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Abstract

Multilingual pre-training significantly im-
proves many multilingual NLP tasks, includ-
ing machine translation. Most existing meth-
ods are based on some variants of masked
language modeling and text-denoising objec-
tives on monolingual data. Multilingual pre-
training on monolingual data ignores the avail-
ability of parallel data in many language pairs.
Also, some other works integrate the available
human-generated parallel translation data in
their pre-training. This kind of parallel data
is definitely helpful, but it is limited even in
high-resource language pairs. This paper intro-
duces a novel semi-supervised method, SPDG,
that generates high-quality pseudo-parallel data
for multilingual pre-training. First, a denois-
ing model is pre-trained on monolingual data
to reorder, add, remove, and substitute words,
enhancing the pre-training documents’ quality.
Then, we generate different pseudo-translations
for each pre-training document using dictionar-
ies for word-by-word translation and applying
the pre-trained denoising model. The resulting
pseudo-parallel data is then used to pre-train
our multilingual sequence-to-sequence model,
PEACH. Our experiments show that PEACH
outperforms existing approaches used in train-
ing mT5 (Xue et al., 2021) and mBART (Liu
et al., 2020) on various translation tasks, in-
cluding supervised, zero- and few-shot scenar-
ios. Moreover, PEACH’s ability to transfer
knowledge between similar languages makes it
particularly useful for low-resource languages.
Our results demonstrate that with high-quality
dictionaries for generating accurate pseudo-
parallel, PEACH can be valuable for low-
resource languages.

1 Introduction

Machine Translation (MT) involves transferring
a text from one language to another. Recent in-
vestigations have revealed that multilingual pre-
training on a large corpus is profitable for NLP
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systems’ performance on multilingual downstream
tasks (Liu et al., 2020; Lample and Conneau, 2019;
Conneau et al., 2020; Xue et al., 2021; Devlin et al.,
2019) and knowledge transferability between lan-
guages (Wu and Dredze, 2019; K et al., 2020; Liu
et al., 2020). Furthermore, using parallel data in
pre-training encoder and encoder-decoder models
effectively increases the models’ performance in
downstream tasks (Lample and Conneau, 2019; Chi
etal., 2021). The existing pre-training approaches
are mainly based on Masked Language Modeling
(MLM) and its variations (Liu et al., 2020; Raffel
et al., 2020; Xue et al., 2021; Lewis et al., 2020).

Although using parallel data in pre-training mul-
tilingual models improves their performance on
downstream tasks, the amount of available paral-
lel data is limited (Tran et al., 2020). Moreover,
MLM-based objectives for sequence-to-sequence
(seq2seq) models usually ask the model to generate
an output in the same language as input, which is
not in the interests of translation tasks. Addition-
ally, MLM-based objectives use shared subwords
or alphabets between different languages to learn
shared embedding spaces across them (Lample and
Conneau, 2019; Lample et al., 2017; Smith et al.,
2017); this would not be possible for languages
without shared alphabets.

Using dictionaries to define anchor points be-
tween different languages in cross-lingual pre-
training of the encoder of seq2seq models has been
investigated and shown to be effective for unsu-
pervised translation (Duan et al., 2020). Still, it
never has been used as a method for pre-training
multilingual seq2seq models.

Our proposed method, Semi-Supervised Pseudo-
Parallel Document Generation (SPDG), addresses
the challenge of limited parallel data for low-
resource languages by leveraging dictionaries to
generate pseudo-parallel documents. SPDG adopts
unsupervised translation techniques (Kim et al.,
2018; Lample et al., 2017) to generate a high-
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quality translation for each pre-training document.
We use a pre-trained denoising seq2seq model with
word reordering, adding, removing, and substitut-
ing to enhance the quality of the word-by-word
translated document. The improved unsupervised
translated text is used as the target text for train-
ing our multilingual seq2seq model, PEACH, us-
ing SPDG as a new pre-training method. SPDG
enables transfer of knowledge between similar
languages, making it particularly useful for low-
resource languages.

Our experiments show that PEACH outperforms
the pre-trained models with mT5’s MLM and
mBART’s MLM with Reordering objectives in En-
glish, French, and German. Additionally, PEACH
demonstrates strong performance in zero- and few-
shot scenarios. Moreover, we test our model for
other multilingual tasks, such as natural language
inference, to investigate the model’s ability in this
task. Our results show that our model achieves
a higher score in this task than other objectives,
which shows PEACH’s ability to transfer knowl-
edge between languages. The main contribution of
this paper is twofold:

* We propose a novel semi-supervised pre-
training method using bilingual dictionaries
and pre-trained denoising models for seq2seq
multilingual models.

* We show the benefits of SPDG objective in
translation, supervised and zero- and few-shot
cases, and knowledge transfer between lan-
guages.

2 Related Work

Among the first endeavor for MT, dictionary and
rule-based methods were popular (Dolan et al.,
1993; Kaji, 1988; Meyers et al., 1998), followed by
Knowledge-Based Machine Translation (KBMT)
and statistical methods (Mitamara et al., 1993; Car-
bonell et al., 1981; Koehn, 2009; Al-Onaizan et al.,
1999). The popularity of neural machine transla-
tion has only grown in the recent decade with the
introduction of the first deep neural model for trans-
lation (Kalchbrenner and Blunsom, 2013).

While the RNN-based seq2seq models seemed
to be promising in neural machine translation (Wu
et al., 2016; Bahdanau et al., 2015; Sutskever
et al., 2014), the advent of the transformer ar-
chitecture (Vaswani et al., 2017) plays an inte-
gral role in modern MT. With the introduction of
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the transformer architecture, pre-training general-
purpose language models seemed to be an effec-
tive way to improve different NLP tasks (Devlin
et al., 2019; Liu et al., 2019). In most cases, trans-
former models were asked to denoise a noisy input
to learn a language (Lewis et al., 2020; Devlin
et al., 2019; Raffel et al., 2020). One of the most
popular pre-training objectives for both encoder-
only and encoder-decoder models is called Masked
Language Modeling (MLM), in which the model
should predict the masked part of a document and
generate it in its output (Raffel et al., 2020). How-
ever, many other objectives were also developed for
encoder-decoder and encoder-only models (Song
et al., 2019; Clark et al., 2020).

Meanwhile, unsupervised methods for neural
machine translation (NMT) using monolingual cor-
pora based on adversarial learning (Lample et al.,
2017) and transformer-based text denoising (Kim
etal., 2018) was tested and demonstrated promising
outcomes. Using bilingual dictionaries for defin-
ing anchors in pre-training unsupervised translation
models was successful (Duan et al., 2020) but never
has been used for generating data for supervised
translation on a large scale. Our work differs from
using dictionaries as anchor points for learning a
better representation for tokens in encoder (Duan
et al., 2020). We use dictionaries to generate a
pseudo translation of the source language in the tar-
get language instead of just defining some anchor
points. Thus, the model in pre-training steps learns
to generate a text in the target language based on in-
put in the source language using only monolingual
data and dictionaries on a large scale.

Pre-training task-specific models by generating
pseudo-summaries was successful in some cases
for summarization (Salemi et al., 2021; Zhang
et al., 2020), but it has not been performed for
pre-training encoder-decoder seq2seq models for
supervised translation according to the best of our
knowledge. On the other hand, the endeavors for
pre-training specific models for translation ended
up in training multilingual language models (Xue
et al., 2021; Liu et al., 2020). mT5 (Xue et al.,
2021) is trained with the MLM objective of T5
(Raffel et al., 2020). In its pre-training objective,
some spans of the input document are masked by
specific tokens, and the model has to predict those
spans by generating them in its output. mBART
(Liu et al., 2020) is another multilingual model
based on the BART (Lewis et al., 2020) model,



pre-trained with MLM with Reordering objective.
In mBART’s pre-training objective, the order of
sentences in the input document is corrupted while
a specific token masks some spans of the document.
The model has to generate the original document
in its output.

PEACH is different from both mentioned mod-
els because we use a semi-supervised method to
generate several pseudo-translations (one for each
selected language) of each pre-training document.
These translations are then fed to pre-train PEACH.
Furthermore, in the mentioned models, the inputs
and outputs are from the same language while we
ask the model to translate texts from one language
to another in our pre-training phase.

3 PEACH

PEACH is a new sequence-to-sequence multilin-
gual transformer model trained with SPDG, a semi-
supervised pseudo-parallel document generation
method. This section explains the pre-training ob-
jective and the model architecture.

3.1 Semi-Supervised Pseudo-Parallel
Document Generation (SPDG)

Our proposed pre-training objective, SPDG, gen-
erates a pseudo-translation of the input document.
For generating pseudo-translations, we use Kim
et al. (2018)’s approach for unsupervised transla-
tion with some modifications. Our pipeline for
pre-training a model based on SPDG is shown in
Figure 2. We pre-train a seq2seq denoising model
for the target language using the pre-training cor-
pus of that language. Next, for each pre-training
document in the source language, we translate it
to the target language word-by-word using dictio-
naries. Then, we give this word-by-word translated
document to the pre-trained model with denoising
objectives to improve its quality and restore miss-
ing words.

Using this method, we can generate the pseudo-
translation of each pre-training document from
the source language to the target language. We
use these pseudo-translations as gold translations
for each pre-training document to pre-train a new
language model for translation tasks. Since this
pre-training objective is similar to translation, we
hypothesize that the pre-trained model learns the
translation task faster than the models trained using
monolingual data.
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Word-by-Word Translation Using Dictionaries
The first step to generate pseudo-parallel docu-
ments is to map sentences from one language to
another using dictionaries. We used bilingual dic-
tionaries provided by Conneau et al. (2017) for our
work. To map sentences word-by-word from one
language to another, we first tokenize sentences
using the NLTK! library. Then, for each token,
we find a translation for the token in the target
language using a dictionary from the source to the
target language. Some tokens, such as punctuations
and numbers, do not need to be translated to the tar-
get language because they are shared between them.
Therefore, we just put them in the translated words
set. Furthermore, we can not find any translation
for named entities in dictionaries. To solve this is-
sue, spaCy? small (<lang>_core_news_sm) models
for named entity recognition for each language are
used to extract named entities. We transliterate the
named entities and put them in the translated words
set. Tokens without translation in dictionaries that
are not named entities, punctuations, or numbers
are skipped. We hope denoising objectives could
find an appropriate substitute for these tokens in
the next step. The implementation details of word-
by-word translation can be found in Appendix B.

Improving Word-by-Word Translations with
Denoising Objectives A critical problem with
word-by-word translation is that the word order in
the target language is not usually the same as the
source. Furthermore, some words in the source
language might not have any translation in the tar-
get language or vice versa. Additionally, since
many words have multiple meanings, word-by-
word translation might select the wrong translation
for a word.

We define four denoising objectives to overcome
the mentioned challenges, and train a denoising
model for each language. The pipeline is shown
in Figure 1. First, we shuffle the words in each
sentence in a document while keeping the relative
order of shuffled words in different sentences in
the document. Next, we remove, add, and replace
some of the words in each sentence to encourage
the model to resolve the aforementioned issues in
word-by-word translation. We use the corrupted
document as the model’s input and ask the model
to generate the original one as its output.

The deshuffling objective aims to improve the

1https: //www.nltk.org/
2https: //spacy.io/
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Shuffling words in
each sentence

PEACH ist ein fantastisches
Modell. Wir haben es nach
meinem toten papageien haustier ———
benannt. Er war intelligent und
freundlich.

Modell ist PEACH fantastisches
ein. haben Wir papageien haustier
toten nach es meinem benannt.
war Er und intelligent freundlich.

Word replacement Word addition and removal

Modell ist PEACH fantastisches
ein. haben haustier
toten Fach s meinem
benannt. war Er und
intetigent freundlich.

Modell ist PEACH fantastisches
ein. haben haustier
toten nach es meinem benannt.
war Er und intelligent freundlich.

—

Training mode

Decoder H

Target output for the denoising
model in its training

Encoder ‘ -
‘ Input of the denoising

model in its training

Denoising Model

Figure 1: An overview of denoising objectives used for training denoising models. We use word shuffling, addition,
substitution, and removing based on the values in Table 7 in Appendix C.

English document for Word by Word Transaltion

pre-training the PEACh

English-German Dictionary

1 the das, den, dem, der, die
Peach is a new multilingual model
that tries to learn translation by
generating pseudo-translations in

its pre-training.

2 talk |reden, gespréch, vortrag—»

Training mode

Ubersetzungen in es ist Vortraining

Inference mode

7){ Encoder H Decoder }»

Pre-Trained Denoising Model

Peach ist a Neu mehrsprachig
Modell das versucht zu lernen
Ubersetzung Pseudo-

Peach ist ein neues

Input of the PEACH in
its pre-training

‘ Encoder H Decoder ‘

mehrsprachiges Modell, das

versucht, Ubersetzungen zu

lernen, indem es in seinem
Target output for the PEACH  vortraining Pseudotibersetzungen

PEACH

in its pre-training erzeugt.

Figure 2: An overview of our pre-training pipeline for training a model based on SPDG. The method uses the output
of the word-by-word translation of a pre-training document as the input of the trained denoising model based on

Figure 1 to improve its quality.

ability of the model to reorder word-by-word trans-
lated documents. Removing and adding words help
the model to correct some translations. Moreover,
replacing is beneficial especially for correcting the
word-by-word translation of ambiguous words.

Figure 2 depicts our pipeline for pre-training
with SPDG on a single example. In the mentioned
example, after word-by-word translation, some of
the words in the pre-training document cannot be
translated into German because they do not exist
in the dictionary. Furthermore, the relative order
of words in the word-by-word translated text is
not grammatically correct, and some words can be
substituted with more suitable ones. It can be seen
that after applying the denoising model to the word-
by-word translated text, the mentioned problems
are resolved.

3.2 Pre-Training with Multilingual SPDG

Most common multilingual models, such as mT5
(Xue et al., 2021) and mBART (Liu et al., 2020),
use MLM and MLM with Reordering as their pre-
training objectives. Despite their success, these
objectives are not perfectly aligned with the goal
of MT. Specifically, these objectives are designed
to work on monolingual inputs; they denoise the

input document in a specific language and produce
the denoised version in the same language. Here,
we design Algorithm 1, in which the pre-training
task’s input is in one language, and its output is in
another language. The algorithms’ inputs are the
corpora of all languages that the model should be
trained on as well as their names. The algorithm
generates the input-output pairs for pre-training the
multilingual model.

Algorithm 1: Multilingual SPDG

Input :Corpora, Langs
Output : MInputs,Moutputs
MInputs ==
MOutputs := )
for corpus in Corpora do
for doc in corpus do
for lang in Langs — Lang(doc) do
pst :== SPDG(doc, Lang(doc), lang)
M Inputs := M Inputs U {doc}
MOutputs := M Outputs U {pst}
end for
end for
end for

In Algorithm 1, given a pre-training document,
we generate a pseudo-translation of it to each of the
other languages. So, the model can observe transla-
tions in different languages for a single document.
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This helps the model in learning cross-lingual
knowledge even about a language not present in a
specific training instance. The mentioned claim is
because the model learns about the language differ-
ences by translating the same input into multiple
languages.

It should be noted that based on the goal of
pre-training a language model for translation, it
is possible to change Algorithm 1. For example,
if the multilingual model is going to be used to
just translate from or to English, there is no need
to pre-train the model with the task of generating
pseudo-translation from German to French. Since
we are interested in evaluating our model on all
pairs of the pre-training languages, we generate
pseudo-translation for all pairs in Algorithm 1.

Architecture Our model, PEACH, and the other
presented denoising models are all based on trans-
former (Vaswani et al., 2017) encoder-decoder ar-
chitecture with a 12 layer encoder and a 12 layer
decoder with 768 hidden size, 3072 feed-forward
filter size, and 12 self-attention heads.

4 Experiments

In this section, we compare the results of PEACH,
trained with SPDG, with other common objectives
utilized for pre-training multilingual models. To
investigate the effectiveness of SPDG in compari-
son with common objectives, we pre-trained two
other models based on mT5’s MLM objective (Xue
et al., 2021) and mBART’s MLM with Reordering
objective (Liu et al., 2020) in the same setup.

The codes for pre-training and fine-tuning of all
models are publicly available on GitHub?.

4.1 Pre-Training Data and Configuration

We pre-train PEACH on English, French, and Ger-
man with the CC100 corpora (Wenzek et al., 2020;
Conneau et al., 2020). Due to the lack of comput-
ing power, we cannot use more than around 550M
words of text from each language. So, we train
our model on around 1.6B total words. Our pre-
training batch size is 96, with a maximum of 512
input and output tokens, and we train it for 500K
steps on Google Colab TPUs (v2-8). The AdaFac-
tor (Shazeer and Stern, 2018) optimizer with a de-
cay rate of 0.8 and a dropout rate of 0.1 is used
in pre-training and fine-tuning. Furthermore, we
use the SentencePiece BPE algorithm (Gage, 1994;

3https ://github.com/AmirAbaskohi/PEACH
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Kudo and Richardson, 2018) to generate a vocab-
ulary of 32K words for denoising models and 96k
for multilingual models. We pre-train PEACH with
Multilingual SPDG for 75% of its pre-training steps
and mT5’s MLM (Xue et al., 2021) approach for
the other 25% pre-training steps. The latter pre-
training objective is used because it increases the
scope of the fine-tuning tasks that our model can
do well. Indeed, multilingual SPDG teaches the
model to transform a text from one language to an-
other, but it does not help the model in tasks where
their inputs and outputs are in the same language.
Therefore, pre-training the model with MLM for a
few steps is helpful.

We train the denoising models with the same
setup as PEACH. An important factor in training
denoising models is the rate of corruption for train-
ing documents. We shuffle all words in sentences
while removing, adding, and replacing a small pro-
portion of them. We use the word-by-word trans-
lation script outputs to decide on these rates. First,
we calculate the rate of missing words in word-
by-word translation using dictionaries for all lan-
guages to a specific language on around 1GB of
text of each language. Then, we use a normal dis-
tribution with mean and standard deviation of the
same as the calculated numbers to define the rate
of words that should be removed from a sentence.
The values of corruption rates for each language
are reported in Table 7 in Appendix C, in which we
explain the method to find the best values for rates.

Due to the lack of computing power, we cannot
train a large-scale PEACH and compare it with pre-
trained models like mT5 or mBART. Instead, we
train two models based on mT5 (Xue et al., 2021)
objective, which we call MLM, and mBART (Liu
et al., 2020) objective, which we call MLM with
Reordering, with the same setup as PEACH. Also,
we fine-tune a Transformer model with randomly
initialized weights on downstream tasks.

4.2 Results

This section evaluates PEACH in various trans-
lation scenarios, including supervised, zero- and
few-shot. We also evaluate PEACH’s ability for
cross-lingual knowledge transfer in translation and
natural language inference tasks.

Supervised Translation In order to evaluate
PEACH on translation tasks, we fine-tune it on the
EN-DE and EN-FR parts of the WMT14 dataset
(Bojar et al., 2014). Additionally, we fine-tune our
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WMT14 WMT19
Model
FR<<EN DE<—EN DE<—FR
MLM 21.38 +—» 21.64 17.88 +—» 19.54 16.59 <= 16.54
MLM with Reordering | 29.02 «— 28.71 22.80 <= 25.53  21.39 +— 22.45
Transformer 9.15 <~ 9.17 10.02 <+ 9.79 9.16 «+~ 10.31
PEACH 31.25 <> 2998 23.61 < 2697 23.13 <~ 25.25

Table 1: The supervised translation results evaluated with BLEU score.

WMT14 WMT19
Model
FR—EN DE<«+EN DE—FR
SPDGEN «— FR (2001( steps) 25.98 <~ 25.42 — —
SPDG gy . pr (200K steps) — 17.75 < 22.97 —
SPDGrr « pr (200K steps) — — 16.24 <— 18.77
SPDGEN - rR «s DE (100K steps) | 27.40 <= 26.60 21.21 +— 23.89 20.49 < 22.32
SPDGEeN — rR « DE (200k steps) | 29.04 <— 28.08 22.33 <~ 25.29 21.67 < 23.29

Table 2: Results of different models trained with SPDG on either two or three indicated languages. The number of

pre-training steps is shown in parenthesis.

Dataset = EN-FR Dataset = FR-EN

301
314

304 294

BLEU

28

284 274

T T T T T
100k 200k 300k 400k 500k
Steps

T T T T T
100k 200k 300k 400k 500k
Steps

Figure 3: PEACH’s performance in pre-training steps
on WMT14’s EN-FR section. Results for EN-DE and
DE-FR are reported in Table 14 in Appendix E.

model on the FR-DE part of the WMT19 dataset
(Barrault et al., 2019) in the same setup. Since the
test set of WMT19 DE-FR datasets is not avail-
able publicly to the best of our knowledge, we
evaluated the models on its validation set. The
model is fine-tuned for 50K steps with a batch size
of 96, a learning rate of 5 x 1075, and the same
optimizer as pre-training. We use 10K warmup
steps for fine-tuning. More information about the
experiments’ setup is reported in Appendix D. It
should be noted that while translation downstream
datasets usually have millions of samples, we at
most use 50000 x 96 samples of them due to the
lack of computing power. To support the selected
number of samples for the downstream task, we re-
port pre-training and fine-tuning time on the whole
datasets for an epoch in Appendix D. This sample
count is less than 15% of samples for the WMT14

37

English-French dataset. Additionally, since the pri-
mary purpose of this paper is to introduce a new
method for pre-training multilingual models and
the comparisons happen in the same setup for all
objectives, the results are fair and valid.

The results of our model and other trained mod-
els on translation tasks are reported in Table 1. Ad-
ditionally, the results of our model on EN-FR down-
stream dataset in some pre-training steps are shown
in Figure 3. Also, the results for other downstream
datasets are reported in Table 14 in Appendix E.
The presented results show that PEACH outper-
forms other models, not only with 500K steps
of pre-training but also even with its 200K steps
pre-training checkpoint. Furthermore, the MLM
method used in mT5 achieves worse results than
MLM with Reordering objective that mBART used.
We believe this is because the MLLM objective of
mTS5 just asks the model to generate the masked
spans in the output, while mBART’s objective asks
the model to reorder and predict the masked spans
of the input document simultaneously. Indeed, the
objective of mBART asks the model to generate
complete sentences in its output, and that is why
it can generate better translations. On the other
hand, mT5 just predicts spans of text, which are
not complete sentences in many cases.

We believe that the better results of our model
stem from its pre-training objective which is similar
to translation tasks. Indeed, we pre-trained our



model on a massive amount of pre-training data
with a task similar to translation, which increases
the model’s ability in translation when it is fine-
tuned with a smaller amount of translation samples.
To investigate the effect of pre-training on more
than two languages on the performance of our
model on translation tasks, we pre-train a model
based on SPDG for 200K steps for each pair of
languages, and fine-tune them for 50k steps, with
the same setup as PEACH. The results are reported
in Table 2. We show that our multilingual model
with three languages outperforms other models not
only with full pre-training for 200K steps but also
with 100K steps of pre-training. We believe this is
because we perform the SPDG objective between
each pair of languages in its pre-training. Indeed,
this approach for pre-training multilingual models
helps the model simultaneously gain knowledge
about other languages than the pair of languages in
each pre-training example because it observes the
same input with different outputs for each language.
These results support our claim in section 3.2.

Zero- and Few-Shot Translation We evaluate
the pre-trained models in a zero-shot setting to
investigate our model’s ability in low-resource sce-
narios. Each pre-trained model is evaluated on the
test set of WMT14 EN-FR dataset without fine-
tuning. The results of this experiment are reported
in Figure 4. The results for EN-DE and DE-FR sec-
tion of WMT14 and WMT19 are reported in Table
15 in Appendix E. The results in Figure 4 and Ta-
ble 15 show that our model, PEACH, outperforms
other models in zero-shot translation. We believe
this stems from the similarity of its pre-training
objective with actual translation tasks.

Dataset = EN-FR Dataset = FR-EN

PEACH

MLM with Reordering

10 5 10
BLEU

5
BLEU

Figure 4: Comparing the pre-trained models in zero-shot
setting on WMT14 EN-FR section. Results for EN-DE
and DE-FR are reported in Table 15 in Appendix E.

For few-shot experiments, we fine-tuned
PEACH on 50K samples from the English-French
section of the WMT14 dataset at a maximum of
50K steps. The results are shown in Figure 5.
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Accordingly, PEACH outperforms MLM with Re-
ordering model trained in the same setup. Addi-
tionally, PEACH surpasses MLM and MLM with
Reordeing models’ checkpoints in 50K fine-tuning
steps on around 5SM samples, after only 10K and
25K steps of fine-tuning on 50K samples. We con-
clude that PEACH performs well in low-resource
scenarios because it is trained on a massive amount
of psuedo-translation data.

30 4

254

15 4

Model
—— PEACH
MLM with Reordering
— MLM
Setting
—— Trained on 50K samples
—— Trained on 5M samples for 50K steps

101

T T T T
20000 30000 40000 50000

Step

T
10000

Figure 5: Results of fine-tuning PEACH with 50K sam-
ples of WMT14 EN-FR dataset for 0 to 50k steps, and
its comparison with MLM and MLM with Reordering
objectives on 50000 x 96 data points. PEACH outper-
forms the fully-trained MLM models after only 25K
fine-tuning steps.

Cross-Lingual Transfer for Translation Here
we evaluate each fine-tuned model on a language
pair on how it performs for other pairs and direc-
tions. We use the fine-tuned models in Table 1 for
these experiments.

The experimental results in Table 3 demonstrate
that PEACH can transfer the knowledge learned
from one language pair to another better than MLM
with Reordering model. We believe this stems from
our pre-training method in which we ask the model
to generate pseudo-translations between each pair
of languages. Furthermore, the results confirm Liu
et al. (2020)’s experiments and show that when-
ever a model fine-tuned on a dataset from A to B
1s evaluated on A to C or C to B or B to A, the
results on the evaluation dataset increase more than
other combinations. Additionally, because the in-
puts of PEACH’s encoder are human-generated
texts while the decoder’s expected outputs are the
outputs of the denoising models, fine-tuning from
A to B increases the performance of C to B more
than A to C. Indeed, fine-tuning from A to B helps



PEACH MLM with Reordering
Fine-Tuned / Evaluated WMT14 WMT19 WMT14 WMT19
FR<—EN DE<«—EN DE<«-FR FR<—EN DE<«—EN DE<«—FR
EN — FR — > 11.38 12.35 <= 16.57 12.38 < 21.91 — <> 11.25 11.52 <= 12.51 11.65 <= 11.70
FR —- EN 11.30 <= — 14.62 <~ 21.35 15.05 < 17.28 11.27 - — 12.88 < 12.99 12.68 < 11.28
EN — DE 20.63 < 11.99 — > 12.70 19.88 < 13.84 10.80 «— 11.29 — > 12.64 12.89 < 11.07
DE — EN 18.97 <~ 24.54 13.39 <~ — 14.99 < 18.85 10.99 «+ 13.85 12.71 < — 11.23 «+— 11.09
FR — DE 23.64 < 24.69 18.59 +— 22.69 — <> 23.35 12.07 <— 11.43 12.81 < 11.54 — < 20.65
DE — FR 24.88 +» 24.94  20.12 «~ 20.74 23.03 +— — 14.72 - 11.57  12.86 <> 11.92 21.56 «— —

Table 3: The results of experiments on cross-lingual knowledge transfer for translation. We fine-tune the model on
one language and evaluate it on other languages. The results are reported using BLEU score.

Model XNLI
EN FR DE
MLM 676 480 .463
MLM with Reordering | .710 .603 .527
PEACH 745 637  .636

Table 4: The accuracy results on the XNLI benchmark.

the decoder of our model learn to generate better
outputs by observing human-generated texts in its
decoder. This is because our model did not en-
counter human-generated texts as gold labels in
its output during pre-training. On the other hand,
observing more human-generated inputs is not as
helpful as human-generated outputs since the in-
puts of the model’s encoder were human-generated
text in its pre-training.

In support of the previous point, the results in
Table 3 show that PEACH fine-tuned on the DE-EN
dataset achieves better results than MLLM fine-tuned
on the FR-EN dataset, when evaluated on the FR-
EN dataset. Additionally, PEACH fine-tuned on the
EN-FR dataset achieves a comparable result with
MLM with Reordering fine-tuned on the DE-FR
dataset, when evaluated on the DE-FR dataset (0.54
difference in BLEU). We believe this experiment
shows PEACH'’s ability to transfer the knowledge
learned from a language to another effectively.

Cross-Lingual Transfer for natural language
inference We focus on translation in this pa-
per. However, we expect that PEACH’s ability
to transfer knowledge between languages is suit-
able for other cross-lingual scenarios as well. To
test this hypothesis, we evaluate PEACH on the
XNLI benchmark (Conneau et al., 2018). We fine-
tune our model for 50K steps with a batch size of
256, a learning rate of 1073, and a maximum out-
put length of 16 on the MultiNLI English dataset
(Williams et al., 2018) and apply it to the XNLI
benchmark. The results of this experiment are re-
ported in Table 4.
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According to Table 4, PEACH outperforms other
models in transferring knowledge from English to
German and French. Considering our pre-training
objective, in which we ask the model to generate
pseudo-translations for each pair of pre-training
languages, we believe this objective helps PEACH
to transfer the knowledge about the English dataset
to other languages better than other pre-trained
models.

5 Conclusion

We introduced SPDG, a semi-supervised method
for pre-training multilingual seq2seq models, to ad-
dress the lack of parallel data between different lan-
guages. In this new method, we use bilingual dictio-
naries and denoising models trained with reorder-
ing, adding, substituting, and removing words to
generate a pseudo-translation for each pre-training
document. We use this generated data to train our
multilingual model, PEACH, for English, French,
and German languages. Our results show that
PEACH outperforms the common pre-training ob-
jectives for training multilingual models. Further-
more, PEACH shows a remarkable ability in zero-
and few-shot translation and knowledge transfer
between languages.

Limitations

The main limitations of our work can be classi-
fied into two types: 1) SPDG’s limitations and 2)
Computational limitations.

SPDG’s Limitations Although our method can
address the issue of limited parallel data between
different languages, it does not solve the problem
completely. First, our method uses bilingual dictio-
naries to translate each pre-training document from
one language to another, which is not always avail-
able for low-resource languages. Furthermore, the
available dictionaries for low-resource languages
do not have a high quality and are not comparable



with high-resource languages. Additionally, we use
Named Entity Recognition (NER) models to trans-
fer named entities of each pre-training document
into its pseudo-translation, which is unavailable for
some low-resource languages. Therefore, using un-
supervised methods for NER can be a solution for
the mentioned problem, which is not investigated
in this work.

Computational limitations We did not have ac-
cess to clusters of GPU or TPU to train our models
on a large scale and compare them with the results
reported in other papers about multilingual models.
However, we tried to provide a realistic setting for
our experiments. Further investigation into training
models on a larger scale, same as standard multi-
lingual models, can improve this work.

References

Yaser Al-Onaizan, Jan Curin, Michael Jahr, Kevin
Knight, John Lafferty, Dan Melamed, Franz-Josef
Och, David Purdy, Noah A Smith, and David
Yarowsky. 1999. Statistical machine translation. In
Final Report, JHU Summer Workshop, volume 30.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Loic Barrault, Ondfej Bojar, Marta R. Costa-jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Miiller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1-61, Florence, Italy. As-
sociation for Computational Linguistics.

Ondfej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Johannes Leveling,
Christof Monz, Pavel Pecina, Matt Post, Herve Saint-
Amand, Radu Soricut, Lucia Specia, and Ale§ Tam-
chyna. 2014. Findings of the 2014 workshop on
statistical machine translation. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 12-58, Baltimore, Maryland, USA. Associa-
tion for Computational Linguistics.

Jaime G. Carbonell, Richard E. Cullingford, and Ana-
tole Gershman. 1981. Steps toward knowledge-based
machine translation. [EEE Transactions on Pat-
tern Analysis and Machine Intelligence, PAMI-3:376—
392.

Zewen Chi, Li Dong, Shuming Ma, Shaohan Huang,
Saksham Singhal, Xian-Ling Mao, Heyan Huang,
Xia Song, and Furu Wei. 2021. mT6: Multilingual

40

pretrained text-to-text transformer with translation
pairs. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 1671-1683, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Guillaume Lample, Marc’ Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2017.
Word translation without parallel data. arXiv preprint
arXiv:1710.04087.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina
Williams, Samuel Bowman, Holger Schwenk, and
Veselin Stoyanov. 2018. XNLI: Evaluating cross-
lingual sentence representations. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 24752485, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bill Dolan, Stephen D. Richardson, and Lucy Van-
derwende. 1993. Combining dictionary-based and
example-based methods for natural language analysis.
In TM1.

Xiangyu Duan, Baijun Ji, Hao Jia, Min Tan, Min Zhang,
Boxing Chen, Weihua Luo, and Yue Zhang. 2020.
Bilingual dictionary based neural machine translation
without using parallel sentences. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1570-1579, Online.
Association for Computational Linguistics.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users J., 12(2):23-38.

Karthikeyan K, Zihan Wang, Stephen Mayhew, and
Dan Roth. 2020. Cross-lingual ability of multilin-
gual bert: An empirical study. In 8th International


https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.3115/v1/W14-3302
https://doi.org/10.18653/v1/2021.emnlp-main.125
https://doi.org/10.18653/v1/2021.emnlp-main.125
https://doi.org/10.18653/v1/2021.emnlp-main.125
https://doi.org/10.48550/ARXIV.2003.10555
https://doi.org/10.48550/ARXIV.2003.10555
https://doi.org/10.48550/ARXIV.2003.10555
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.143
https://doi.org/10.18653/v1/2020.acl-main.143
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr

Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Hiroyuki Kaji. 1988. An efficient execution method
for rule-based machine translation. In Coling Bu-
dapest 1988 Volume 2: International Conference on
Computational Linguistics.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 conference on empirical methods in natural
language processing, pages 1700-1709.

Yunsu Kim, Jiahui Geng, and Hermann Ney. 2018. Im-
proving unsupervised word-by-word translation with
language model and denoising autoencoder. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 862—868,
Brussels, Belgium. Association for Computational
Linguistics.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
EMNLP.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. In NeurIPS.

Guillaume Lample, Alexis Conneau, Ludovic Denoyer,
and Marc’ Aurelio Ranzato. 2017. Unsupervised ma-
chine translation using monolingual corpora only.
arXiv preprint arXiv:1711.00043.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 7871-7880, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726-742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Adam Meyers, Michiko Kosaka, and Ralph Grishman.
1998. A multilingual procedure for dictionary-based
sentence alignment. In Proceedings of the Third Con-
ference of the Association for Machine Translation
in the Americas: Technical Papers, pages 187-198,
Langhorne, PA, USA. Springer.

41

Teruko Mitamara, Eric H Nyberg 3rd, and Jaime G
Carbonell. 1993. Automated corpus analysis and the
acquisition of large, multi-lingual knowledge bases
for mt. In Proceedings of the Fifth Conference on
Theoretical and Methodological Issues in Machine
Translation of Natural Languages.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Alireza Salemi, Emad Kebriaei, Ghazal Neisi Minaei,
and Azadeh Shakery. 2021. ARMAN: Pre-training
with Semantically Selecting and Reordering of Sen-
tences for Persian Abstractive Summarization. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages
9391-9407, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596-4604.
PMLR.

Samuel L. Smith, David H. P. Turban, Steven Hamblin,
and Nils Y. Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. Mass: Masked sequence to sequence
pre-training for language generation. In /CML.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume
2, NIPS’14, page 3104-3112, Cambridge, MA, USA.
MIT Press.

Chau Tran, Yuqing Tang, Xian Li, and Jiatao Gu. 2020.
Cross-Lingual Retrieval for Iterative Self-Supervised
Training. Curran Associates Inc., Red Hook, NY,
USA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Con-
neau, Vishrav Chaudhary, Francisco Guzman, Ar-
mand Joulin, and Edouard Grave. 2020. CCNet:
Extracting high quality monolingual datasets from
web crawl data. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
4003-4012, Marseille, France. European Language
Resources Association.


https://doi.org/10.18653/v1/D18-1101
https://doi.org/10.18653/v1/D18-1101
https://doi.org/10.18653/v1/D18-1101
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.48550/ARXIV.1907.11692
https://doi.org/10.48550/ARXIV.1907.11692
https://link.springer.com/chapter/10.1007/3-540-49478-2_18
https://link.springer.com/chapter/10.1007/3-540-49478-2_18
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2021.emnlp-main.741
https://doi.org/10.18653/v1/2021.emnlp-main.741
https://doi.org/10.18653/v1/2021.emnlp-main.741
http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
https://doi.org/10.48550/ARXIV.1702.03859
https://doi.org/10.48550/ARXIV.1702.03859
https://doi.org/10.48550/ARXIV.1702.03859
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.aclweb.org/anthology/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.lrec-1.494
https://www.aclweb.org/anthology/2020.lrec-1.494

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, becas:
The surprising cross-lingual effectiveness of BERT.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 833-844, Hong
Kong, China. Association for Computational Linguis-
tics.

Y. Wu, M. Schuster, Z. Chen, Quoc V. Le, Moham-
mad Norouzi, Wolfgang Macherey, M. Krikun, Yuan
Cao, Q. Gao, Klaus Macherey, J. Klingner, Apurva
Shah, M. Johnson, X. Liu, Lukasz Kaiser, Stephan
Gouws, Y. Kato, Taku Kudo, H. Kazawa, K. Stevens,
George Kurian, Nishant Patil, W. Wang, C. Young,
J. Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals,
G. Corrado, Macduff Hughes, and J. Dean. 2016.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
ArXiv, abs/1609.08144.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483-498, On-
line. Association for Computational Linguistics.

Jingging Zhang, Yao Zhao, Mohammad Saleh, and Peter
Liu. 2020. PEGASUS: Pre-training with extracted
gap-sentences for abstractive summarization. In Pro-
ceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 11328-11339.
PMLR.

A Pre-Training and Downstream
Datasets’ Information

We use the CC100 corpus (Wenzek et al., 2020;
Conneau et al., 2020) for pre-training all models in
this work. More specifically, we used the English
(EN), French (FR), and German (DE) parts of the
mentioned corpus. Due to the lack of computing
power and the massive amount of paragraphs in
this corpus, we use around 3GB of the text of each
language, approximately 550M words from each
language and a total of 1.6B words, to pre-train
our models. For more reproducibility, we select
500000 x 96, the total pre-training steps multiplied
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by the used batch size, first paragraphs of each
mentioned language in the corpus as pre-training
samples.

In order to evaluate the models for translation
tasks, we use English to French and English to
German sections of the WMT14 (Bojar et al., 2014)
and the French to German part of the WMT19
dataset (Barrault et al., 2019). The total number of
samples in each set of each pre-training dataset is
reported in Table 5. We do not use all the samples
in all datasets due to the lack of computing power.
We use at most 50000 x 96, the total fine-tuning
steps multiplied by the batch size, unique samples
of each dataset. We use all the samples for datasets
with fewer samples than the mentioned number.
To the best of our knowledge, the test set of the
WMT19 FR-DE dataset is not publicly available.
Therefore, we report the results on the validation
set instead of the test set.

For the experiment on transferring knowledge
from one language to another, we fine-tune PEACH
on the MultiNLI dataset (Williams et al., 2018),
consisting of natural language inference samples
for the English language. Then, we evaluate the
model on English, French, and German samples in
test set in the XNLI dataset (Conneau et al., 2018),
consisting of natural language inference samples
for the mentioned languages. The number of sam-
ples for each dataset is reported in Table 6. Both
mentioned datasets use three labels; neutral, entail-
ment, and contradiction.

Dataset | Language Train Dev  Test
WMT14 | EN<«»FR 40836715 3000 3003
WMT14 | EN«—DE 4508785 3000 3003
WMT19 | EN«—FR 9824476 1512 -

Table 5: Number of Samples in supervised stranslation
datasets.

Dataset | Language  Train Test
MultiNLI EN 392702 -
XNLI EN - 5010
XNLI DE - 5010
XNLI FR - 5010

Table 6: Number of Samples in natural language infer-
ence datasets.
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B Word-by-Word Translation
Implementation Details

The word-by-word translation was performed in
batches of 1K documents. The batch size does not
affect the algorithm’s performance and should be
chosen based on the available resources.

After lower casing the documents in a batch,
named entities are extracted using the spaCy toolkit.
The identified entities should be divided by white
space characters since the named entities some-
times consist of multiple words. Since the spaCy
toolkit for named entity recognition sometimes
chooses definite articles as a part of named enti-
ties, we filter out definite articles such as "the,"
"le," "la," "les," "der," "die," and "das" and trans-
late them using dictionaries in following steps.

In order to perform word-by-word translation,
we first tokenize the document. We search for the
translation of each token from the source language
to the destination language using the appropriate
dictionary. If we found more than one possible
translation for a token, we uniformly select one of
them. Suppose we can not find any translations for
a token in the source to the destination language
dictionary. In that case, we use source to English
and English to destination dictionary to find a trans-
lation for the mentioned token. First, we search for
a translation from the source language to English
using the source to English dictionary. Next, we
search for a translation from English to the desti-
nation language in the English to the destination
dictionary. This technique is just helpful when
there is a translation from the source token to En-
glish. If we can not find any translations for a token,
we mark it as unknown to decide about it later.

For the terms that were marked as unknown, if
the token contains numbers or punctuations, we
transfer it without any change to the output as a
translated word. Otherwise, we check if the word
is in the extracted named entities. In this case, we
transliterate the word into the destination language
using polyglot library # and put it in the output
as a translated word. For complex words such as
"high-end," we break the word into its alphabetical
components and search them in the dictionary. If
we could find a translation for all components, we
would translate each component and concatenate
them using the proper separator. In the case that
none of the aforementioned scenarios happens, we

*https://polyglot.readthedocs.io/en/latest/
Transliteration.html
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omit the word and hope the denoising pre-trained
model can find a proper translation for it.

C Denoising Models Pre-Training and
Corruption Rate Details

Language | Removing Addition Substitution
EN .066/.061 .01-.03 .05-.07
FR .152/.087 .01-.03 .05-.07
DE .137/.085 .01-.03 .05-.07

Table 7: Rates used for pre-training objectives of De-
noising models. For removing, we report mean/std.

The procedure for generating pre-training data
for training the denoising model is shown in Figure
1. This procedure consists of sentence shuffling,
word removing, addition, and substitution.

The first step for generating pre-training data is
loading a batch of pre-training documents into the
memory as the current batch. We used a batch size
of 1K for generating pre-training data for training
denoising models. The batch size plays an essential
role in this procedure because our algorithm selects
candidates for replacing some words in a sample
from the words available in other sample in the
current batch. We did not investigate the effect of
batch size due to the lack of computing power.

After tokenizing the separated sentences using
the NLTK toolkit, we shuffle the words in each
sentence but keep the relative order of sentences. It
helps the denoising model learn the relative order of
sentences, which is crucial since the word-by-word
translation algorithm might face documents with
multiple sentences. Therefore, this will teach the
denoising model how to figure out the boundaries
of different sentences.

Next, for each sentence, we select m x ¢ words
to be replaced, in which m is the length of the sen-
tence and c is a random number from a uniform
distribution between the reported rates in Table 7.
The algorithm selects m x c unique words from
other samples in the current batch uniformly to be
substituted with the selected words of the current
document. The word addition objective works the
same way as the substitution, but the algorithm
does not replace any words. The word removing
objective works the same, but it uses a normal dis-
tribution for generating the random number, and it
just omits some words from each sentence without
replacing them with other words.

The word substitution and addition rates in Ta-
ble 7 were selected based on observation of the
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outputs of the word-by-word translation algorithm.
On the other hand, we computed the mean and stan-
dard deviation for the proportion of words that the
word-by-word translation algorithm could not find
any translation for them on the pre-training corpus.
The main purpose of the word removing objective
is to find a translation for the words that the word-
by-word translation algorithm could not find any
translation for them by considering the context of
the sentence. Therefore, computing this number on
the pre-training corpus that the final multilingual
model will be trained on will improve the denois-
ing model’s ability to denoise the word-by-word
translation algorithm’s outputs. This decreases the
number of words that the word-by-word translation
algorithm or the denoising model could not find a
translation for them.

D Experiment Details and Setup

It takes six days to pre-train PEACH on 500000 x
96 pre-training documents for S00K steps and a
batch size of 96. However, the downstream dataset
for English-French translation consists of almost
40M samples, which is only 8M less than our pre-
training documents and takes five days to fine-tune
for just one epoch. Therefore, choosing 50000 x 96
samples for fine-tuning is plausible due to the num-
ber of total pre-training documents and steps of
the model’s pre-training. The setup for training
denoising models is reported in Table 8. The exper-
iment setups for pre-training multilingual models
on English, French, and German are reported in Ta-
ble 9. The setups for pre-training bilingual models
used in different experiments are reported in Table
10. Table 11 reports the details of experiments on
fine-tuning models on supervised translation tasks.
The experiment setup for the few-shot scenario is
reported in Table 12. The experiment setup for
the fine-tuning on the XNLI (Conneau et al., 2018)
task is reported in Table 13.

E Figures’ Details and Information

The reported numbers in Figures 3, 4, and 5 are
reported in Tables 14, 15, and 16 for better read-
ability.

44



Language | Learning rate Steps Batch Size Max Input Length Max Output Length
English .01 500K 96 512 512
German .01 500K 96 512 512
French .01 500K 96 512 512
Table 8: Pre-training settings for denoising models.
Objective Learning rate  Steps  Batch Size Language Max Input Length  Max Output Length

Multilingual SPDG 01 500K 96 EN-FR-DE 512 512

MLM with Reordering 01 500K 96 EN-FR-DE 512 512

MLM 01 500K 96 EN-FR-DE 512 512

Table 9: Pre-training settings for multilingual models trained on English, German, and French.

Objective | Learning rate  Steps  Batch Size = Language  Max Input Length  Max Output Length
SPDG .01 200K 96 EN-FR 512 512
SPDG .01 200K 96 EN-DE 512 512
SPDG .01 200K 96 DE-FR 512 512
Table 10: Pre-training settings for bilingual models.

Dataset Learning rate  Steps  Batch Size = Beam Size = Beam alpha  Max Input  Max Output
WMT14 gnrr 5x 107° 50K 96 1 6 512 512
WMT14 gn.pE 5% 107° 50K 96 1 .6 512 512
WMTI19 pE rr 5x107° 50K 96 1 6 512 512

Table 11: Fine-tuning settings for models used in supervised translation experiments.

Dataset Learning rate ~ Sample count Steps Batch Size  Beam Size = Beam alpha  Max Input  Max Output
WMT14 gn-rr 5x 1075 50K 1K-50K 96 1 .6 512 512
Table 12: Fine-tuning settings for the few-shot supervised translation experiment.
Dataset | Learning rate  Steps  Batch Size  Beam Size  Beam alpha  Max Input = Max Output Language
XNLI 1x 1073 50K 256 1 .6 512 16 EN-FR-DE

Table 13: Fine-tuning settings for knowledge transfer experiment on natural language inference.

Dataset // Pre-Training steps 100K steps 200K steps 300K steps 400K steps S00K steps
WMT14 g s EN 27.40 <= 26.60  29.04 <> 28.08  30.04 <=+ 29.01  30.86 <=+ 29.35  31.25 <= 29.98
WMT14 pg 5 BN 21.21 +» 23.89  22.33 <> 25.29  22.87 <= 26.07  23.25 <= 26.52  23.61 <= 26.97
WMT19 pE «; FrR 20.49 <> 22.32  21.67 <> 23.29  22.12 < 24.07  22.65 <> 24.70  23.13 <= 25.25

Table 14: PEACH’s performance in different pre-training steps on downstream tasks evaluated with BLEU score.
The fine-tuning setup is reported in Table 11. These numbers are reported in Figure 3.

WMT14 WMT19
Model
FR<—EN DE<—EN DE<«—FR
MLM 4.33 <= 5.64 6.40 <= 5.69 6.39 <= 4.56
MLM with Reordering 7.42 < 6.63 7.73 <= 7.96 717 7.71
PEACH 12.89 <= 12.98 11.75 <= 14.05 11.83 <= 13.11

Table 15: The zero-shot translation results of the models evaluated with BLEU score. These numbers are reported

in Figure 4
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Fine-tuning steps | PEACH MLM MLM with Reordering Sample count

0 12.895563 - 7.420614 50K
1K 13.166867 - 8.080425 50K
3K 15.16206 - 14.288106 50K
5K 20.924359 - 17.13509 50K
10K 26.17157 - 21.928285 50K
15K 27.991698 - 24.24655 50K
20K 28.940293 - 25.608678 50K
25K 29.325823 - 26.304938 50K
30K 29.727194 - 26.939679 50K
35K 30.017766 - 27.462619 50K
40K 30.122644 - 27.770637 50K
45K 30.228142 - 28.110951 50K
50K 30.491127 - 28.309444 50K
50K 31.251482 21.384103 29.029701 M

Table 16: The zero- and few-shot translation results of the models evaluated with BLEU score on EN-FR section of
WMT 14. These numbers are reported in Figure 5

46



