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Abstract

In many humanitarian scenarios, translation
into severely low resource languages often does
not require a universal translation engine, but a
dedicated text-specific translation engine. For
example, healthcare records, hygienic proce-
dures, government communication, emergency
procedures and religious texts are all limited
texts. While generic translation engines for
all languages do not exist, translation of multi-
lingually known limited texts into new, endan-
gered languages may be possible and reduce hu-
man translation effort. We attempt to leverage
translation resources from many rich resource
languages to efficiently produce best possible
translation quality for a well known text, which
is available in multiple languages, in a new,
severely low resource language. We examine
two approaches: 1.) best selection of seed
sentences to jump start translations in a new
language in view of best generalization to the
remainder of a larger targeted text(s), and 2.)
we adapt large general multilingual translation
engines from many other languages to focus on
a specific text in a new, unknown language. We
find that adapting large pretrained multilingual
models to the domain/text first and then to the
severely low resource language works best. If
we also select a best set of seed sentences, we
can improve average chrF performance on new
test languages from a baseline of 21.9 to 50.7,
while reducing the number of seed sentences to
only ~1,000 in the new, unknown language.

1 Introduction

A language dies when no one speaks it. An en-
dangered language is a language that is spoken by
enough people that it could survive under favorable
conditions but few or no children are learning it
(Crystal, 2002; Kincade, 1991; Wurm, 2001). More
than half of the 7,139 languages will die in the next
80 years (Austin and Sallabank, 2011; Eberhard
et al., 2021). Endangered languages may survive
and thrive if they gain prestige, power and visibility
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Figure 1: Translation workflow for endangered languages.

(Crystal, 2002). Frisian, for example, struggles to
gain prestige in Germany, and is endangered even
though it has a large number of speakers. Hebrew,
conversely, has been revived as a spoken language
because it is critical to the development and identity
of the Jewish community. We empower endangered
language communities by exercising a language.
This can be achieved by translating important texts
to their language so that these communities can
gain information, knowledge, power and visibility
in their own language. One life-saving example of
this knowledge-transfer is translating water, sanita-
tion and hygiene (WASH) text into their languages,
a process that has long started before the COVID-
19 pandemic but has gained much attention since
then (Thampi et al., 2020; Reddy et al., 2017).

The problem in these scenarios, therefore, is not
to build a high accuracy translation engine for any
texts using huge data corpora, but rather to build a
good translation for a known text (for which trans-
lations in many other languages exist), but in a new
language with only extremely little seed data (a few
hundred sentences). We assume there is little to no
endangered language data and few human transla-
tors. To produce high quality translation, existing
methods rely on a seed corpus produced by human
translators. Previous work has shown progress in
using extremely small seed corpora with as small
as ~1,000 lines of data and has found that random
sampling performs better than choosing a fixed por-
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tion of the text to build a seed corpus (Zhou and
Waibel, 2021b; Lin et al., 2020; Qi et al., 2018).
But researchers have yet to 1.) examine various Ac-
tive Learning (AL) methods to improve accuracy
and effectiveness in building better optimized seed
corpora so as to minimize the initial human effort
and 2.) completely solve the problem of using large
multilingual models for representational learning
so that we can train (or adapt) them to a new lan-
guage using an extremely small seed corpus.

To solve these two problems, we propose ex-
plainable and robust active learning methods that
perform as well as or better than random sampling;
we transfer methods learned on data of known lan-
guages to the new, endangered language. We also
examine different training schedules and we find a
strategic way of growing large multilingual mod-
els in a multilingual and multi-stage fashion with
extremely small endangered seed corpora.

In our translation workflow, human translators
are informed by machine sentence ranking to pro-
duce a seed corpus. Machine systems then use this
seed corpus to produce a full translation draft. Hu-
man translators post-edit the draft, and feed new
data to machines each time they finish post-editing
a portion of the text. In each iteration, machines
produce better and better drafts with new data, and
human translators find it easier and faster to post-
edit. Together they complete the translation of the
whole text into an endangered language (Figure 1).

To produce sentence ranking, traditional active
learning approaches assume abundant data, but
we have little to no data in the target endangered
language. We question this assumption and build
seed corpora by ranking all sentences in existing
translations from other languages to generalize to a
new, endangered language. This ranking is target-
independent as we do not require any endangered
language data. To produce such a ranking, we ex-
plore active learning methods (Table 1). For each
reference language, we build unigram, n-gram and
entropy models (Figure 2). To prevent any lan-
guage from overpowering the ranking, we aggre-
gate sentence scores across multiple languages and
rank the final aggregation. To select the pool of
languages for aggregation, we build methods on
different voting mechanisms.

To curate a seed corpus in the new, endan-
gered language where we have no data initially,
we pass the sentence ranking learned from known
languages to human translators. Human translators
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Figure 2: Visualizing different active learning methods. We
score and rank each sentence in a text corpus.

take this ranking, and translate the top few (~1,000
or less) sentences, curating the seed corpus.

To train on such small seed corpus, we find pre-
training to be key. For the pretrained model, we
either create our own pretrained model by training
on known languages, or use an existing pretrained
model. We explore both paths in our work, with
and without activating the knowledge in existing
large pretrained models. We observe an average
increase of 28.8 in chrF score over the baselines.

Our contribution is three-fold: 1. We develop 14
active learning methods on known languages and
transfer ranking to the new, endangered language;
2. We activate the knowledge of large multilingual
models by proposing multilingual and multi-stage
adaptations through 24 different training schedules;
we find that adapting pretrained models to the do-
main and then to the endangered language works
best; 3. We aggregate scores from 115 languages to
provide a universal ranking and increase robustness
by relaxed memoization method.

2 Related Works

2.1 Translation into Endangered Languages

Recent advances have succeeded in building mul-
tilingual methods to translate from multiple rich
resource languages to a new, endangered language
(Johnson et al., 2017; Ha et al., 2016; Firat et al.,
2016; Zhou et al., 2018a,b). Many have demon-
strated good transfer learning to low resource lan-
guages (Zhou and Waibel, 2021b; Lin et al., 2020;
Qi et al., 2018), while some work on zero-shot



learning (Neubig and Hu, 2018; Pham et al., 2019;
Philip et al., 2020; Karakanta et al., 2018; Zhang
et al., 2020; Chen et al., 2022, 2021). However,
zero-shot learning is volatile and unstable, so we
choose to use extremely small data instead.

2.2 Active Learning in Machine Translation

Active learning has a long history in machine trans-
lation (Settles, 2012; Eck et al., 2005; Gonzalez-
Rubio et al., 2012). Random sampling is often
surprisingly powerful (Kendall and Smith, 1938;
Knuth, 1991; Sennrich et al., 2016a). There is ex-
tensive research to beat random sampling by meth-
ods based on entropy (Koneru et al., 2022), cover-
age and uncertainty (Peris and Casacuberta, 2018;
Zhao et al., 2020), clustering (Haffari et al., 2009;
Gangadharaiah et al., 2009), consensus (Haffari
and Sarkar, 2009), syntactic parsing (Miura et al.,
2016), density and diversity (Koneru et al., 2022;
Ambati et al., 2011), and learning to learn active
learning strategies (Liu et al., 2018).

2.3 Large Pretrained Multilingual Model

The state-of-the-art multilingual machine transla-
tion systems translate from many source languages
to many target languages (Johnson et al., 2017; Ha
et al., 2016; Zoph and Knight, 2016). The bottle-
neck in building such systems is in computation
limits, as the training data increases quadratically
with the number of languages. Some companies
have built and released large pretrained multilin-
gual models (Liu et al., 2020; Tang et al., 2020).
M2M100 is trained in 100 languages (Fan et al.,
2021; Schwenk et al., 2021; El-Kishky et al., 2020)
and covers a few endangered languages.

3 Methods

We translate a fixed text that is available in many
languages to a new, endangered language. In our
translation workflow, we first develop active learn-
ing methods to transfer sentence ranking from
known languages to a new, endangered language.
We then pass this ranking to human translators for
them to translate the top few (~1,000 or less) sen-
tences into the endangered language, curating the
seed corpus. We finally train on the seed corpus,
either from scratch or from a pretrained model.
We build training schedules on an extremely
small seed corpus, we also build active learning
strategies of creating and transferring the sentence
ranking to the new, endangered language. We pro-
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Figure 3: 24 different training schedules.

[N]: multilingual model on N neighboring languages
[N+1]%: multi-target model with endangered language
[N+1]: single-target model with endangered language
[1]2: autoencoder in endangered language.

pose and compare 24 training schedules and 14 ac-
tive learning methods for machine translation into
a new, endangered language. To compare all active
learning algorithms fairly, we use the same trans-
lation system unit as a control for all experiments,
varying only the seed corpora built by different
methods. We select the same number of words in
all seed corpora as most translators are paid by the
number of words (Bloodgood and Callison-Burch,
2010; Eck, 2008; Tomanek and Hahn, 2009).

3.1 Training Schedules

In our setup we have the new, endangered language
as the target language, and we have a few neigh-
boring languages as the source languages that are
either in the same linguistic language family or ge-
ographically close to facilitate linguistic transfer.
In effect, we have NV source languages with full
translations of the text and a new and endangered
language that has an extremely small seed corpus.

We use the state-of-the-art multilingual trans-
former prepending both source and target language
labels to each source sentence (Johnson et al., 2017,
Ha et al., 2016). For precise translation for all
named entities, we use an existing method of order-
preserving named entity translation by masking
each named entity with ordered __NEs using a par-
allel multilingual lexicon table in 125 languages
(Zhou and Waibel, 2021b; Wu et al., 2018).

Using this multilingual transformer architecture
as a base, we build 5 training units on the small seed
corpus of the new, endangered language and the



existing translations of known languages. We let
[N]? denote the training of all source languages in
a N-by-N multilingual transformer. We let [N+1]?
denote the training of all languages including the
endangered language in a (N+1)-by-(N+1) multilin-
gual transformer. We let [N+1] denote the (N+1)-
by-1 multilingual transformer that focuses on trans-
lating into the endangered language. We let [1]? be
the autoencoder on the endangered language.

Our translation system is built on these 5 train-
ing units: an optional [M2M100] (Fan et al., 2021),
[N]2, [N+1]?, [N+1] and [1]%. These 5 stages in-
crease in specificity while they decrease in data
size. Building on them, we show 24 different train-
ing schedules, among which 8 are pretrained with
in-domain data and 16 are pretrained with out-of-
domain large multilingual models (Figure 3). We
only consider models with pretraining and there-
fore do not exhaust all 32 training schedules.

3.2 Active Learning Strategies

We have two baselines: the linguistic baseline of
the excerpt-based approach, Luke, and the statis-
tical baseline of random sampling, Rand. The
excerpt-based approach, which selects a portion
of the text with consecutive sentences, preserves
the text’s formality, cohesion and context but lacks
global coverage. Random sampling increases
global coverage but sacrifices local coherence.

3.2.1 N-gram Approach

Many researchers count the number of unknown
n-grams as score functions to solve the knapsack
problem, covering all vocabulary (Eck, 2008; Eck
et al., 2005; Haffari et al., 2009). Instead of solv-
ing the knapsack problem, we choose sentences
to partially cover the vocabulary and build an ex-
tremely small seed corpus. To cover the vocabulary
strategically, we sum the frequency counts of the
unknown n-grams to increase density. These fre-
quency counts promote frequent words for learning
to be meaningful in the extremely low resource sce-
nario. In Table 1 we denote frequency function by
F(-), denote sequence length by L and denote the
highest n-gram order by J.

3.2.2 Entropy Approach

Many have worked on entropy methods in mod-
elling density and diversity (Ambati et al., 2011;
Eck, 2008; Zeng et al., 2019; Haffari et al., 2009).
We use traditional Language Models (LMs) instead
of neural language models, as our data size is ex-
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Table 1: Summary of score functions.

tremely small. For implementations of LMs, we
use KenL.M and NLTK’s LM because of their sim-
plicity and speed, especially KenLM (Heafield,
2011; Bird and Loper, 2004). In Table 1 we let
H(-) be the cross entropy function, with the choice
of KenLM (K) or NLTK (N). To separate training
from testing in using language models, we divide
the data into three portions, the sentences that we
have chosen (c¢), and the remaining that are split
equally into two parts, left (/) and right (). Let I;(-)
and I,(-) be indicator functions to show whether a
sentence belongs to the left or the right. We aim to
maximize the diversity H. and optimize density by
adjusting H; and H, (Koneru et al., 2022).

3.2.3 Aggregation Approach

To prevent any language from overpowering the
ranking, we aggregate sentence scores across dif-
ferent languages (Figure 2). We investigate the use
of a customized set of languages for each endan-
gered language, versus the use of a universal set
of languages representing world languages. The
former requires some understanding of the neigh-
boring languages, the latter requires careful choices
of the representative set (Blasi et al., 2022).

We have 4 aggregation methods: one-vote-per-
language (L), where we aggregate over all lan-
guages, one-vote-per-family (F), where we aggre-
gate over languages representing the top few fami-
lies, one-vote-per-person (P), where we aggregate
over the top few most spoken languages, and one-
vote-per-neighbor (N), where we aggregate over a
customized set of neighboring languages. For the
world language distribution, L covers all, F sam-
ples across it, P covers the head, while N creates a
niche area around the endangered language.



Target L Family Source Languages

Frisian 0 Germanic
Hmong 0
Pokomchi 0
Turkmen 1
Sesotho 1
Welsh 1
Xhosa 2
Indonesian3
Hungarian4
Spanish 5

Mayan
Turkic

Celtic
Nguni

Uralic
Romance

English*, German, Dutch, Norwegian, Afrikaans, Swedish, French, Italian, Portuguese, Romanian
Hmong-MienKomrem*, Vietnamese, Thai, Chinese, Myanmar, Haka, Tangsa, Zokam, Siyin, Falam

Chuj*, Cakchiquel, Mam, Kanjobal, Cuzco, Ayacucho, Bolivian, Huallaga, Aymara, Guajajara
Kyrgyz*, Tuvan, Uzbek, Karakalpak, Kazakh, Azerbaijani, Japanese, Korean, Finnish, Hungarian
Niger-Congo Yoruba*, Gikuyu, Xhosa, Kuanyama, Kpelle, Fon, Bulu, Swati, Venda, Lenje

English*, German, Danish, Dutch, Norwegian, Swedish, French, Italian, Portuguese, Romanian
Swati*, Gikuyu, Sesotho, Yoruba, Lenje, Gbaya, Afrikaans, Wolaitta, Kuanyama, Bulu
Austronesian Javanese*, Malagsy, Tagalog, Ilokano, Cebuano, Fijian, Sunda, Zokam, Wa, Maori

Finnish*, French, English, German, Latin, Romanian, Swedish, Spanish, Italian, Portuguese
English*, German, Danish, Dutch, Norwegian, Swedish, French, Italian, Portuguese, Romanian

Table 2: Summary of different target languages used (Campbell and Belew, 2018; Collin, 2010). L, resource level, is from a
scale of 0 to 5 (Joshi et al., 2020). Reference languages used for active learning methods except aggregate methods are starred.

Aggregation decreases variance and increases
accuracy. Typical aggregation involve taking the
sum or the average. Since they have the same effect
on sentence ranking, we take the sum for simplicity.

To save space and time, we devise relaxed mem-
oization. At every step, we compute sentence score
for each language, producing a score matrix of lan-
guages versus sentences. We update entries that are
affected by the selected sentence, cache and reuse
other entries. Further parallelism results in >360
times speedup, from ~6.5 months to ~13 hours.

3.3 Evaluation Method and Metrics

Existing multilingual systems produce multiple out-
puts from all source languages, rendering compar-
ison messy. To simplify, we combine translations
from all source languages into one by an existing
centeredness method (Zhou and Waibel, 2021b).
Using this method, we score each translated sen-
tence by the sum of its similarity scores to all others.
We rank these scores and take the highest score as
our combined score. The expected value of the
combined score is higher than that of each source.
To compare effectively, we control all test sets
to be the same. Since different active learning
strategies produce different seed corpora to be used
as training and validation sets, the training and
validation sets vary. Their complement, the test sets
therefore also vary, rendering comparison difficult.
To build the same test set, we devise an intersection
method. We take the whole text and carve out all
seed corpora, that is, all training and validation sets
from all experiments. The remaining is the final
test set, which is the intersection of all test sets.
Our metrics are: chrF, characTER, BLEU,
COMET score, and BERTscore (Popovié, 2015;
Wang et al., 2016; Post, 2018; Zhang et al., 2019;
Stewart et al., 2020; Rei et al., 2021). We priori-
tize chrF over BLEU for better accuracy, fluency

and expressive power in morphologically-rich lan-
guages (Papineni et al., 2002).

4 Data

Existing research classifies world languages into
Resource 0 to 5, with 0 having the lowest resource
and 5 having the highest (Joshi et al., 2020). We
choose 10 target languages ranging from Resource
0 to 5 (Table 2). For each target language we
choose ten neighboring languages as source lan-
guages (Table 2). We prioritize Resource 0 to 2
languages as real endangered languages, and we
use Resource 3 to 5 languages as hypothetical ones.
To translate into these languages, our text is the
Bible in 125 languages (Mayer and Cysouw, 2014).
Each endangered seed corpus contains ~3% of
the text, while all other languages have full text.
Our goal is to translate the rest of the text into
the endangered language. In pretraining, we use a
80/10/10 split for training, validation and testing,
respectively. In training, we use approximately a
3.0/0.2/96.8 split for training, validation and test-
ing, respectively. Our training data for each exper-
iment is ~1,000 lines. We use BPE with size of
~3,000 for the endangered language and ~9,000
for the combined (Sennrich et al., 2016b).
Training on ~100 million parameters with
Geforce RTX 2080 Ti and RTX 3090, we use a
6-layer encoder and a 6-layer decoder with 512
hidden states, 8 attention heads, 512 word vector
size, 2,048 hidden units, 6,000 batch size, 0.1 la-
bel smoothing, 2.5 learning learning rate and 1.0
finetuning learning rate, 0.1 dropout and attention
dropout, a patience of 5 after 190,000 steps in [N]?
with an update interval of 1000, a patience of 5
for [N+1]? with an update interval of 200, and a
patience of 25 for [N+1] and [1]? with an update
interval of 50, “adam” optimizer and “noam” decay
method (Klein et al., 2017; Papineni et al., 2002).



TchrF Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average
Baselines:

+ Bilingual 23.1 25.0 28.7 18.9 25.2 222 214 272 20.1 22.1 23.4

+ Multilingual ~ 28.0 28.1 31.9 22.6 28.3 26.5 239 297 223 26.8 26.8
Our Models:

+ Schedule B 50.5 439 42.8 38.9 432 46.0 349 472 374 50.1 43.5

+ Active (AL) 53.6 45.7 44.4 40.3 449 477 36.8 49.1 39.0 52.7 45.4

Table 3: Results for translation into 10 languages that are new and severely low resourced to the system, independent of M2M100.

TchrF Frisian Welsh Hungarian Spanish Average
Baselines:

+ Bilingual 23.1 222 20.1 22.1 21.9

+ Multilingual  28.0 26.5 223 26.8 259

+ M2M100 260 99 388 47.5 249
Our Models:

+ Schedule I 535 495 422 532 496

+ Active (AL) 549 498 432 54.9 50.7

Table 4: Results for translation into 4 languages that are new
and severely low resourced to the system, activating knowl-
edge in M2M100 and leveraging active learning.

5 Results

For simplicity, we use the centeredness method
to combine translations from all source languages
and have one score per metric. To compare across
different methods, all experiments have the same
test set (3,461 lines), the intersection of all test sets.

Our models improve over the baselines: With
Schedule /, we observe an average improvement
of 24.7 in chrF score over the M2M100 baseline
(Table 4). By active learning with 4-gram model,
we observe an increase of 28.8 in chrF score over
the bilingual baseline.

Our strategic training schedule improves the
translation further by activating the knowledge
of M2M100 : With Schedule B and the 4-gram
model, we observe an average improvement of 18.6
in chrF score over the multilingual baseline (Ta-
ble 3). For Schedule I, the increase is 24.8 over
the multilingual baseline (Table 4). Indeed, the
increase with the activation of M2M100 is greater.

5.1 Training Schedules

We compare 24 training schedules using a ran-
domly sampled seed corpus (~1,000 lines) to trans-
late into Frisian (Table 5 and 6).

Pretraining with [N]?> works well without
M2M100: We compare 8 training schedules with-
out M2M100 (Table 6). We find that Schedule B
(pretraining on [N]? and training on [N+1]? and
[N+1]) and Schedule F (pretraining on [N]? and

training on [N+1]) work well without M2M100.
Schedule B gives a chrF score of 51.1 and Sched-
ule F gives a chrF score of 51.2.

M2M100 is useful when a target language and
its corresponding source languages are in the
M2M100 list and the test set does not overlap with
the M2M 100 training set. However, we strongly ad-
vise discretion, as training data for large pretrained
models is usually not clearly specified and most
are not trained with endangered languages in mind.
M2M100 training data may very likely contain the
Bible data, so it only serves as a comparison and
provides an alternative view to show that our model
is robust with large models. When M2M100 does
not apply, our models pretrained with [N]? suffice.

Full stage training increases robustness: For
models without M2M100 we can use Schedule
B (Table 7) or F (Table 10). Though the results
for Frisian are similar, B is much better than F
for morphologically rich languages like Pokomchi,
Turkmen and Xhosa. Indeed, B with full training is
more robust than F, which skips [N+1]2. Similarly,
for models with M2M100, we can use Schedule /
(Table 8) or L (Table 9). Again, Schedule / with
full training stages perform better than Schedule L.

Applying M2M100 alone gives poor results:
Schedule X produces poor results (Table 5). Prob-
lems include catastrophic forgetting, bias towards
rich resource languages, and unclean data. Exist-
ing research shows some released models mislabel
their English data as Welsh (Radford et al.).

Mixed models with M2M100 perform well: A
few training schedules beat those pretrained with
[N]? (Table 6). Schedule I (training on 5 stages)
gives a chrF score of 52.9, L (training 3 stages
skipping [N+1] and [1]?) gives 52.8, M (training
4 stages skipping [N+1]?) gives 52.7, J (training 4
stages skipping [1]%) gives 51.8, and N (training 3
stages skipping [N+1]? and [1]?) gives 51.9. All
are higher than those without M2M100.

Adapting M2M100 to the domain and then to
the endangered language works best: Schedule /




Newok I J K L M N O P Q R 8 u v X
(vzMioony 444 4 4 L2 R S
[NJ? L S S T 2 S

N+ oo el

(N+1] 4§ ol o ¢l

(11* I I ¢ 4 I I 4 4

fchiF 529 518 495 528 527 519 274 169 49.6 485 39.6 487 485 457 278 263
JCTER  0.492 0508 0.482 0.488 0.493 0.502 0.654 0.800 0.530 0.546 0.553 0.539 0.538 0.579 0.650 0.667
fBLEU 288 279 242 289 288 282 3.0 0.6 248 242 139 243 245 220 34 33
FCOMET -0.56 -0.59 -0.63 -0.53 -0.56 -0.57 -128 -1.75 -0.67 -0.70 -0.89 -0.68 -0.69 -0.80 -1.21 -1.30
BERTS 0.891 0.889 0.886 0.892 0.891 0.890 0.813 0.775 0.883 0.881 0.861 0.882 0.880 0.873 0.823 0.819

Table 5: Comparing 16 training schedules with M2M100. BERTS is BERTScore, cTER is characTER and LRatio is length ratio.

Network A B C E
N2y ol
IN+IP 4 4

IN+1] U b U

m2 4 (3 4 3

tchrF 38.7 51.1 35.6 50.8 434 51.2 25.6 24.1

JCTER  0.555 0.517 0.572 0.515 0.523 0.507 0.650 0.682
TBLEU 125 249 92 245 175 262 25 2.1

TCOMET-0.87 -0.66 -0.91 -0.65 -0.81 -0.63 -0.99 -1.02
TBERTS 0.850 0.882 0.839 0.884 0.865 0.885 0.801 0.794

Table 6: Comparing 8 training schedules without M2M100.
[N1?: multilingual model on N neighboring languages
[N+1]? : multi-target model with endangered language
[N+1]: single-target model with endangered language

[1]?: autoencoder in endangered language.

(training on 5 stages) with score 52.9 performs best.
These models first adapt M2M100 to the domain
by doing another pretraining on N2. After adapting
M2M100 to the domain, we adapt the model to the
endangered language by training on [N+1]%. The
final two stages [N+1] and [1]2 are optional.

5.2 Active Learning Methods

Using Schedule B without M2M100, and L with
M2M100, we compare 14 active learning methods
across languages (Table 7 and 8).

Normalizing by sequence length improves
density: Without normalization, the model chooses
longer sentences with many rare words. Normaliza-
tion improves density. For Sesotho, the chrF score
is 39.0 without normalization and 41.6 with it.

Marginal benefit of increasing n-gram order
wanes: Existing research shows bigrams suffice
(Eck, 2008). As the n-gram order increases, the
data gets sparser and the marginal benefit subsides.
Hmong has the best score (46.1) using bigrams.

Tipping points vary with language: The opti-
mal highest n-gram order may differ from language
to language. 4-grams work best for Frisian while

bigrams work best for Hmong. Hmong is an isolat-
ing language while Frisian is a fusional language.
A possible explanation is that higher n-grams may
have more impact on fusional languages.

Entropy and n-gram methods both beat base-
lines and higher n-gram models perform best:
KenlLM is much faster and performs better than
NLTK. The entropy method using KenLM beats
both baselines. Frisian has a chrF score of 52.7 with
the entropy method using KenLM. This is much
higher than the baselines: Luke (47.5) and Rand
(50.5). The 4-gram model (53.6) is higher because
building LMs from a few lines of data may not be
accurate. Simpler n-gram models work better than
more evolved entropy models with small data.

Aggregation over all languages serves as a
universal ranking: The first 10 active learning
methods are based on learning from one reference
language and generalizing to the endangered lan-
guage, while the last 4 focus on aggregation over
multiple languages (Table 7 and 8). For Welsh, ag-
gregation over multiple languages (48.2 with most
spoken languages) performs better than those that
rely on one reference language; but for other lan-
guages aggregation performs worse. Aggregation
over all languages performs better than other ag-
gregation methods for all languages except Welsh.
This hinges on the reference language. For Frisian,
choosing English (a Germanic language) as a ref-
erence language, performs better than aggregation.
For Welsh (a Celtic language), choosing a reference
language that is not as close, performs worse. But
we often do not have such information for endan-
gered languages. In such cases, universal ranking
by aggregating over all languages is useful.

Our active learning methods mimic curricu-
lum learning: Our models pick short and simple
sentences first, emulating curriculum learning and
helping human translators (Bengio et al., 2009;




tchrF Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average
Baselines:

+ Luke 47.5 41.6 394 349 41.2 41.2 32.0 43.3 34.4 46.7 40.2
+ Rand 50.5 439 42.8 38.9 43.2 46.0 34.9 472 37.4 50.1 43.5
Our Models:

+S 49.2 38.5 40.4 35.2 39.0 41.9 325 43.5 35.1 48.0 40.3
+ SN 50.9 43.9 432 38.3 41.6 432 36.1 46.9 36.7 50.3 43.1
+ SNG4 53.2 46.1 433 39.5 44 .4 45.8 36.6 48.4 37.8 51.8 44,7
+ SNG3 52.7 46.0 44.5 39.6 45.5 47.5 36.8 48.9 39.2 52.3 45.3
+ SNG4 53.6 45.7 44 .4 40.3 449 47.7 36.8 49.1 39.0 52.7 454
+ SNG5 53.0 45.6 43.9 39.7 454 46.7 36.8 49.1 38.4 52.5 45.1
+ ENTN 50.9 43.7 38.1 37.2 42.5 44.5 347 46.7 36.0 49.9 424
+ ENTE 52.7 45.7 43.5 40.2 44.6 45.2 36.4 49.0 39.1 51.8 44.8
+AGGE 47.1 41.5 39.8 34.0 39.9 42.1 314 43.5 33.7 45.2 39.8
+AGGEY 450 38.4 38.5 324 38.8 47.1 30.4 41.2 333 44.2 38.9
+AGGEY 455 38.8 38.0 32.0 38.8 48.2 30.5 41.0 33.2 44.0 39.0
+AGGY 454 39.1 38.3 324 38.8 48.0 30.7 41.2 33.2 443 39.1

Table 7: 140 experiments comparing 14 active learning methods translating into 10 different languages with Schedule B.

tchrF Frisian Welsh Hungarian Spanish Average
Baselines:

+ Luke 493 44.3 38.8 48.4 45.2
+ Rand 53.5 49.5 422 53.2 49.6
Our Models:

+S 51.9 459 40.4 51.1 473
+ SN 54.8 47.4 423 532 494
+ SNG4 54.5 49.5 435 54.2 50.4
+ SNG3 54.4 50.4 43.9 54.5 50.8
+ SNG4 54.9 49.8 432 54.9 50.7
+ SNG5 54.5 50.1 435 54.1 50.6
+ENTY 527 472 409 52.9 484
+ ENTE 54.6 49.4 43.5 53.8 50.3
+ AGGg4 494 44.2 37.3 48.2 44.8
+AGGE 46.5 49.8 36.4 46.4 44.8
+AGGY 486 50.4 36.5 46.9 45.6
+AGGY 488 50.8 36.4 46.9 457

Table 8: 56 experiments activating the knowledge in M2M100
with Schedule /.

Graves et al., 2017; Jiang et al., 2015).

All active learning methods cover different
genres: Our methods pick a mix of sentences from
different genres, sentence lengths and complexity
levels. Moreover, our methods pick narrative sen-
tences first, which is helpful for human translators.

Our model captures some language subtleties:

Apart from the metrics, we showed our translation
to native speakers (Table 12). We translate "He
sees that it is good" to "lug ca rua huv nwg lu sab"
("He puts it in the liver") in Hmong, which uses
liver to express joy. This increases lexical choice.

Our models and mixed models perform better
than M2M100 alone: M2M 100 often produces ex-
tremely short sentences or repetition. Our models
do not have those issues.

6 Future Work

We propose 24 training schedules for translation
into endangered languages. We also propose and
compare 14 active learning methods to build seed
corpus without any endangered language data. Our
model is robust with large multilingual models.
While the industry trend is to move towards big-
ger models with bigger data, our minimalist ap-
proach not only uses fewer languages, but we also
aggregate over fewer languages. This saves compu-
tation power and resources, and therefore time and
money, while improving translation performance.
However, we still face challenges with the lack
of local coherence and context. The excerpt-based
approach enjoys advantage with formality, cohe-
sion and contextual relevance. Active learning
methods, on the contrary, do not have consec-
utive sentences and therefore lose local coher-
ence and pose challenges to human translators
(Muntés Mulero et al., 2012; Denkowski, 2015;
Sperber et al., 2017; Maruf et al., 2019; Webster
et al., 2020; Zhou and Waibel, 2021a; Salunkhe
et al., 2016). This is an active research area.
Evaluation is still a challenge. It is difficult to
find native speakers and establish long-term col-
laborations. There is also much variety among
endangered languages. Some are more accessible
than others and these might provide earlier, realistic
evaluation of our method. Empowering endangered
languages is not just a technology problem. It re-
quires much efforts in communication with local
communities. Through our technologies, we would
like to work with local communities to revive en-
dangered languages and bring them to flourish.
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A Appendices

For simplicity, in Table 2 Pokomchi is Eastern
Pokomchi, Hmong is Hmong Hoa, Kanjobal is
Eastern Kanjobal, Mam is Northern Mam, Cuzco is
Cuzco Quechua, Ayacucho is Ayacucho Quechua,
Bolivian is South Bolivian Quechua, and Hual-
laga is Huallaga Quechua, Chinese is Traditional
Chinese, Haka is Haka Chin, Siyin is Siyin Chin,
Falam is Falam Chin, Kpelle is Kpelle Guinea.

In Table 3, our model with training scheduling
uses Schedule B, our model with active learning
uses SNG4. In Table 4, our model with training
scheduling uses Schedule /, our model with active
learning uses SNG.

In the entropy score function in Table 1, we use
highest n-gram order of 2 for NLTK’s LM, we use
highest n-gram order of 2 for the two halves (H ZK
and Hf( ) and order of 5 for the sampled data (H, CK )
for KenLM. Since KenLLM needs at least a few
words to start with, we use MLE as a warm start to
select up to 5 sentences before launching KenLLM.

For finetuning from a M2M 100 Model, training
on ~418 million parameters with Geforce RTX
3090, we use a 12-layer encoder and a 12-layer de-
coder with 1024 hidden states, 16 attention heads,
1024 word vector size, 4,096 hidden units, 0.2 la-
bel smoothing, 0.0002 training learning rate and
finetuning 0.00005 learning rate, 0.1 dropout and
attention dropout, “adam” optimizer and “noam”
decay method (Fan et al., 2021; Schwenk et al.,
2021; El-Kishky et al., 2020).

TchrF Frisian Welsh Hungarian Spanish Average
Baselines:

Luke 49.1 41.7 38.3 48.7 44.5
Rand 52.8 46.8 41.9 52.9 48.6
Our Models:

S 51.6 44.8 40.7 52.0 473
SN 53.2 45.8 422 52.9 48.5
SNG2 54.2 47.6 42.5 53.8 49.5
SNG3 53.7 47.9 43.3 54.5 49.9
SNG4 54.3 48.5 43.2 54.4 50.1
SNGs 53.9 48.6 43.2 54.5 50.1
ENTN 52.1 448 40.7 52.4 47.5
ENTX 537 467  43.1 53.7 493
AGG# 484 432 371 484 443
AGGE 473 48.1 36.1 47.1 44.7
AGGH! 469 478 363 472 446
AGG5T 47.1 48.8 36.1 46.8 44.7

Table 9: 56 experiments integrated with M2M 100 on Schedule
L.
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TchrF Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average

Baselines:

Luke 47.5 38.2 374 33.8 38.5 38.5 29.2 41.7 31.5 46.3 38.3
Rand 51.3 38.9 41.5 36.4 39.0 43.1 32.1 453 34.8 50.2 41.3
Our Models:

S 48.7 358 39.8 27.6 36.1 38.1 29.4 41.5 325 47.5 37.7
SN 50.9 38.4 41.5 36.9 38.7 41.1 32.5 44.8 33.1 49.2 40.7
SNG- 52.9 40.9 424 37.3 41.0 44.3 33.4 45.8 35.8 51.2 42.5
SNG3 53.1 41.8 43.2 384 41.9 45.6 34.0 47.0 36.4 52.2 434
SNG, 53.6 41.8 42.2 38.1 41.7 44.5 33.5 47.5 36.7 52.5 432
SNG5 53.0 41.5 42.0 38.1 42.3 45.1 335 473 36.4 52.2 43.1
ENTN 50.7 39.5 34.0 34.8 394 42.5 324 44 .4 33.9 48.6 40.0
ENTX 52.5 424 423 38.5 41.6 434 33.6 47.1 37.1 51.7 43.0
AGGE 474 38.8 38.9 33.2 37.3 40.1 28.9 41.6 31.7 45.7 38.4
AGGY 44.6 36.0 37.1 30.9 35.8 443 27.8 39.2 30.7 439 37.0
AGGY 452 36.6 36.9 30.8 35.6 449 27.9 39.0 30.5 43.8 37.1
AGGY 454 36.8 37.1 31.3 35.7 46.0 28.0 39.2 30.2 43.8 37.4

Table 10: 140 experiments comparing 14 active learning methods translating into 10 different languages on Schedule F.

Seed Corpus Frisian Hmong Pokomchi Turkmen Sesotho Welsh Xhosa Indonesian Hungarian Spanish Average
Size

Word count 25695 31249 36763 17354 25642 25786 15017 22318 18619 22831 24127

Line count for each experiment

Baselines:

Luke 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151 1151
Rand 1022 1001 1101 1045 976 1117 988 1065 1066 1023 1040
Our Models:

S 692 654 832 689 657 771 598 634 644 682 685
SN 1522 1399 1522 1524 1434 1595 1501 1601 1545 1488 1513
SNG- 1484 1350 1490 1454 1369 1557 1418 1513 1468 1463 1457
SNG3 1385 1319 1468 1416 1317 1439 1368 1451 1415 1365 1394
SNG4 1327 1295 1419 1367 1279 1409 1309 1426 1374 1310 1352
SNG5 1289 1289 1397 1311 1280 1381 1256 1359 1334 1273 1317
ENTN 1796 1721 1769 1840 1761 1914 1839 1967 1884 1805 1830
ENTX 1340 1287 1507 1266 1132 1405 1128 1358 1264 1327 1301
AGGE 984 1025 1060 998 967 1031 1016 1018 993 958 1005
AGGE 1049 1084 1152 1043 1025 1182 1147 1093 1076 1019 1087
AGGH 1058 1097 1159 1109 1025 1232 1159 1101 1087 1018 1105
AGGY 1048 1094 1153 1101 1020 1274 1141 1101 1087 1014 1103

Table 11: Seed Corpus Size for different target languages. The seed corpus gives rise to both training data and validation data,
therefore the training size is smaller than the above. Note that all experiments for a given target language share the same number
of words, although they have different number of lines. Since each language use different number of words to express the same
meaning of a given text, we choose the number of words in the given book "Luke" as the standard reference for each target
language. For example, "Luke" in Xhosa contains 15,017 words while "Luke" in Frisian contains 25,695 words.
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Target

System Translation

Reference

Frisian

Hmong

Pokomchi

Turkmen

Sesotho

Welsh

Xhosa

Indonesian

Hungarian

Spanish

mar Ruth sei: Ik scil dy net forlitte, en ik scil
fen dy net weromkomme; hwent hwer "tstd hin-
negeane, den scil ik hinnegean, en dér scil ik dy
fornachtsje. dyn folk is myn folk, en dyn God is
myn God.

Lauj has rua nwg tas, "Tsw xob ua le ntawd, kuv
yuav moog rua koj lub chaw kws koj moog, hab
kuv yuav nyob huv koj haiv tuabneeg. koj yog
kuv tug Vaajtswv."

eh je’ wili i xq’orarik reh i Rut: Maacanaa’ chih
taj 1 hin. re’ hin naa nub’anam aweh chupaam
i ye’aab’ naa nuk’achariik ayu’. re’ hin naa
nuk’achariik awuuk’, eh re’ hin naa nukahniik
chi nuDios, inki.

Rut: ona: "Sen nird gitsefi, men hem senifl
yanyia gitmerin. Sen nird gitseil, men hem seniti
halkym bolaryn. Men seniii Hudayym bolaryn.

yaba Ruthe o re ho yena: "O se ke wa tloha
ho wena, hobane ke tla ya le wena, ke tla ya le
wena, mme ke tla ya hona moo. setjhaba sa ka,
le Modimo wa hao."

a Ruth a ddywedodd, Nuw gael arnaf fi, atolwg,
atolwg, oddi wrthyt: canys lle yr wyt yn myned,
ac yno yr wyt yn myned, y byddaf fy hun. dy
bobl yw fy bobl, a’th Dduw yw fy Duw.

URute waphendula wathi: "Undiyekeli ukuba
ndixhamle, kuba ndiza kuhlala apho uthanda

khona. mna ndiza kuba ngabantu bam, abe
nguThixo wam."
tetapi Rut: menjawab: "Janganlah engkau

meninggalkan aku dan pulang ke tempat kedia-
manmu, sebab aku akan pergi dan berdiam di
mana engkau diam, sebab orang-orangmu akan
menjadi umat-Ku dan Allahmu."

Ruth igy felelt: Nem kérlek téged, hogy gondolj
meg téged, mert csak hozzad megyek, és én ot-
thagytam, hogy legyenek hozzad. a te népem az
én, és az én Istenem az én.

y Rut: dijo a David: No me permite de ti, y me
quitaré de ti; porque donde vayas, yo iré a donde
vayas, y habitaré; y tu pueblo es mi pueblo, y tu
Dios es mi Dios.

mar Ruth sei: Sit net tsjin my oan, dat ik jo forlitte en weromt-
sjen scil; hwent hwer "t jo hinne geane, dér scil ik hinne gean,
en hwer "t jo fornachtsje, dér scil ik fornachtsje; jins folk is
myn folk en jins God is myn God;

tassws Luv has tas, "Tsw xob has kuas kuv tso koj tseg ncaim
koj rov qaab moog. koj moog hovtwg los kuv yuav moog hab,
koj nyob hovtwg los kuv yuav nyob hov ntawd hab, koj haiv
tuabneeg los yog kuv haiv tuabneeg hab, koj tug Vaajtswv los
yog kuv tug Vaajtswv.

re’ Rut je’ wili i chaq’wik xub’an: Maa pahqaaj aakuyariik
weh re’ hin ma’ jaruuj nee tinukanaa’ kahnoq, xa aha’ pa’ nee
tiooj i hat, nee wo’ kinooj chawiij, xa aha’ pa’ nee ti k’achariik
1 hat ar nee kink’acharik i hin. eh re’ aatinamiit re’ wo’ re’
nutinamiit i hin, eh re’ aaDios re’ wo’ re” nuDios i hin.
emma Rut: "Seni terk edip yanyiidan gitmegi menden hayys
etme. sen Nird gitsei, Menem sol yere gitjek. sen nirede
bolsari, Menem sol yerde boljak. seniii halkyii - menif halkym,
senin Hudayyn meniit Hudayym bolar.

empa Ruthe a re: "O se ke wa nqobella hore ke kgaohane le
wena, kapa hore ke se ke ka tsamaya le wena, hobane" moo
o yang teng ke tla ya teng, moo o phelang teng ke tla phela
teng; tjhaba sa heno e be tjhaba sa heso, Modimo wa hao e be
Modimo wa ka.

a Ruth a ddywedodd, Nac erfyn arnaf fi ymado a thi, i gilio
oddi ar dy 0l di: canys pa le bynnag yr elych di, yr af finnau;
ac ym mha le bynnag y lletyech di, y lletyaf finnau: dy bobl di
fydd fy mhobl i, a’th Dduw di fy Nuw innau:

Waphendula uRute wathi: "Sukundinyanzela usithi
mandikushiye. apho uya khona, nam ndiya kuya, ndiye kuhlala
nalapho uhlala khona, amawenu abe ngamawethu, noThixo
wakho abe nguThixo wam.

tetapi kata Rut: "Janganlah desak aku meninggalkan engkau
dan pulang dengan tidak mengikuti engkau; sebab ke mana
engkau pergi, ke situ jugalah aku pergi, dan di mana en-
gkau bermalam, di situ jugalah aku bermalam: bangsamulah
bangsaku dan Allahmulah Allahku;

de Ruth azt felelte: Ne unszolj engem, hogy elhagyjalak és
visszatérjek t6led. mert ahova te mégy, odamegyek, ahol te
megszallsz, ott szdllok meg. Néped az én népem, és Istened az
én Istenem.

respondié Rut: No me ruegues que te deje, y me aparte de ti;
porque a dondequiera que tu fueres, iré yo, y dondequiera que
vivieres, viviré. tu pueblo serd mi pueblo, y tu Dios mi Dios.

Table 12: Qualitative evaluation using SNGs to translate into each target language.
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