
Abstract 

Diagrams produced using Rhetorical 

Structure Theory can be both informative 

and engaging, providing insight into the 

properties of discourse structures and other 

coherence phenomena. This paper presents 

a deep dive into these diagrams and shows 

how an RST analysis can be reconceived as 

an emergent process. The paper describes 

an algorithm for transforming RST 

diagrams into Pythonic relational proposi-

tions and applies it to a set of RST analyses. 

The resulting expressions are isomorphic 

with RST diagrams as well as machine 

processable. As executable specifications 

of discourse structure, they support scalable 

applications in applied and theoretical 

studies. Several sample applications are 

presented. The transformation process itself 

suggests an alternative to the traditional 

view of rhetorical structures as recursive 

trees. The construction of coherence is 

shown to be a bottom-up synthesis, wherein 

discourse units combine to form relational 

propositions which in turn rendezvous with 

other relational propositions to create 

increasingly complex expressions until a 

comprehensive analysis is produced. This 

progressive bottom-up development of 

coherence is observable in the performance 

of the algorithm.  

1 Introduction 

An RST analysis is a picture of a discursive 

process. It shows how the elements of a text work 

together to support the writer’s purpose. The 

purpose could be anything—to support the claim of 

an argument, to explain the result of a causal 

process, to bring an anecdote to a satisfying 

conclusion, to assure the punchline of a joke, or to 

solicit a donation from the reader. In a well-written 

text, every part plays a role, with each part 

ultimately supporting the writer’s intended effect. 

An RST analysis depicts this process, it explains 

how the text does what it does. A competent 

analysis of a well-written text is an aesthetically 

pleasing appreciation of the writer’s mastery. This 

is among the strengths of RST. It is also a 

limitation. 

Many interesting and useful things have been 

accomplished, thanks to RST. Among these are 

automated text generation, discourse parsing, 

summarization, machine translation, essay scoring, 

coherency studies, and numerous other 

applications. And yet it seems the diagrams that 

make it distinctive tend to play only a bit part in 

these studies. In their survey of applications of 

RST, for example, Taboada and Mann (2006a) 

found they could recount the history of 

achievements in RST without need for any 

diagrams whatsoever. It is not unusual for papers 

on the topic to provide only a solitary diagram used 

solely for the purpose of conveying the core idea of 

what RST is. RST diagrams may be essential in 

explaining the theory, but thereafter tend to be 

treated as dispensable. This suggests that perhaps 

we have yet to fully leverage the concept of RST 

analyses as depictions of discursive processes. 

Hence the motivation for this research.  

If we could develop a method for transforming 

RST diagrams into executable code, into a notation 

that would be machine processable, conceptually 

faithful to RST, human readable, and maybe even 

page-count friendly, from this it might be possible 

to develop systems that would enable us to more 

deeply explore what RST is, what it has to offer, 

and thus enable us to look directly into the 

diagrams, not just as stepping stones to some other 

research topic, but in and of RST itself. This could 

lead to a deeper understanding of discursive 

coherence, not only as conceived by Rhetorical 

Structure Theory, but as conceptualized in other 

discourse formalisms as well.  
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The Pythonization of rhetorical structures is a 

process for transforming RST analyses into 

expressions conformant with the Python 

programming language, as illustrated in Figure 1. 

This paper describes an algorithm for making these 

transformations and provides direction for how 

these expressions can be applied to a range of 

research questions. I will also show how the 

algorithm itself sheds light on what a rhetorical 

structure is, how its structures come to exist, and 

what they mean for discursive coherence. What 

follows here then is a review of related literature, 

an overview of the motivation for developing the 

algorithm, and a description of the algorithm itself. 

This is followed by a discussion of the algorithm’s 

potential applications and their implications. The 

paper concludes with a summary of the results of 

this study. 

2 Related Research 

When Rhetorical Structure Theory was originally 

developed by Mann and Thompson (1988) it was 

intended for use in automated text generation, but 

soon became more widely used as a descriptive 

theory of discourse coherence. RST is one among 

several theories of coherence relations; some others 

of note include the Penn Discourse Treebank 

(Webber, Prasad, Lee, & Joshi, 2019), Segmented 

Discourse Representation Theory (Asher & 

Lascarides, 2003), a taxonomic approach to 

coherence relations (Sanders, Spooren, & 

Noordman, 1992), Hobb’s (1979) theory of 

coherence and co-reference, Polanyi’s (1987) 

linguistic discourse model, Van Dijk’s (1979) 

pragmatic connectives, and Grimes’ (1975) 

rhetorical predicates. Among the distinctive 

characteristics of RST are its theoretical basis and 

its diagrammatic technique. Its theoretical basis 

posits that an analysis of a text will consist of a set 

of schema applications, subject to the constraints of 

completeness, connectedness, uniqueness, and 

adjacency. Mann and Thompson (1988) note that 

the first three of these constraints are sufficient to 

require RST analyses to take the form of tree 

structures. Thus as a theory of coherence relations, 

RST is not limited to identifying relation pairs, but 

provides comprehensive specifications of the 

functional organization of complete texts. This in 

turn is reflected in the RST diagramming 

technique, which provides a tree-shaped rendering 

of the organization of the analyzed text.  

During its history RST has gone through several 

adjustments beyond the original version (Mann & 

Thompson, 1987, 1988), with various extensions 

and adaptations (Mann & Taboada, 2005; Taboada 

& Mann, 2006b). Carlson and Marcu (2001) 

extended RST with additional relations and a 

somewhat different approach, putting greater 

emphasis on syntactic devices, with the aim of 

increasing analytical efficiency and scalability. The 

annotation guidelines defined by Stede, Taboada, 

and Das (2017) adhere closely to those of Mann 

and Thompson, with minor variations.  

Relational propositions, developed by Mann and 

Thompson (1986) prior to and concurrently with 

their development of RST, are propositional 

analogs to RST structures, with relations being 

expressed as implicit assertions occurring between 

clauses. Mann and Thompson (2000) confined 

their analysis of relational propositions to discourse 

unit pairs, and declined to apply it to more complex 

Figure 1: Pythonizing the Not Laziness RST analysis 
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expressions. Potter (2018) developed a notation for 

nested relational propositions, enabling the 

restatement of complete RST analyses as relational 

propositions. That this notation is syntactically 

Pythonic is fundamental to the algorithmization of 

RST as described in this paper. 

Several tools have been developed for creating 

RST analyses. Among the more widely used of 

these are RST Tool, developed by O'Donnell 

(1997) and more recently rstWeb from Zeldes 

(2016). RST Tool is a multiplatform graphical 

interface for RST mark up. rstWeb is a browser-

based tool developed for RST and other discourse 

relational formalisms. It enables annotators to work 

online using a browser. Both server and local 

versions are available. Both RST Tool and rstWeb 

store or export RST analyses in a common XML 

format.  

3 Theoretical Framework 

RST analyses and their respective relational 

propositions are structurally and semantically 

isomorphic, enabling transformation from one 

representation to the other. The interest here is in 

providing an automated means for transforming 

RST analyses into relational propositions. The 

motivation for doing so should be clear: while RST 

presents organizational properties of a text as 

diagrams, relational propositions present identical 

information in functional form. The predicates of 

the relational propositions may be defined as 

Python functions. Through transformation, the 

1 https://github.com/anpotter/pycrst

RST diagram is redefined as an Pythonic 

expression. Once a diagram has been transformed, 

it can be supported by a set of functions 

implementing each of the relational predicates. 

That is, their implementation consists in defining a 

set of corresponding functions. These definitions 

are application specific, and dependent upon the 

research objective. The possibilities are open-

ended. Several examples are provided in Section 5. 

4 Pythonizing Rhetorical Structures 

The algorithm uses an RST-Tool XML file as input 

and generates a Pythonic relational proposition as 

output. While not rocket science, its behavior has 

yielded some interesting observations concerning 

the process of discourse coherence. Therefore, a 

look at how the algorithm works is worthwhile. 

(Only the core algorithm is presented here; the 

complete code is being made available as an open-

source project.)1 

Processing initiates at the top of the RST 

structure and descends recursively down each 

branch to the elementary discourse units. From 

there it constructs the leaf relational propositions 

and works its way back up through the structure, 

building the relational proposition as its goes.  

Nesting structures are discovered as span 

relations. While RST-Tool uses these spans, or 

vertical bars, to cue visual indicators of structural 

subordination, for transformation they are treated 

as precedence operators. A span takes precedence 

over its satellites. So, for example, in Figure 3, the 

Figure 2: The Common Cause Analysis (Thompson & Mann, 1987) 
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span identified as 2-3 is nested within 1-3, and 

therefore takes precedence over the outer span, thus 

defining the order of evaluation.  

The core function for the transformation is 

simple. When called, it is passed a relational 

proposition object: 

class RelProp: 
  def __init__(self,rel,sat,nuc,type,text): 
  self.rel = rel 
  self.sat = sat 
  self.nuc = nuc 
  self.type = type 
  self.text = text.strip() if text else "" 

The algorithm’s first order of business is to 

determine whether the relational proposition is the 

top span of the RST structure. If so, it simply steps 

down one level into the tree and makes a recursive 

call to the span’s satellite: 

def gen_exp(rp): 
 if is_top(rp) and is_span_type(rp): 
    return gen_exp(get_nuc(rp.sat)) 

This initiates a series of recursive calls as the 

function works its way down into the structure. 

With each call the function checks to determine 

whether the relational proposition under 

consideration is of type span. If so, it retrieves the 

span’s satellites. If there is more than one satellite 

related to the span, the converge function is called 

to specify a convergence relation among the 

satellites with respect to the span: 

   elif is_span_type(rp): 
 if get_sat_count(rp) > 1: 
    exp = converge(rp) 

When there is only one satellite, the algorithm 

determines whether the proposition is multinuclear. 

If it is, the algorithm makes a recursive call to itself 

for multinuclear handling. It then links the satellite 

to the relational proposition. Otherwise, it makes a 

recursive call to the satellite and links the returned 

value to the span’s child structure. If the span has 

no satellite, the satellite formats the proposition 

using its child structure as satellite and returns the 

expression: 

 else: 
 nuc_exp = gen_exp(get_span_nuc(rp)) 
 sat = get_sat(rp) 
 if sat: 

 if is_multi_type(sat): 
 sat.nuc = nuc_exp 
 exp = format_rp( sat.rel, 

 gen_exp(sat),nuc_exp) 
 else: 

 sat_rp = get_span_nuc(sat) 
 if sat_rp: 
    sat.sat=gen_exp(sat_rp) 
 exp = format_rp( 

sat.rel,sat.sat,nuc_exp) 
 else: 

 exp=format_rp(rp.rel,nuc_exp,rp.nuc) 

If the relational proposition is not of type span, then 

it must be either a segment or a multinuclear. If it is 
of type segment, the algorithm first checks to 

determine whether it has multiple satellites, and if 

so, it calls the converge function to perform special 

handling. Otherwise, the algorithm determines 

whether any satellites linked to the segment are 

multinuclear, and makes recursive calls as needed 

to format the relational proposition, returning that 

to the caller: 

 elif is_segment(rp): 
 if get_sat_count(rp) > 1: 
    exp = converge(rp) 
 else: 

 sat = get_sat(rp) 
 if not sat: 
    exp = format_rp(rp) 
 elif is_multi_type(sat): 

 exp = format_rp(sat.rel, 
gen_exp(sat), rp.sat) 

 else: 
 exp = gen_exp(sat) 

If the relational proposition is multinuclear, the 

algorithm makes recursive calls for each of its 

nuclei and formats the results. It then determines 

whether the multinuclear relation has satellites, and 

if so, performs a convergence operation similar to 

that performed on the span and segment types. 

For each type, the resulting expression is 

returned to the calling code. That is the core 

algorithm. It has tested successfully for 265 RST 

analyses including the GUM Corpus (Zeldes, 

2017), the STS-Corpus (Potter, 2023), as well as a 

miscellany of analyses from the RST literature. 

Many of the analyses transformed are well over 

100 units in length.  

Figure 3: Span Relations as Precedence Operators 

496



Because nesting of an expression reflects the 

depth of its RST structure, relational propositions 

can be difficult to read, so a pretty-printer was 

developed for post-processing. Test functions are 

provided to assure unit continuity and span 

handling. Here is the generated expression for 

Thompson and Mann’s (1987) Common Cause 

analysis, shown in Figure 2,  transformed and 

prettified: 

motivation( 
   evidence( 

  evidence( 
  justify( 

  10, 
  antithesis( 

  concession( 
       11,12),13)), 

  antithesis( 
  evidence( 

  condition( 
  4, 
  contrast( 

  5,6)), 
  concession( 

       2,3)), 
  elaboration( 

  9, 
   condition( 
 8,7)))),1),14) 

Formatted as such, the satellite nucleus pairs align 

beneath their enclosing relations, and the structural 

depth of the discourse is indented from left to right. 

Multiple levels of evidence support unit 1, which 

then is used to provide motivation for unit 14. The 

relational proposition shows the rhetorical 

organization of the text, but unlike the diagram it 

does not reflect the linearity of the discourse. A 

relational proposition is an abstract expression of a 

coherence process as reenacted by the algorithm.  

5 Applying Pythonized Rhetorical 

Structures 

An application of a relational proposition consists 

of a set of functions that implement the relational 

predicates appearing in the proposition. If, for 

example, a relational proposition uses evidence and 

antithesis, the applications must provide functions 

by those names. The processing performed by the 

functions is application specific. If an application 

is used simply to tabulate data about a relation 

proposition(s), the functions may be very simple. 

However, the nesting of the relational propositions 

defines their precedence, with each nested 

proposition’s return values being passed to its 

parent. Reusable functions allow relational 

propositions to be treated as plug-ins within a 

framework. Moderately sized bulk processing can 

be configured by storing relational propositions as 

string data in Python dictionaries for runtime 

evaluation as Python code. 

Some but not all applications are precedence 

sensitive. Precedence sensitive applications rely on 

the logic implicit in the nesting of relational 

propositions. For example, an application designed 

for a study in argument accrual may need to 

backtrack through discourse threads when a 

structural convergence is encountered. This could 

be used to determine the relation types of the 

accruing threads. 

The following examples illustrate how relational 

propositions can be used. The first is a simple 

framework for measuring the frequency of 

argumentative relations as identified by Azar 

(1999). The purpose of this example is to show how 

readily Pythonic representations of RST analyses 

can be outfitted for practical applications. The 

second example performs an automated reduction 

of relational propositions to logic and then uses the 

logic to support examination of purported 

simultaneous RST analyses. The third example 

shows how runtime evaluations of relational 

propositions can be used to reenact coherence 

development in a discourse. 

5.1 Computing an RST Metric 

Using relational propositions as code requires a set 

of functions corresponding to the relations used in 

the relational proposition. Here is a set of functions 

for determining the Azar Score for the relations 

used in Thompson and Mann’s (1987) Common 

Cause analysis: 

def antithesis(*argv): return tally(argv), argv 
def concession(*argv): return tally(argv), argv 
def evidence(*argv): return tally(argv), argv 
def motivation(*argv): return tally(argv), argv 
def justify(*argv): return tally(argv), argv 
def condition(*argv): return tally(argv), argv 
def contrast(*argv): return tally(argv), argv 
def elaboration(*argv): return tally(argv), argv 
def condition(*argv): return tally(argv), argv 

This list can be extended to include an entire RST 

relation set. Since every relation receives the same 

processing, they all call the same function: 

def tally(argv): 
 relname = sys._getframe(1).f_code.co_name 
 argumentative() if relname in arg_rels \ 
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      else nonargumentative() 
 return relname 

From these tallies the Azar Score is as the ratio, 

expressed as a decimal, of argumentative to non-

argumentative relations in a text. Azar (1999) 

designated a subset of relations as argumentative, 

including EVIDENCE, MOTIVATION, JUSTIFY, 

ANTITHESIS, and CONCESSION. What distinguishes 

these relations, according to Azar, is that their loci 

of effect are in their nuclei and that the intended 

effect is to persuade, move, or otherwise influence 

the reader to accept the content of the nucleus. 

When the program is run, the Common Cause 

relational proposition (shown previously in Section 

4.0) is evaluated causing the function for each 

relation to be executed. This in turn calls the tally 

function which increments the relation type 

counters as indicated by relation type. Using this, 

we determine that the Azar score for Thompson 

and Mann’s (1987) Common Cause analysis is 

0.69. This can be performed for any relational 

proposition.  

5.2 Automating logical reductions 

A method for reducing rhetorical structures to 

propositional logic was described by Potter (2018, 

2021). Each relation was assigned a logical 

definition such that complex logical expressions 

could be constructed by mapping from the 

relational propositions to the logic. This can be 

automated by providing a set of functions where 

each function supports a logical interpretation of 

the relational predicate. Two versions of this have 

been developed.2 One version consists of a set of 

Boolean functions that evaluate the relational 

proposition. The second version, which is the 

version presented here, returns a logical expression 

corresponding to the relation. The expression uses 

a conventional notation for propositional logic. A 

subset of definitions is as follows: 

def neg(p):     return f'¬{p}' 
def conj(p, q): return f'({p} ∧ {q})' 
def disj(p, q): return f'({p} ∨ {q})' 
def exdisj(p, q):  

return f'({disj(p, q)} ∧ {neg(conj(p, q))})' 

def imp(p, q):  return f'({p} → {q})' 
def mp(p, q):  return f'{imp(conj(imp(p,q),p),q)}' 
def djs(p,q):  return f'{imp(conj(disj(p,q), neg(p)),q)}' 

# selected relations 
def evidence(s,n):      return mp(s,n) 
def concession(s,n): 

2 https://github.com/anpotter/RBTL 

    return mp(neg(imp(s,neg(n))),n) 
def condition(s,n):     return imp(s,n) 
def cause(s,n):         return mp(s,n) 
def antithesis(s,n):    return djs(s,n) 
def motivation(s,n):    return mp(s,n) 
def enablement(s,n):    return mp(s,n) 
def justify(s,n):       return mp(s,n) 
def background(s,n):    return mp(s,n) 
def elaboration(s,n):   return mp(s,n) 
def evaluation(s,n):    return mp(n,s) 
def contrast(s,n):      return exdisj(s,n) 
def result(s,n):        return mp(s,n) 
def circumstance(s,n):  return mp(s,n) 
def volitionalCause(s,n): return(cause(s,n)) 
def volitionalResult(s,n): return(cause(n,s))  
def conjunction(n,o):  return conj(n,o) 

Two rules of inference are required: modus ponens 

and disjunctive syllogism. Definitions for the 

logical primitives, conjunction, disjunction, and 

negation are also provided. This is all that is 

necessary for the reduction. As an example, we can 

apply this to segments 4 through 7 of the Not 

Laziness analysis:  

exp = evidence(concession(5,antithesis(7,6)),4) 
print(exp) 

The antithesis relational proposition is evaluated 

first, generating the disjunctive syllogism: 

(((7 ∨ 6) ∧ ¬7) → 6) 

The concession relation is evaluated next. There the 

writer concedes the situation presented in the 

satellite and asserts that, though there might appear 

to be an incompatibility between the satellite and 

the nucleus, there is no actual incompatibility. The 

writer holds the nucleus in positive regard, and by 

indicating a lack of incompatibility with its 

satellite, the writer seeks to increase the reader’s 

positive regard for the nucleus (Thompson, 1987). 

Since the satellite does not imply the negation of 

the nucleus it therefore implies its affirmative. 

Nesting the disjunctive syllogism within the 

concession results in the following:  

(((¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6)) → (((7 ∨ 6) ∧ ¬7) 
→ 6)) ∧ ¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6))) → (((7 ∨ 6)
∧ ¬7) → 6))

This expression is nested as the antecedent and 

minor premise of the evidence modus ponens: 

((((((¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6)) → (((7 ∨ 6) ∧ 
¬7) → 6)) ∧ ¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6))) → (((7 
∨ 6) ∧ ¬7) → 6)) → 4) ∧ (((¬(5 → ¬(((7 ∨ 6) ∧ ¬7) 
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→ 6)) → (((7 ∨ 6) ∧ ¬7) → 6)) ∧ ¬(5 → ¬(((7 ∨ 6)
∧ ¬7) → 6))) → (((7 ∨ 6) ∧ ¬7) → 6))) → 4)

Potter (2018) claimed any text analyzable using 

RST could be reduced to propositional logic. The 

method described here shows the process can be 

fully automated. The results can be used to support 

fine-grained examination of RST analyses. For 

example, in their 1992 paper, Moore and Pollack 

argued that there are obvious cases where both 

presentational and subject matter analyses can be 

made of the same text. They based their claim on 

several examples. Here is the text of their first 

example: 

1) George Bush supports big business.

2) He's sure to veto House Bill 1711.

Moore and Pollack say it is plausible that there is 

an EVIDENCE relation between unit 2, as nucleus of 

the relation, and unit 1, the satellite. So the 

relational proposition is evidence(1,2). The intended 

effect of EVIDENCE is that the satellite increases the 

reader’s belief in the nucleus. For this to hold, it 

would therefore be necessary that the reader 

already believe in the satellite, since it is an 

assumption of the argument. The logical reduction 

of the relational proposition echoes this, showing 

unit 2 as inferred from unit 1: (((1 → 2) ∧ 1) → 2).  
In their second analysis of the same example, 

Moore and Pollack say that it is plausible that there 

is a VOLITIONAL-CAUSE relation between unit 1, as 

nucleus of the relation and unit 2, the satellite. So 

the relational proposition is now volitional-

cause(2,1), such that unit 2 provides a causal 

explanation for unit 1. As such, George Bush’s 

support for the bill supports the inference that he 

supports big business: (((2 → 1) ∧ 2) → 1). So in one 

analysis, 1 is inferred from 2, and in the other, 2 is 

inferred from 1. This does not affirm that multiple 

analyses must be supported, but rather that there 

are two quite different readings of the text. And 

once we allow arbitrary assumptions necessary for 

multiple decontextualized readings, all bets are off 

as to the correct analysis. For all we know, the bill 

might have been something strongly disfavored by 

big business, but that President Bush intended to 

support it anyway, making the relation between the 

two units CONCESSION. Similar issues arise with 

Moore and Pollack’s second example: 

1) Come home by 5:00.

2) Then we can go to the hardware store before it

closes.

3) That way we can finish the bookshelves tonight.

The first of their analyses for this example uses the 

MOTIVATION relation: Finishing the bookshelves 

motivates going to the hardware store, and taken 

together these motivate coming home by 5:00: 

motivation(motivation(3,2),1): 

((((((3 → 2) ∧ 3) → 2) → 1) ∧ (((3 → 2) ∧ 3) → 2)) → 
1) 

Figure 4: Reenacting the Heart Transplant Analysis 

324 : cause(7,6)

327 : condition(4,5)

351 : disjunction(2,3)

358 : condition(disjunction(2,3),1)

311 : concession(condition(disjunction(2,3),1), condition(4,5))

311 : concession(concession(condition(disjunction(2,3),1), condition(4,5)),cause(7,6))
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 The second analysis uses the CONDITION relation: 

coming  home by 5:00 is a condition on going to 

the hardware store, and together these are a 

condition for finishing the bookshelves: 

condition(condition(1,2),3), or 

((1 → 2) → 3) 

 For the MOTIVATION analysis to be realizable, it is 

necessary that the reader accept the initial premise 

of the relation, the bookshelves can be finished 

tonight. So in one case, there is a line of reasoning 

leading from unit 3 to unit 1, and in the other, 

leading from 1 to 3. Once again, the analyses are 

not simultaneous. Any possibility of simultaneous 

analysis relies on an insufficiency of information. 

Decontextualized, obscure, or ambiguous texts are 

hard to understand, and this should be expected to 

impede analysis. The use of semantic relations for 

pragmatic purposes is identified by means of a 

determination of purpose, and therefore there is not 

really an overlap at all. If there is a problem here, it 

is with the limiting circumstances under which the 

theory is applied, not with the theory itself.  

5.3 Reenacting Rhetorical Structures 

The transformation algorithm can be used to 

reenact the process of structure formation. This 

process initiates with the innermost relations of 

each branch and works its way upward. To 

demonstrate this, I instrumented the algorithm with 

debug prints and applied it to the Heart Transplant 

analysis shown above in Figure 4. As the algorithm 

descends into the tree it seeks the precedence, 

ultimately finding it in the leaves and their 

relations. These low-level relational propositions 

are transformed first. The algorithm continues 

upward, constructing more complex expressions 

from the bottom up, until a complete relational 

proposition is formulated. With each relational 

proposition, there is a transference of intended 

effect from satellite to nucleus. Without the 

satellite-nucleus transfer, we would have merely an 

empty structure. The only way to a nucleus is 

through its satellites. But all this is at odds with the 

view of RST trees as recursive. 

Recursion, it has been said, is pervasive in 

discourse, semantically, rhetorically, structurally, 

grammatically, and thematically (e.g., Hwang, 

1989; Muhammad, 2011; Pinker & Jackendoff, 

2005; Polanyi, 1988). And of rhetorical structures, 

it has been widely observed that not only are they 

are tree-shaped (Bateman, 2001; Grasso, 2002; 

Mann & Thompson, 1988), but that the units 

comprising the tree are linked to one another 

recursively (Das & Taboada, 2018; Demberg, Asr, 

& Scholman, 2019; Guerini, Stock, & Zancanaro, 

2004; Peldszus & Stede, 2016; Taboada & Mann, 

2006b). While these observations are structurally 

correct, they are functionally incomplete. As the 

reenactment of rhetorical structures shows, RST 

tree structures define themselves from the bottom 

up. Elementary units combine to form relational 

propositions and these propositions rendezvous 

with other propositions to create increasingly 

complex expressions. The tree is the result of a 

pragmatic process. Through this process rhetorical 

intentionality develops.  

This becomes more obvious when analyzing a 

nonsensical text, where the RST linkage is 

discernible, but the satellite-nucleus transfers fail, 

Figure 5: An Analysis of Nonsense 
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as shown in Figure 5. The structure is discoverable 

even when the intention is unachievable. Texts may 

be analyzable, and if so, they will be transformable 

and reducible, and yet at the same time nonsensical. 

This analysis is of a passage from a paper created 

using the SCIgen nonsense paper generator 

(Stribling, Krohn, & Aguayo, 2005). The analysis 

is superficially plausible, it transforms correctly, 

and builds up just like any other: 

evidence( 
   evaluation( 

 elaboration( 
    6,5), 
 conjunction( 

 antithesis( 
    1,2), 
 elaboration( 

 elaboration( 
 4,3),2))),7) 

And yet the text is nonsensical. If such nonsense is 

analyzable, what does this say about RST? Is 

coherence as defined by RST merely window 

dressing? On the contrary, the inferences within the 

text, if read with attention to content, are non 

sequitur to the point of being ridiculous. The 

ELABORATIONS are not really elaborations, the 

EVALUATION is not evaluative, the EVIDENCE is not 

evidential. The superficiality of the analysis 

mirrors that of the text. For an RST analysis to be 

sound, the bottom-up transfer of intention from 

satellite to nuclei must be assured. This echoes 

Marcu’s (2000) strong nuclearity thesis, but from a 

bottom-up perspective. A nucleus acquires its 

“strength” through its relationship with its satellite. 

Transference of intention upward shows that, in a 

coherent text, each relation subsumes its 

underlying structure. An RST analysis is the 

realization of a discursive process. The constituents 

of a text organize from the bottom up to realize the 

writer’s purpose. 

6 Conclusion 

The algorithm presented here provides a tool for 

transforming RST analyses into machine 

processable code. As such, an RST analysis need 

not be regarded as an end product, but rather as a 

starting point for deeper investigation. Of 

particular interest are studies using Pythonic 

relational propositions to investigate threads of 

coherence. The algorithm is scalable to large 

analysis sets.  

The bottom-up synthesis of relational 

propositions generates purely abstract renditions of 

coherence processes. This validates the theory of 

relational propositions. Relational propositions 

implicitly assert the intentionality between 

discourse units. Coherence arises out of the 

instantiation of these propositions, not only at the 

unit level but among the complex spans that bring 

structure to the rhetorical space. Within this space, 

a span is a container of an intentional effect. It is 

through spans that structure arises. While we may 

view the process from the top down, as is the 

tendency with RST, intentionality develops from 

the bottom up. The tree-structures characteristic of 

RST are the end-result of this process.  
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