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Abstract

Natural Language Generation (NLG) from
graph structured data is an important step for
a number of tasks, including e.g. generating
explanations, automated reporting, and conver-
sational interfaces. Large generative language
models are currently the state of the art for open
ended NLG for graph data. However, these
models can produce erroneous text (termed hal-
lucinations). In this paper, we investigate the
application of cycle training in order to reduce
these errors. Cycle training involves alternating
the generation of text from an input graph with
the extraction of a knowledge graph where the
model should ensure consistency between the
extracted graph and the input graph. Our results
show that cycle training improves performance
on evaluation metrics (e.g., METEOR, DAE)
that consider syntactic and semantic relations,
and more in generally, that cycle training is use-
ful to reduce erroneous output when generating
text from graphs.

1 Introduction

Graph-to-Text generation (G2T) is a subtask of
open-ended Natural Language Generation (NLG)
that aims to create fluent natural language text de-
scribing an input graph, and is part of common
NLG benchmarks (Gehrmann et al., 2021). G2T
conversion is particularly of interest for open-ended
generation tasks such as dialogue generation and
generative question answering (Ribeiro et al., 2021;
Trisedya and et al., 2019). Large generative lan-
guage models are currently the state of the art for
open ended NLG from graph data (Gehrmann et al.,
2021). A major problem faced by these models is
the output of non-sensical or unfaithful content to
the provided input. This phenomenon is known as
hallucination (Ji et al., 2022).

Figure 1 displays an example of Graph-to-Text
conversion. The NLG model, a large language
model (T5-small, Raffel et al. (2020)) is finetuned
with a widely used benchmark corpus (WebNLG,

Figure 1: Graph-to-Text generation example with a hal-
lucinatory verbalization.

Zhou and Lampouras (2020)), is asked to convert
a graph taken from WebNLG. The output contains
several errors. For example, Darinka Dentcheva is
mentioned, as if she were a location, and attributed
a total area. The generation continues with a proper
verbalization of birthDate, but then again the model
fails by referring Darinka Dentcheva with the pro-
noun it. Another mistake is the generation of an in-
correct name. Andrzej Piotr Ruszczynski becomes
Andrzej Pudr Ruszczynski.

Hallucinations are divided into two categories
(Ji et al., 2022): intrinsic and extrinsic. In Figure
1, the intrinsic hallucinations are underlined, and
the extrinsic hallucination is highlighted. Intrinsic
hallucinations are the generation of output that con-
tradicts the input graph, does not make sense, or
contains some sort of commonsense violation. Ex-
trinsic hallucinations are generations that cannot be
verified by the source. Thus, the output can neither
be supported nor contradicted by the input graph.

In this paper, we aim at addressing these prob-
lems by employing cycle training. Cycle training
makes use of inverse tasks to add the model with
additional signals. Here, the inverse task of G2T is
Text-to-Graph (T2G) conversion where structures
in the form of knowledge graphs are extracted from
the text. In particular, we propose to use the T2G
component of the cycle training to detect halluci-
natory information in the generation by comparing
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the extracted triples with the input triples. Addi-
tionally, combining G2T and T2G conversions is
expected to improve the quality of the generated
text and faithfulness of an NLG system because
we hypothesize that cycle training would teach the
NLG model to remain faithful to the input graph
with the support of cycle consistency. Therefore,
combining these two tasks is thought to improve
the quality of the verbalization and reduce the hal-
lucinatory generation. Our full code is available
online.1

The contributions of this paper are as follows:

1. An approach that employs cycle training to im-
prove NLG faithfulness by reducing halluci-
natory generation. Specifically, the approach
introduces a T2G component to detect entity
and relation mentions that are not part of the
input graph.

2. A performance evaluation of this approach us-
ing three traditional lexical overlap metrics
and two entailment evaluation methods used
in the hallucination literature and show that
the metrics with linguistic foundations (e.g.
METEOR(+6%), DAE(+5%)) show signifi-
cant improvement with cycle training.

2 Related Work

In recent years, there has been a paradigm shift in
NLG. The shift stems from improvements in deep
contextual language modeling and transfer learn-
ing (Ji and et al., 2020). NLG systems typically
prioritize being coherent and discourse-related, dis-
regarding control over generated content and its
qualities such as faithfulness, factuality, freshness,
and correctness. However, having control over the
output is a major factor in NLG applications within
industry (Leng and et al., 2020). Since cycle train-
ing reinforces the faithfulness of the NLG model
and has the potential to detect extra information
that is not part of the input, we relate our work to
this controlability literature.

The state-of-the-art G2T generation results come
from large generative models, but it is well known
that these models are prone to hallucination. It
is important to notice that all NLG tasks suffer
from the hallucinatory text generation, and a con-
trol mechanism to solve this problem has not been
found yet (Ji et al., 2022).

1https://github.com/cltl-students/
fina_polat_nlg_with_transformers.

Leveraging the fact that two functions are inverse
of each other has been widely used in a variety of
tasks in computer vision and machine translation
(Godard et al., 2017; Sennrich et al., 2016). In
the context of G2T, cycle training is used to ad-
dress parallel data scarcity. Parallel graph-text data
collection is difficult and costly. Therefore super-
vised approaches to both G2T and T2G conversions
suffer from a shortage of domain-specific parallel
graph-text data. Guo et al. (2020) and Schmitt et al.
(2020) propose cycle training approach as an un-
supervised learning solution when there is no or
limited parallel data.

Guo et al. (2020) employ high-performing
Named Entity Recognition (NER) tools such as
Stanza (Qi and et al., 2020) to extract the entities
and then build graphs with these automatically ex-
tracted entities. They train a G2T model called
CycleGT using these automatically built graphs as
the input graph in a cycle training regime. They
test their unsupervised approach on parallel graph-
text datasets such as WebNLG to compare their
results with supervised approaches. We build on
this work but instead of focusing on addressing the
problem of data scarcity, we focus on the problem
of hallucinations.

3 Approach

Our approach uses supervised cycle training with
the objective of cycle consistency. Specifically, we
employ CycleGT from Guo et al. (2020) and train
it from scratch for five epochs. As our baseline,
we use a pre-trained generative language model,
the small version of T5, and finetune it for five
epochs as well. For the training of CycleGT and the
finetuning of the baseline T5, we use the WebNLG
Dataset with the given train-test split. However,
our approach is data and model agnostic and all
components could be replaced with alternatives.

CycleGT is originally designed to address the
parallel data scarcity and to be used as an unsuper-
vised learning method when there is no or limited
graph annotation. In the unsupervised setup, Guo
et al. (2020) reduce the graph extraction task to rela-
tion prediction and rely on the Stanza NER module
to extract the entities. Their results show that this
approach works well to tackle parallel data scarcity.
However, we are not interested in the unsupervised
approach because we do not tackle the data scarcity
problem, but instead we aim at less hallucinatory
G2T generation.
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As our objective is to improve the quality of
the generated text by reducing/eliminating extrin-
sic hallucinations, supervision is essential for our
case. We assume high-quality parallel graph-text
data is given, and we rely on cycle consistency for
improving generation quality, and T2G module for
detecting extrinsic hallucinations. To the best of
our knowledge, this is the first attempt to investi-
gate cycle training in G2T for reducing/eliminating
extrinsic hallucinations, reinforcing model faithful-
ness, and overall generation quality.

We compare the performance of CycleGT to
the T5 baseline. All the experiments are run on
a personal laptop. We now describe the data and
models in more detail.

3.1 Data
WebNLG (Zhou and Lampouras, 2020) is a widely
used G2T corpus that is created from DBpedia
(Mendes and et al., 2011). DBpedia is a multi-
lingual knowledge base that was built from vari-
ous kinds of structured information contained in
Wikipedia. This data is stored as RDF2 triples,
complies with Linked Data standards, and results
in a high-quality dataset.3

3.2 Models
We choose T5 (Raffel et al., 2020) as the baseline
pretrained language model, because it is state-of-
the-art on the WebNLG dataset. Furthermore, T5 is
a good representative sample of a generative large
language model. We experiment with CycleGT
because its G2T module is also based on T5 ar-
chitecture that makes comparison easier. However,
CycleGT does not exploit the pretrained language
model but only utilize the architecture.

3.2.1 Baseline - T5
The “Text-to-Text Transfer Transformer” (or T5)
is a unified framework that converts all text-based
language problems into a text-to-text format (Raffel
et al., 2020). The basic idea underlying the T5
model is to treat every textual task as a translation
from input text to output text. In our case, the
task consists in taking RDF triples as input, and
producing a new text describing these triples as the
output.

2Resource Description Framework: https://www.w3.
org/RDF/

3https://gitlab.com/shimorina/
webnlg-dataset/-/tree/master/release_
v3.0

We finetune the small version of T5 model with
the given train-test split of WebNLG for five epochs
using Transformers library (Wolf and et al., 2020).

3.2.2 CycleGT
The G2T module of CycleGT transforms the graph
to text. And, the T2G converts text to the graph by
aligning each text with its back-translated version,
and also each graph with its back-translated version.
Since pretrained language models are shown to be
effective on G2T conversions, Guo et al. (2020)
use T5 (Raffel et al., 2020) architecture as the G2T
component.

T2G produces a graph based on the given text.
Guo et al. (2020) see relation extraction as the
core problem in T2G conversion. In the super-
vised setup, T2G module of CycleGT directly uses
the entities as they are given. Relations are pre-
dicted between every two pairs of entities with an
LSTM-based Neural Network to form the edges in
the graph. For our experiments, CycleGT is trained
for five epochs in a supervised setup.

4 Evaluation

Considering the difficulty of quantifying halluci-
nation, we use five different metrics for evaluation
and divide them into two categories. The first cate-
gory solely relies on lexical (n-gram) overlap while
the second group is based on textual entailment.

4.1 Lexical Overlap Metrics
Lexical overlap metrics are widely used in NLG.
The central idea behind these metrics is closeness.
One of the simplest approaches is to leverage lex-
ical features (n-grams) to calculate the similarity
between the generation and the target text. We use
BLEU (Papineni and et al., 2002), ROUGE (Lin,
2004), and METEOR (Banerjee and Lavie, 2005)
as the lexical overlap metrics.

4.2 Entailment Metrics
Apart from well-established lexical overlap evalua-
tion metrics, textual entailment models have been
employed to evaluate the quality of automatically
generated text. The entailment evaluation models
are shaped around the idea that all information in
the generated text should be entailed/inferred by
the reference (gold) text.

For the evaluation of our NLG models, we em-
ploy two metrics that leverage entailment models:
PARENT (Dhingra et al., 2019) and DAE (Goyal
and Durrett, 2021).
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Model BLEU ROUGE METEOR PARENT DAE
Precision Recall F1 score

T5-small 19.6257 0.5668 0.4157 0.1910 0.0976 0.0939 0.2347
CycleGT 20.9327 0.5463 0.4740 0.1980 0.0894 0.0927 0.2829

Table 1: Graph-to-Text module evaluation scores.

4.2.1 PARENT
Lexical overlap metrics (BLEU, ROUGE, ME-
TEOR etc.) leverage the target text as the refer-
ence, and they do not take the input graph into
account for the evaluation. However, it is common
for a graph verbalization to have multiple plausible
outputs from the same input.

Precision And Recall of Entailed N-grams from
the Table, or PARENT, compares the generated text
to the underlying graph as well as the reference text
to improve evaluation. When computing precision,
PARENT uses a union of the reference and the
graph, to reward correct information missing from
the reference. When computing recall, it uses an
intersection of the reference and the graph, to ig-
nore extra/incorrect information in the reference.
The union and intersection are computed with the
help of an entailment model to decide if an n-gram
is entailed by the graph.

4.2.2 DAE
The DAE, or Dependency Arc Entailment, eval-
uation method is inspired by the downstream ap-
plication of textual entailment models. Goyal and
Durrett (2020) propose another formulation of the
entailment that decomposes it at the level of de-
pendency arcs. Rather than focusing on aggregate
decisions, they instead ask whether the semantic
relationship manifested by individual dependency
arcs in the generated output is supported by the
input. Arc entailment is a 2-class classification:
entailed or not-entailed. This means that arcs that
would be neutral or contradictory in the generic en-
tailment formulation are considered non-entailed.

This approach views dependency arcs as seman-
tic units that can be interpreted in isolation. Each
arc is therefore judged independently based on
whether the relation it implies is entailed by the
reference sentence. A dependency arc in the gen-
erated sentence is assumed to be entailed by the
reference if the semantic relationship between its
head and child holds for the reference sentence. If
the dependency relation does not hold for a head-
child pair, then it is considered a factual error, and

the mismatched head-child span can be marked as
the hallucinatory generation.

4.3 Human Evaluation: Qualitative Analysis
Automatic evaluation metrics struggle to deal with
semantic or syntactic variations. Therefore, we
need human judgment even though it is costly. For
qualitative analysis, we sample 100 instances from
the test set, and one annotator performs the annota-
tions following a two step annotation scheme. First,
we annotate whether the generation contains any
hallucination, a binary decision. If the generation is
hallucinatory, we add the hallucination type, one of
the following classes: intrinsic, extrinsic, or both.

5 Results and Discussions

Due to the limited compute resources, we choose
smaller models, and train or finetune them for just
five epochs. Therefore, the performance of our
models could not reach to the range in other NLG
experiments. However, we observe noticeable im-
provement in METEOR and DAE scores. We now
detail the results of our experiments.

5.1 Automatic Evaluation Results
In Table 1, we report the results of the automatic
evaluation metrics. ROUGE and METEOR scores
are reported in terms of F1 score. For readability,
the highest scores are underlined.

The CycleGT model trained in cycle consis-
tency outperforms the finetuned T5 model in
precision-oriented metrics: +1,3070 BLEU score
and +0,0070 PARENT-precision. However, the
finetuned T5 model takes the lead in terms of
ROUGE (+0,0205) and PARENT-recall (+0,0082)
scores. Precision and recall results of PARENT
are consistent with BLEU and ROUGE. This is ex-
pected because BLEU is a precision-oriented score
while ROUGE is recall oriented.

It is notable that CycleGT gets higher scores in
terms of METEOR (+0,0583) and DAE (+0,0482).
Compared to the precision-oriented scores, the dif-
ference in METEOR and DAE is more significant.

259



Both METEOR and DAE are built on evaluation
models with a linguistic backup. METEOR, for in-
stance, not only compares the text as a direct string
match but also exploits synonymy. For a linguisti-
cally sound comparison, it uses the Porter Stemmer
and WordNet as lexical database. Similarly, DAE
is empowered by a dependency parsing framework.

METEOR and DAE are both empowered by lin-
guistic backup, and they are designed to be able to
measure the quality of a generation on higher levels,
e.g. semantics. The shortcoming of these models
is that the linguistic enhancements are also built on
sub-modules, off-the-shelf tools, and automatically
created datasets that are known to be prone to error
propagation. Regardless of their flaws, METEOR
and DAE are more advanced evaluation methods
enhanced with linguistic backup compared to their
alternatives. We also argue that the higher perfor-
mance of CycleGT in terms of METEOR and DAE
is indicative that these metrics are more suitable to
automatically judge the quality of a generation.

5.2 Evaluation of the T2G Component
The evaluation of the T2G module of CycleGT is
important due to three reasons. First, we expect
CycleGT model to generate better and less halluci-
natory (at least on the extrinsic side) text because it
is trained in cycle consistency. The second reason
is that we employ the T2G module of CycleGT to
detect extrinsic (not part of the input, but made up
by the NLG model) hallucinations in the generation.
Therefore, it is supposed to be able to extract all
the information in the generated text. Finally, both
modules (G2T & T2G) are supposed to be equally
strong for getting the maximum benefit from cycle
training.

F1 Score % of
T2G overall partial predictions

CycleGT 0.1407 0.7873 32%

Table 2: Evaluation scores of the Text-to-Graph module.

In Table 2, we report the evaluation results of the
CycleGT T2G module. F1 scores are micro aver-
aged. The T2G module displays recall deficiency.
The overall performance of the graph extraction
module is pretty poor (0.14 F1 score). The module
usually fails to make at least one prediction per
instance. The maximum number of predictions is
1662 (32%) out of 5150 test instances. This means

that the model is unable to extract any triples from
68% of the test instances. However, it makes pre-
cise predictions when it does as indicated by the
higher partial F1 score (0.78).

The poor performance of the T2G module of
CycleGT reduces the robustness of cycle training.
In order to enforce cycle consistency, a stronger
T2G performance is necessary. Moreover, it is not
possible to detect extrinsic hallucinations with this
performance. Capturing extrinsic hallucinations
would only be possible by a comparison between
the input triples and the extracted triples. Therefore,
it would be beneficial to aim at a better-performing
triple extraction model to detect extrinsic halluci-
nations and reinforce cycle consistency.

5.3 Human Evaluation Results

Model Only Only Both
Intrinsic Extrinsic Int.&Ext

T5-small 11% 21% 20%
CycleGT 34% 18% 10%

Table 3: Qualitative Results.

Table 3 presents human evaluation results. This
qualitative analysis confirms that CycleGT gener-
ates fewer extrinsic hallucinations. In our test sam-
ple, 18% of the CycleGT generations contain ex-
trinsic hallucinations while the finetuned T5 model
has 41%. Looking at the percentage of intrinsic
hallucinations, the T5 model displays a better per-
formance. On the one hand, we observe the gen-
eration of CycleGT mostly remains faithful to the
input graph but contains wrong lexical associations
(34%) with entities and their relations that occur as
intrinsic hallucinations. On the other hand, we see
that the finetuned T5 model makes more precise
associations between entities and their relations but
often makes up new entity names that were not part
of the graph input (extrinsic hallucinations).

6 Conclusion

The use of generative models for NLG has led to
improved performance, however, these models can
still produce text with erroneous statements (i.e.
hallucinations). In this paper, we show that com-
bining G2T and T2G conversions in a cycle train-
ing setup helps such models improve the generated
text conditioned on graph data. Automatic evalu-
ation is one of the recognized obstacles for NLG.
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To bypass the evaluation bottleneck, we exploited
linguistics-enhanced evaluation methods such as
METEOR and DAE. We find out that a more ro-
bust T2G module may help maximize the benefits
of cycle training for NLG.
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