
Abstract

Diagrams produced using Rhetorical

Structure Theory can be both informative

and engaging, providing insight into the

properties of discourse structures and other

coherence phenomena. This paper presents

a deep dive into these diagrams and shows

how an RST analysis can be reconceived as

an emergent process. The paper describes

an algorithm for transforming RST

diagrams into Pythonic relational proposi-

tions and applies it to a set of RST analyses.

The resulting expressions are isomorphic

with RST diagrams as well as machine

processable. As executable specifications

of discourse structure, they support scalable

applications in applied and theoretical

studies. Several sample applications are

presented. The transformation process itself

suggests an alternative to the traditional

view of rhetorical structures as recursive

trees. The construction of coherence is

shown to be a bottom-up synthesis, wherein

discourse units combine to form relational

propositions which in turn rendezvous with

other relational propositions to create

increasingly complex expressions until a

comprehensive analysis is produced. This

progressive bottom-up development of

coherence is observable in the performance

of the algorithm.

1 Introduction

An RST analysis is a picture of a discursive

process. It shows how the elements of a text work

together to support the writer’s purpose. The

purpose could be anything—to support the claim of

an argument, to explain the result of a causal

process, to bring an anecdote to a satisfying

conclusion, to assure the punchline of a joke, or to

solicit a donation from the reader. In a well-written

text, every part plays a role, with each part

ultimately supporting the writer’s intended effect.

An RST analysis depicts this process, it explains

how the text does what it does. A competent

analysis of a well-written text is an aesthetically

pleasing appreciation of the writer’s mastery. This

is among the strengths of RST. It is also a

limitation.

Many interesting and useful things have been

accomplished, thanks to RST. Among these are

automated text generation, discourse parsing,

summarization, machine translation, essay scoring,

coherency studies, and numerous other

applications. And yet it seems the diagrams that

make it distinctive tend to play only a bit part in

these studies. In their survey of applications of

RST, for example, Taboada and Mann (2006a)

found they could recount the history of

achievements in RST without need for any

diagrams whatsoever. It is not unusual for papers

on the topic to provide only a solitary diagram used

solely for the purpose of conveying the core idea of

what RST is. RST diagrams may be essential in

explaining the theory, but thereafter tend to be

treated as dispensable. This suggests that perhaps

we have yet to fully leverage the concept of RST

analyses as depictions of discursive processes.

Hence the motivation for this research.

If we could develop a method for transforming

RST diagrams into executable code, into a notation

that would be machine processable, conceptually

faithful to RST, human readable, and maybe even

page-count friendly, from this it might be possible

to develop systems that would enable us to more

deeply explore what RST is, what it has to offer,

and thus enable us to look directly into the

diagrams, not just as stepping stones to some other

research topic, but in and of RST itself. This could

lead to a deeper understanding of discursive

coherence, not only as conceived by Rhetorical

Structure Theory, but as conceptualized in other

discourse formalisms as well.

An Algorithm for Pythonizing Rhetorical Structures

Andrew Potter
Computer Science & Information Systems Department

University of North Alabama
Florence, Alabama, USA
apotter1@una.edu

493

The Pythonization of rhetorical structures is a

process for transforming RST analyses into

expressions conformant with the Python

programming language, as illustrated in Figure 1.

This paper describes an algorithm for making these

transformations and provides direction for how

these expressions can be applied to a range of

research questions. I will also show how the

algorithm itself sheds light on what a rhetorical

structure is, how its structures come to exist, and

what they mean for discursive coherence. What

follows here then is a review of related literature,

an overview of the motivation for developing the

algorithm, and a description of the algorithm itself.

This is followed by a discussion of the algorithm’s

potential applications and their implications. The

paper concludes with a summary of the results of

this study.

2 Related Research

When Rhetorical Structure Theory was originally

developed by Mann and Thompson (1988) it was

intended for use in automated text generation, but

soon became more widely used as a descriptive

theory of discourse coherence. RST is one among

several theories of coherence relations; some others

of note include the Penn Discourse Treebank

(Webber, Prasad, Lee, & Joshi, 2019), Segmented

Discourse Representation Theory (Asher &

Lascarides, 2003), a taxonomic approach to

coherence relations (Sanders, Spooren, &

Noordman, 1992), Hobb’s (1979) theory of

coherence and co-reference, Polanyi’s (1987)

linguistic discourse model, Van Dijk’s (1979)

pragmatic connectives, and Grimes’ (1975)

rhetorical predicates. Among the distinctive

characteristics of RST are its theoretical basis and

its diagrammatic technique. Its theoretical basis

posits that an analysis of a text will consist of a set

of schema applications, subject to the constraints of

completeness, connectedness, uniqueness, and

adjacency. Mann and Thompson (1988) note that

the first three of these constraints are sufficient to

require RST analyses to take the form of tree

structures. Thus as a theory of coherence relations,

RST is not limited to identifying relation pairs, but

provides comprehensive specifications of the

functional organization of complete texts. This in

turn is reflected in the RST diagramming

technique, which provides a tree-shaped rendering

of the organization of the analyzed text.

During its history RST has gone through several

adjustments beyond the original version (Mann &

Thompson, 1987, 1988), with various extensions

and adaptations (Mann & Taboada, 2005; Taboada

& Mann, 2006b). Carlson and Marcu (2001)

extended RST with additional relations and a

somewhat different approach, putting greater

emphasis on syntactic devices, with the aim of

increasing analytical efficiency and scalability. The

annotation guidelines defined by Stede, Taboada,

and Das (2017) adhere closely to those of Mann

and Thompson, with minor variations.

Relational propositions, developed by Mann and

Thompson (1986) prior to and concurrently with

their development of RST, are propositional

analogs to RST structures, with relations being

expressed as implicit assertions occurring between

clauses. Mann and Thompson (2000) confined

their analysis of relational propositions to discourse

unit pairs, and declined to apply it to more complex

Figure 1: Pythonizing the Not Laziness RST analysis

background(

volitional-result(

1,

circumstance(

3,2)),

evidence(

concession(

5,

antithesis(

7,6)),4))

494

expressions. Potter (2018) developed a notation for

nested relational propositions, enabling the

restatement of complete RST analyses as relational

propositions. That this notation is syntactically

Pythonic is fundamental to the algorithmization of

RST as described in this paper.

Several tools have been developed for creating

RST analyses. Among the more widely used of

these are RST Tool, developed by O'Donnell

(1997) and more recently rstWeb from Zeldes

(2016). RST Tool is a multiplatform graphical

interface for RST mark up. rstWeb is a browser-

based tool developed for RST and other discourse

relational formalisms. It enables annotators to work

online using a browser. Both server and local

versions are available. Both RST Tool and rstWeb

store or export RST analyses in a common XML

format.

3 Theoretical Framework

RST analyses and their respective relational

propositions are structurally and semantically

isomorphic, enabling transformation from one

representation to the other. The interest here is in

providing an automated means for transforming

RST analyses into relational propositions. The

motivation for doing so should be clear: while RST

presents organizational properties of a text as

diagrams, relational propositions present identical

information in functional form. The predicates of

the relational propositions may be defined as

Python functions. Through transformation, the

1 https://github.com/anpotter/pycrst

RST diagram is redefined as an Pythonic

expression. Once a diagram has been transformed,

it can be supported by a set of functions

implementing each of the relational predicates.

That is, their implementation consists in defining a

set of corresponding functions. These definitions

are application specific, and dependent upon the

research objective. The possibilities are open-

ended. Several examples are provided in Section 5.

4 Pythonizing Rhetorical Structures

The algorithm uses an RST-Tool XML file as input

and generates a Pythonic relational proposition as

output. While not rocket science, its behavior has

yielded some interesting observations concerning

the process of discourse coherence. Therefore, a

look at how the algorithm works is worthwhile.

(Only the core algorithm is presented here; the

complete code is being made available as an open-

source project.)1

Processing initiates at the top of the RST

structure and descends recursively down each

branch to the elementary discourse units. From

there it constructs the leaf relational propositions

and works its way back up through the structure,

building the relational proposition as its goes.

Nesting structures are discovered as span

relations. While RST-Tool uses these spans, or

vertical bars, to cue visual indicators of structural

subordination, for transformation they are treated

as precedence operators. A span takes precedence

over its satellites. So, for example, in Figure 3, the

Figure 2: The Common Cause Analysis (Thompson & Mann, 1987)

495

https://github.com/anpotter/pycrst

span identified as 2-3 is nested within 1-3, and

therefore takes precedence over the outer span, thus

defining the order of evaluation.

The core function for the transformation is

simple. When called, it is passed a relational

proposition object:

class RelProp:
 def __init__(self,rel,sat,nuc,type,text):
 self.rel = rel
 self.sat = sat
 self.nuc = nuc
 self.type = type
 self.text = text.strip() if text else ""

The algorithm’s first order of business is to

determine whether the relational proposition is the

top span of the RST structure. If so, it simply steps

down one level into the tree and makes a recursive

call to the span’s satellite:

def gen_exp(rp):
 if is_top(rp) and is_span_type(rp):
 return gen_exp(get_nuc(rp.sat))

This initiates a series of recursive calls as the

function works its way down into the structure.

With each call the function checks to determine

whether the relational proposition under

consideration is of type span. If so, it retrieves the

span’s satellites. If there is more than one satellite

related to the span, the converge function is called

to specify a convergence relation among the

satellites with respect to the span:

 elif is_span_type(rp):
 if get_sat_count(rp) > 1:
 exp = converge(rp)

When there is only one satellite, the algorithm

determines whether the proposition is multinuclear.

If it is, the algorithm makes a recursive call to itself

for multinuclear handling. It then links the satellite

to the relational proposition. Otherwise, it makes a

recursive call to the satellite and links the returned

value to the span’s child structure. If the span has

no satellite, the satellite formats the proposition

using its child structure as satellite and returns the

expression:

 else:
 nuc_exp = gen_exp(get_span_nuc(rp))
 sat = get_sat(rp)
 if sat:

 if is_multi_type(sat):
 sat.nuc = nuc_exp
 exp = format_rp(sat.rel,

 gen_exp(sat),nuc_exp)
 else:

 sat_rp = get_span_nuc(sat)
 if sat_rp:
 sat.sat=gen_exp(sat_rp)
 exp = format_rp(

sat.rel,sat.sat,nuc_exp)
 else:

 exp=format_rp(rp.rel,nuc_exp,rp.nuc)

If the relational proposition is not of type span, then

it must be either a segment or a multinuclear. If it is
of type segment, the algorithm first checks to

determine whether it has multiple satellites, and if

so, it calls the converge function to perform special

handling. Otherwise, the algorithm determines

whether any satellites linked to the segment are

multinuclear, and makes recursive calls as needed

to format the relational proposition, returning that

to the caller:

 elif is_segment(rp):
 if get_sat_count(rp) > 1:
 exp = converge(rp)
 else:

 sat = get_sat(rp)
 if not sat:
 exp = format_rp(rp)
 elif is_multi_type(sat):

 exp = format_rp(sat.rel,
gen_exp(sat), rp.sat)

 else:
 exp = gen_exp(sat)

If the relational proposition is multinuclear, the

algorithm makes recursive calls for each of its

nuclei and formats the results. It then determines

whether the multinuclear relation has satellites, and

if so, performs a convergence operation similar to

that performed on the span and segment types.

For each type, the resulting expression is

returned to the calling code. That is the core

algorithm. It has tested successfully for 265 RST

analyses including the GUM Corpus (Zeldes,

2017), the STS-Corpus (Potter, 2023), as well as a

miscellany of analyses from the RST literature.

Many of the analyses transformed are well over

100 units in length.

Figure 3: Span Relations as Precedence Operators

496

Because nesting of an expression reflects the

depth of its RST structure, relational propositions

can be difficult to read, so a pretty-printer was

developed for post-processing. Test functions are

provided to assure unit continuity and span

handling. Here is the generated expression for

Thompson and Mann’s (1987) Common Cause

analysis, shown in Figure 2, transformed and

prettified:

motivation(
 evidence(

 evidence(
 justify(

 10,
 antithesis(

 concession(
 11,12),13)),

 antithesis(
 evidence(

 condition(
 4,
 contrast(

 5,6)),
 concession(

 2,3)),
 elaboration(

 9,
 condition(
 8,7)))),1),14)

Formatted as such, the satellite nucleus pairs align

beneath their enclosing relations, and the structural

depth of the discourse is indented from left to right.

Multiple levels of evidence support unit 1, which

then is used to provide motivation for unit 14. The

relational proposition shows the rhetorical

organization of the text, but unlike the diagram it

does not reflect the linearity of the discourse. A

relational proposition is an abstract expression of a

coherence process as reenacted by the algorithm.

5 Applying Pythonized Rhetorical

Structures

An application of a relational proposition consists

of a set of functions that implement the relational

predicates appearing in the proposition. If, for

example, a relational proposition uses evidence and

antithesis, the applications must provide functions

by those names. The processing performed by the

functions is application specific. If an application

is used simply to tabulate data about a relation

proposition(s), the functions may be very simple.

However, the nesting of the relational propositions

defines their precedence, with each nested

proposition’s return values being passed to its

parent. Reusable functions allow relational

propositions to be treated as plug-ins within a

framework. Moderately sized bulk processing can

be configured by storing relational propositions as

string data in Python dictionaries for runtime

evaluation as Python code.

Some but not all applications are precedence

sensitive. Precedence sensitive applications rely on

the logic implicit in the nesting of relational

propositions. For example, an application designed

for a study in argument accrual may need to

backtrack through discourse threads when a

structural convergence is encountered. This could

be used to determine the relation types of the

accruing threads.

The following examples illustrate how relational

propositions can be used. The first is a simple

framework for measuring the frequency of

argumentative relations as identified by Azar

(1999). The purpose of this example is to show how

readily Pythonic representations of RST analyses

can be outfitted for practical applications. The

second example performs an automated reduction

of relational propositions to logic and then uses the

logic to support examination of purported

simultaneous RST analyses. The third example

shows how runtime evaluations of relational

propositions can be used to reenact coherence

development in a discourse.

5.1 Computing an RST Metric

Using relational propositions as code requires a set

of functions corresponding to the relations used in

the relational proposition. Here is a set of functions

for determining the Azar Score for the relations

used in Thompson and Mann’s (1987) Common

Cause analysis:

def antithesis(*argv): return tally(argv), argv
def concession(*argv): return tally(argv), argv
def evidence(*argv): return tally(argv), argv
def motivation(*argv): return tally(argv), argv
def justify(*argv): return tally(argv), argv
def condition(*argv): return tally(argv), argv
def contrast(*argv): return tally(argv), argv
def elaboration(*argv): return tally(argv), argv
def condition(*argv): return tally(argv), argv

This list can be extended to include an entire RST

relation set. Since every relation receives the same

processing, they all call the same function:

def tally(argv):
 relname = sys._getframe(1).f_code.co_name
 argumentative() if relname in arg_rels \

497

 else nonargumentative()
 return relname

From these tallies the Azar Score is as the ratio,

expressed as a decimal, of argumentative to non-

argumentative relations in a text. Azar (1999)

designated a subset of relations as argumentative,

including EVIDENCE, MOTIVATION, JUSTIFY,

ANTITHESIS, and CONCESSION. What distinguishes

these relations, according to Azar, is that their loci

of effect are in their nuclei and that the intended

effect is to persuade, move, or otherwise influence

the reader to accept the content of the nucleus.

When the program is run, the Common Cause

relational proposition (shown previously in Section

4.0) is evaluated causing the function for each

relation to be executed. This in turn calls the tally

function which increments the relation type

counters as indicated by relation type. Using this,

we determine that the Azar score for Thompson

and Mann’s (1987) Common Cause analysis is

0.69. This can be performed for any relational

proposition.

5.2 Automating logical reductions

A method for reducing rhetorical structures to

propositional logic was described by Potter (2018,

2021). Each relation was assigned a logical

definition such that complex logical expressions

could be constructed by mapping from the

relational propositions to the logic. This can be

automated by providing a set of functions where

each function supports a logical interpretation of

the relational predicate. Two versions of this have

been developed.2 One version consists of a set of

Boolean functions that evaluate the relational

proposition. The second version, which is the

version presented here, returns a logical expression

corresponding to the relation. The expression uses

a conventional notation for propositional logic. A

subset of definitions is as follows:

def neg(p): return f'¬{p}'
def conj(p, q): return f'({p} ∧ {q})'
def disj(p, q): return f'({p} ∨ {q})'
def exdisj(p, q):

return f'({disj(p, q)} ∧ {neg(conj(p, q))})'

def imp(p, q): return f'({p} → {q})'
def mp(p, q): return f'{imp(conj(imp(p,q),p),q)}'
def djs(p,q): return f'{imp(conj(disj(p,q), neg(p)),q)}'

selected relations
def evidence(s,n): return mp(s,n)
def concession(s,n):

2 https://github.com/anpotter/RBTL

 return mp(neg(imp(s,neg(n))),n)
def condition(s,n): return imp(s,n)
def cause(s,n): return mp(s,n)
def antithesis(s,n): return djs(s,n)
def motivation(s,n): return mp(s,n)
def enablement(s,n): return mp(s,n)
def justify(s,n): return mp(s,n)
def background(s,n): return mp(s,n)
def elaboration(s,n): return mp(s,n)
def evaluation(s,n): return mp(n,s)
def contrast(s,n): return exdisj(s,n)
def result(s,n): return mp(s,n)
def circumstance(s,n): return mp(s,n)
def volitionalCause(s,n): return(cause(s,n))
def volitionalResult(s,n): return(cause(n,s))
def conjunction(n,o): return conj(n,o)

Two rules of inference are required: modus ponens

and disjunctive syllogism. Definitions for the

logical primitives, conjunction, disjunction, and

negation are also provided. This is all that is

necessary for the reduction. As an example, we can

apply this to segments 4 through 7 of the Not

Laziness analysis:

exp = evidence(concession(5,antithesis(7,6)),4)
print(exp)

The antithesis relational proposition is evaluated

first, generating the disjunctive syllogism:

(((7 ∨ 6) ∧ ¬7) → 6)

The concession relation is evaluated next. There the

writer concedes the situation presented in the

satellite and asserts that, though there might appear

to be an incompatibility between the satellite and

the nucleus, there is no actual incompatibility. The

writer holds the nucleus in positive regard, and by

indicating a lack of incompatibility with its

satellite, the writer seeks to increase the reader’s

positive regard for the nucleus (Thompson, 1987).

Since the satellite does not imply the negation of

the nucleus it therefore implies its affirmative.

Nesting the disjunctive syllogism within the

concession results in the following:

(((¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6)) → (((7 ∨ 6) ∧ ¬7)
→ 6)) ∧ ¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6))) → (((7 ∨ 6)
∧ ¬7) → 6))

This expression is nested as the antecedent and

minor premise of the evidence modus ponens:

((((((¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6)) → (((7 ∨ 6) ∧
¬7) → 6)) ∧ ¬(5 → ¬(((7 ∨ 6) ∧ ¬7) → 6))) → (((7
∨ 6) ∧ ¬7) → 6)) → 4) ∧ (((¬(5 → ¬(((7 ∨ 6) ∧ ¬7)

498

https://github.com/anpotter/RBTL

→ 6)) → (((7 ∨ 6) ∧ ¬7) → 6)) ∧ ¬(5 → ¬(((7 ∨ 6)
∧ ¬7) → 6))) → (((7 ∨ 6) ∧ ¬7) → 6))) → 4)

Potter (2018) claimed any text analyzable using

RST could be reduced to propositional logic. The

method described here shows the process can be

fully automated. The results can be used to support

fine-grained examination of RST analyses. For

example, in their 1992 paper, Moore and Pollack

argued that there are obvious cases where both

presentational and subject matter analyses can be

made of the same text. They based their claim on

several examples. Here is the text of their first

example:

1) George Bush supports big business.

2) He's sure to veto House Bill 1711.

Moore and Pollack say it is plausible that there is

an EVIDENCE relation between unit 2, as nucleus of

the relation, and unit 1, the satellite. So the

relational proposition is evidence(1,2). The intended

effect of EVIDENCE is that the satellite increases the

reader’s belief in the nucleus. For this to hold, it

would therefore be necessary that the reader

already believe in the satellite, since it is an

assumption of the argument. The logical reduction

of the relational proposition echoes this, showing

unit 2 as inferred from unit 1: (((1 → 2) ∧ 1) → 2).
In their second analysis of the same example,

Moore and Pollack say that it is plausible that there

is a VOLITIONAL-CAUSE relation between unit 1, as

nucleus of the relation and unit 2, the satellite. So

the relational proposition is now volitional-

cause(2,1), such that unit 2 provides a causal

explanation for unit 1. As such, George Bush’s

support for the bill supports the inference that he

supports big business: (((2 → 1) ∧ 2) → 1). So in one

analysis, 1 is inferred from 2, and in the other, 2 is

inferred from 1. This does not affirm that multiple

analyses must be supported, but rather that there

are two quite different readings of the text. And

once we allow arbitrary assumptions necessary for

multiple decontextualized readings, all bets are off

as to the correct analysis. For all we know, the bill

might have been something strongly disfavored by

big business, but that President Bush intended to

support it anyway, making the relation between the

two units CONCESSION. Similar issues arise with

Moore and Pollack’s second example:

1) Come home by 5:00.

2) Then we can go to the hardware store before it

closes.

3) That way we can finish the bookshelves tonight.

The first of their analyses for this example uses the

MOTIVATION relation: Finishing the bookshelves

motivates going to the hardware store, and taken

together these motivate coming home by 5:00:

motivation(motivation(3,2),1):

((((((3 → 2) ∧ 3) → 2) → 1) ∧ (((3 → 2) ∧ 3) → 2)) →
1)

Figure 4: Reenacting the Heart Transplant Analysis

324 : cause(7,6)

327 : condition(4,5)

351 : disjunction(2,3)

358 : condition(disjunction(2,3),1)

311 : concession(condition(disjunction(2,3),1), condition(4,5))

311 : concession(concession(condition(disjunction(2,3),1), condition(4,5)),cause(7,6))

499

 The second analysis uses the CONDITION relation:

coming home by 5:00 is a condition on going to

the hardware store, and together these are a

condition for finishing the bookshelves:

condition(condition(1,2),3), or

((1 → 2) → 3)

 For the MOTIVATION analysis to be realizable, it is

necessary that the reader accept the initial premise

of the relation, the bookshelves can be finished

tonight. So in one case, there is a line of reasoning

leading from unit 3 to unit 1, and in the other,

leading from 1 to 3. Once again, the analyses are

not simultaneous. Any possibility of simultaneous

analysis relies on an insufficiency of information.

Decontextualized, obscure, or ambiguous texts are

hard to understand, and this should be expected to

impede analysis. The use of semantic relations for

pragmatic purposes is identified by means of a

determination of purpose, and therefore there is not

really an overlap at all. If there is a problem here, it

is with the limiting circumstances under which the

theory is applied, not with the theory itself.

5.3 Reenacting Rhetorical Structures

The transformation algorithm can be used to

reenact the process of structure formation. This

process initiates with the innermost relations of

each branch and works its way upward. To

demonstrate this, I instrumented the algorithm with

debug prints and applied it to the Heart Transplant

analysis shown above in Figure 4. As the algorithm

descends into the tree it seeks the precedence,

ultimately finding it in the leaves and their

relations. These low-level relational propositions

are transformed first. The algorithm continues

upward, constructing more complex expressions

from the bottom up, until a complete relational

proposition is formulated. With each relational

proposition, there is a transference of intended

effect from satellite to nucleus. Without the

satellite-nucleus transfer, we would have merely an

empty structure. The only way to a nucleus is

through its satellites. But all this is at odds with the

view of RST trees as recursive.

Recursion, it has been said, is pervasive in

discourse, semantically, rhetorically, structurally,

grammatically, and thematically (e.g., Hwang,

1989; Muhammad, 2011; Pinker & Jackendoff,

2005; Polanyi, 1988). And of rhetorical structures,

it has been widely observed that not only are they

are tree-shaped (Bateman, 2001; Grasso, 2002;

Mann & Thompson, 1988), but that the units

comprising the tree are linked to one another

recursively (Das & Taboada, 2018; Demberg, Asr,

& Scholman, 2019; Guerini, Stock, & Zancanaro,

2004; Peldszus & Stede, 2016; Taboada & Mann,

2006b). While these observations are structurally

correct, they are functionally incomplete. As the

reenactment of rhetorical structures shows, RST

tree structures define themselves from the bottom

up. Elementary units combine to form relational

propositions and these propositions rendezvous

with other propositions to create increasingly

complex expressions. The tree is the result of a

pragmatic process. Through this process rhetorical

intentionality develops.

This becomes more obvious when analyzing a

nonsensical text, where the RST linkage is

discernible, but the satellite-nucleus transfers fail,

Figure 5: An Analysis of Nonsense

500

as shown in Figure 5. The structure is discoverable

even when the intention is unachievable. Texts may

be analyzable, and if so, they will be transformable

and reducible, and yet at the same time nonsensical.

This analysis is of a passage from a paper created

using the SCIgen nonsense paper generator

(Stribling, Krohn, & Aguayo, 2005). The analysis

is superficially plausible, it transforms correctly,

and builds up just like any other:

evidence(
 evaluation(

 elaboration(
 6,5),
 conjunction(

 antithesis(
 1,2),
 elaboration(

 elaboration(
 4,3),2))),7)

And yet the text is nonsensical. If such nonsense is

analyzable, what does this say about RST? Is

coherence as defined by RST merely window

dressing? On the contrary, the inferences within the

text, if read with attention to content, are non

sequitur to the point of being ridiculous. The

ELABORATIONS are not really elaborations, the

EVALUATION is not evaluative, the EVIDENCE is not

evidential. The superficiality of the analysis

mirrors that of the text. For an RST analysis to be

sound, the bottom-up transfer of intention from

satellite to nuclei must be assured. This echoes

Marcu’s (2000) strong nuclearity thesis, but from a

bottom-up perspective. A nucleus acquires its

“strength” through its relationship with its satellite.

Transference of intention upward shows that, in a

coherent text, each relation subsumes its

underlying structure. An RST analysis is the

realization of a discursive process. The constituents

of a text organize from the bottom up to realize the

writer’s purpose.

6 Conclusion

The algorithm presented here provides a tool for

transforming RST analyses into machine

processable code. As such, an RST analysis need

not be regarded as an end product, but rather as a

starting point for deeper investigation. Of

particular interest are studies using Pythonic

relational propositions to investigate threads of

coherence. The algorithm is scalable to large

analysis sets.

The bottom-up synthesis of relational

propositions generates purely abstract renditions of

coherence processes. This validates the theory of

relational propositions. Relational propositions

implicitly assert the intentionality between

discourse units. Coherence arises out of the

instantiation of these propositions, not only at the

unit level but among the complex spans that bring

structure to the rhetorical space. Within this space,

a span is a container of an intentional effect. It is

through spans that structure arises. While we may

view the process from the top down, as is the

tendency with RST, intentionality develops from

the bottom up. The tree-structures characteristic of

RST are the end-result of this process.

References

Nicholas Asher, & Alex Lascarides. 2003. Logics

of conversation. Cambridge, UK: Cambridge

University Press.

Moshe Azar. 1999. Argumentative text as

rhetorical structure: An application of

rhetorical structure theory. Argumentation,

13(1), 97-114.

John A. Bateman. 2001. Between the leaves of

rhetorical structure: Static and dynamic

aspects of discourse organisation. Verbum,

23(1), 31-58.

Lynn Carlson, & Daniel Marcu. 2001, September.

Discourse tagging reference manual.

Retrieved from ftp://ftp.isi.edu/isi-pubs/tr-

545.pdf

Debopam Das, & Maite Taboada. 2018. RST

Signalling Corpus: A corpus of signals of

coherence relations. Language Resources and

Evaluation, 52(1), 149-184.

doi:10.1007/s10579-017-9383-x

Vera Demberg, Fatemeh Torabi Asr, & Merel

Scholman. 2019. How compatible are our

discourse annotations? Insights from mapping

RST-DT and PDTB annotations.

Floriana Grasso. 2002. Towards computational

rhetoric. Informal Logic, 22(3), 195-229.

Joseph E. Grimes. 1975. The thread of discourse.

Berlin: Mouton.

M. Guerini, O. Stock, & M. Zancanaro. 2004.

Persuasive Strategies and Rhetorical Relation

Selection. In Proceedings of the ECAI

Workshop on Computational Models of

Natural Argument. Valencia, Spain.

Jerry R. Hobbs. 1979. Coherence and coreference.

Cognitive Science, 3, 67-90.

Shin Ja Joo Hwang. 1989. Recursion in the

paragraph as a unit of discourse development.

501

ftp://ftp.isi.edu/isi-pubs/tr-545.pdf
ftp://ftp.isi.edu/isi-pubs/tr-545.pdf

Discourse Processes: A Multidisciplinary

Journal, 12(4), 461-478.

William C. Mann, & Maite Taboada. 2005,

October. An introduction to rhetorical

structure theory (RST). Retrieved from

http://www.sil.org/~mannb/rst/rintro99.htm

William C. Mann, & Sandra A. Thompson. 1986.

Relational propositions in discourse.

Discourse Processes, 9(1), 57-90.

William C. Mann, & Sandra A. Thompson. 1987.

Rhetorical structure theory: A theory of text

organization (ISI/RS-87-190). Retrieved

from Marina del Rey, CA:

William C. Mann, & Sandra A. Thompson. 1988.

Rhetorical structure theory: Toward a

functional theory of text organization. Text -

Interdisciplinary Journal for the Study of

Discourse, 8(3), 243-281.

William C. Mann, & Sandra A. Thompson. 2000.

Toward a theory of reading between the lines:

An exploration in discourse structure and

implicit communication. Paper presented at

the Seventh International Pragmatics

Conference, Budapest, Hungary.

Johanna Doris Moore, & Martha E Pollack. 1992.

A problem for RST: The need for multi-level

discourse analysis. Computational

Linguistics, 18(4), 527-544.

Manaal Jassim Muhammad. 2011. The use of

Rhetorical Structure Theory in political

editorials: A contrastive study of text analysis

with special reference to its application as

text-based generation. University of Pune,

Pune, India.

Michael O'Donnell. 1997. RST-Tool: An RST

analysis tool. In Proceedings of the 6th

European Workshop on Natural Language

Generation. Duisburg, Germany: Gerhard-

Mercator University.

Andreas Peldszus, & Manfred Stede. 2016.

Rhetorical structure and argumentation

structure in monologue text. In Proceedings

of the 3rd Workshop on Argument Mining (pp.

103-112). Berlin, Germany: Association for

Computational Linguistics.

Steven Pinker, & Ray Jackendoff. 2005. The

faculty of language: what's special about it?

Cognition, 95(2), 201-236.

Livia Polanyi. 1987. The linguistic discourse

model: Towards a formal theory of discourse

structure. Cambridge, MA: Bolt, Beranek,

and Newman, Inc.

Livia Polanyi. 1988. A formal model of the

structure of discourse. Journal of Pragmatics,

12(5-6), 601-638.

Andrew Potter. 2018. Reasoning between the

lines: A logic of relational propositions.

Dialogue and Discourse, 9(2), 80-110.

Andrew Potter. 2021. Text as tautology: an

exploration in inference, transitivity, and

logical compression. Text & Talk.

doi:doi:10.1515/text-2020-0230

Andrew Potter. (2023). STS-Corpus. Retrieved

from: https://github.com/anpotter/STS-

Corpus

Ted J M Sanders, W P M Spooren, & L G M

Noordman. 1992. Toward a taxonomy of

coherence relations. Discourse Processes, 15,

1-35.

Manfred Stede, Maite Taboada, & Debopam Das.

2017. Annotation guidelines for rhetorical

structure. Retrieved from Potsdam and

Burnaby:

http://www.sfu.ca/~mtaboada/docs/research/

RST_Annotation_Guidelines.pdf

Jeremy Stribling, Maxwell Krohn, & Daniel

Aguayo. 2005. SCIgen - An automatic CS

paper generator. Retrieved from

https://pdos.csail.mit.edu/archive/scigen/

Maite Taboada, & William C. Mann. 2006a.

Applications of rhetorical structure theory.

Discourse Studies, 8(4), 567-588.

Maite Taboada, & William C. Mann. 2006b.

Rhetorical structure theory: Looking back and

moving ahead. Discourse Studies, 8(3), 423-

459.

Sandra A. Thompson. 1987. 'Concessive' as a

discourse relation in expository written

English. In B. Joseph & A.M. Zwickey (Eds.),

A Festschift for llse Lehiste (pp. 64-73).

Columbus, Ohio: Ohio State University.

Sandra A. Thompson, & William C. Mann. 1987.

Antithesis: A study in clause combining and

discourse structure. In Ross Steele & Terry

Threadgold (Eds.), Language Topics: Essays

in Honour of Michael Halliday, Volume II

(pp. 359-381). Amsterdam: John Benjamins.

Teun A. Van Dijk. 1979. Pragmatic connectives.

Journal of Pragmatics, 447-456.

Bonnie Webber, Rashmi Prasad, Alan Lee, &

Aravind Joshi. 2019. The Penn Discourse

Treebank 3.0 annotation manual.

Amir Zeldes. 2016. rstWeb – A browser-based

annotation interface for Rhetorical Structure

Theory and discourse relations. In

Proceedings of NAACL-HLT 2016

(Demonstrations) (pp. 1-5). San Diego,

California: Association for Computational

Linguistics.

502

http://www.sil.org/~mannb/rst/rintro99.htm
https://github.com/anpotter/STS-Corpus
https://github.com/anpotter/STS-Corpus
http://www.sfu.ca/~mtaboada/docs/research/RST_Annotation_Guidelines.pdf
http://www.sfu.ca/~mtaboada/docs/research/RST_Annotation_Guidelines.pdf
https://pdos.csail.mit.edu/archive/scigen/

Amir Zeldes. 2017. The GUM corpus: Creating

multilayer resources in the classroom.

Language Resources and Evaluation, 51(3),

581-561.

503

