphs and
COPA-SSE. For both datasets, we observe the fol-
lowing: Methods primarily based on lexical over-
lap provide no definitive improvement. The perfor-
mance of Approach 1 (String matching) and Ap-
proach 2 (String matching with added lemmatisa-
tion and stop word filtering) is within the standard
deviation of the experiments without any appended
graph data, and might even impede the performance
by making it harder to fit the data by introducing
noise from the KG that is not relevant for the clas-
sification at hand.

For Approach 3, based on a generative model,
we see that it too provides little benefit for Expla-
Graphs, but that when it has access to the gold
annotation entities as the start and end point of the
paths, it performs significantly better than having
access to no graphs at all for COPA-SSE.

For both tasks, having access to manually cre-
ated graphs improves performance significantly.

8 Discussion

The most striking result is perhaps the performance
of Approach 3-G on COPA-SSE. We hypothesise
that this can be explained by the fact that anno-
tators probably used exact spans from both the
premise and the correct alternative from the text
in their graphs, and consequently, they provide a
strong signal as to why there is a relation between
the premise and the correct answer choice and not
the wrong one. This is easily picked up by the
model. For ExplaGraphs, which is a text classifi-
cation problem, this is not the case: the appended
graph might provide some inductive bias, but it
does not provide a direct link to the correct choice,
as the task is to assign a label to the whole sequence,
not to choose the most probable sequence out of
two options. This conclusion is further supported
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Figure 6: The train loss curves for the different approaches on COPA-SSE.

by the observation that appending the manually
constructed graphs in their entirety has a much
larger effect on COPA-SSE than ExplaGraphs.

Furthermore, for COPA-SSE, as pointed out in
Table 1, the average triple length for the generative
approaches is rather low, so the majority of the
aligned graphs from Approach 3-G are actually
from the manually written text, not generated by
the model itself.

The key finding of our experiments is that hav-
ing access to structured knowledge relevant to the
sample at hand, here represented by the gold an-
notations, provides a significant increase in perfor-
mance even with a simple injection technique and
judging by today’s standards, a small pre-trained
language model. They also show that for datasets of
low sample sizes, such as ExplaGraphs and COPA-
SSE, the results are susceptible to noise. As the
approaches based on lexical overlap are within the
standard deviations of the experiments without any
appended graphs, it is not possible to conclude
that they add any useful information to the model.
Based on Figure 6, we think it is fair to conclude
that these methods based on lexical overlap only
provide a signal that has no relation to the correct
label. As to why the approaches based on lexical
matching do not have any effect here but reportedly
have an effect in previous work on QA, there is
one major reason that has not been discussed so
far: namely that both datasets require knowledge
that is not represented in ConceptNet. As shown
by Bauer and Bansal (2021), matching the task
with the right KG is important. It is reasonable to
question whether or not ConceptNet, which aims
to represent commonsense and world knowledge,
does indeed contain information useful for deciding

whether or not an argument counters or supports
a belief, in the case of ExplaGraphs, or if it can
aid in the selection of the most likely follow-up
scenario to a situation, in the case of COPA-SSE.
In Figure 5, both the approaches based on lexical
overlap (1 & 2) align the same exact graph with
the text context, and judging from the result, it is
pretty clear that the aligned graph has little to offer
in terms of guiding the model towards the most
likely follow-up.

9 Conclusion

In this work, we find that the process of identify-
ing and retrieving the most relevant information
in a knowledge graph is found under a range of
different names in the literature and propose the
term text-to-KG alignment. We systematise current
approaches for text-to-KG alignment and evaluate
a selection of them on two different tasks where
manually created graphs are available, providing
insights into how they compare to a scenario where
the aligned graph is completely relevant to the text.
Our experiments show that having access to such
a graph could help performance significantly, and
that current approaches based on lexical overlap
are unsuccessful under our experimental setup, but
that a generative approach using a PLM to gener-
ate a graph based on manually written text as start
and end entities adds a significant increase in per-
formance for multiple-choice type tasks, such as
COPA-SSE. For the approaches based on lexical
overlap, we hypothesise that the lack of perfor-
mance increase can be attributed to the choice of
knowledge graph, in our case ConceptNet, which
might not contain any information useful for solv-
ing the two tasks.
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Limitations

While there is a lot of work on creating and making
available large pre-trained language models for a
range of languages, there is to our knowledge not
that many knowledge graphs for other languages
than English — especially general knowledge ones,
like ConceptNet. This is a major limitation, as it
restricts research to one single language and the
structured representation of knowledge found in
the culture associated with that specific group of
language users. Creating commonsense KGs from
unstructured text is a costly process that requires
financial resources for annotation as well as avail-
able corpora to extract the graph from.

Ethics Statement

We do not foresee that combining knowledge
graphs with pre-trained language models in the way
done here, add to any of the existing ethical chal-
lenges associated with language models. However,
this rests on the assumption that the knowledge
graph does not contain any harmful information
that might inject or amplify unwanted behaviour in
the language model.
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A Appendix A

A.1 SentenceTransformer
We use the model with id ALL-MPNET-BASE-V2 to
prune the different paths and to calculate similarity.

A.2 Grid search
Based on the following values, we do a grid search
checking every possible combination.

Hyperparameter Value

lr
4 ∗ 10−5, 3 ∗ 10−5

5 ∗ 10−5, 6 ∗ 10−6

4 ∗ 10−6, 1 ∗ 10−6

Weight decay 0.01 | 0.1
Batch size 4 | 8 | 16
Dropout 0.2 | 0.3

Table 5: The values used for the grid search

A.3 Hyperparameters
Based on the grid search, we select the following
hyperparameters:

Hyperparameter With graphs w/o graphs
Learning rate 3 ∗ 10−5 4 ∗ 10−5

Dropout 0.3 0.3
Weight decay 0.01 0.1
Batch size 16 8

Table 6: The hyperparameters used for ExplaGraphs

Hyperparameter With graphs w/o graphs
Learning rate 4 ∗ 10−5 4 ∗ 10−5

Dropout 0.2 0.3
Weight decay 0.01 0.1
Batch size 8 16

Table 7: The hyperparameters used for COPA-SSE

A.4 Seeds
Seeds used for both tasks during fine-tuning:
[9, 119, 7230, 4180, 6050, 257, 981, 1088, 416, 88]

A.5 Outliers
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Figure 7: Outliers from the different runs for all graph configurations for ExplaGraphs. Circular dots mark outliers
that were removed, if any.
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Figure 8: Outliers from the different runs for all graph configurations for COPA-SSE. Circular dots mark outliers
that were removed, if any.

13


