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Abstract

In this study, we deal with the design of
computational-linguistic resources and strategies
for the analysis of under-resourced languages. In
particular, we present empirical analyses aiming
at identifying the best path to semi-automatically
annotate a dialectal Arabic corpus via a neural
multi-task architecture. Such an architecture is
used to automatically generate several levels of lin-
guistic annotation which can be evaluated by com-
parison with the gold annotation. Changing the
order in which annotations are produced can have
an impact on the quantitative results. Through
multiple sets of experiments we show how to get
the best performances with this methodology.

1 Introduction

In this paper we present an empirical investigation
of the relations between different levels of linguistic
annotation of a dialectal Arabic corpus. In fact,
linguistic annotations, such as Part-of-Speech
(POS) tagging or lemmatisation, are an important
prerequisite for many NLP applications and in
particular, for those concerning under-resourced
languages such as Arabic Dialects (ADs) (Elhadi and
Alfared, 2022). The development of NLP resources
and systems for under-resourced languages requires
awareness of their functioning in order to study
them from a computational perspective. This type
of awareness derives from the analytical study of the
language in question. However, while high-resourced
languages present many detailed linguistic studies,
often under-resourced languages usually lack com-
prehensive, in-depth and up-to-date descriptions of
their morphological and syntactic systems. Moreover,
they are often characterised by graphic variations and
the lack of a standard orthography. In many cases, the
spelling is not standardised and reflects geolinguistic
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variations (Bernhard et al., 2021)." This is also the
case of the ADs, for which building resources such
as linguistic annotated corpora, is a necessary stage
to study and process them automatically. This is the
reason why in the last couple of years there have been
many projects focused on the creation of resources
for the ADs.” A popular methodology to avoid the
creation of AD corpora from scratch is the adaptation
of resources, for example built for Modern Standard
Arabic (MSA), in order to process ADs Harrat
et al. (2018); El Mekki et al. (2021); Qwaider et al.
(2019). However, MSA is used to perform language
tasks completely different from those performed by
using ADs. With this regards, Hary (1996) defines
multiglossia as the linguistic situation in which
different varieties coexist side-by-side in a language
community, and where each variety is employed in
different circumstances and has different functions.
Therefore, in order to process ADs, the ideal solution
should be to build dialect-centered resources from
scratch, instead of adapting MSA resources, even
though it involves a considerable effort. However,
considering the enormous amount of work required
to build resources from scratch, a possible strategy
is adapting other existing AD tools to the AD under
investigation, especially if the dialects belong to the
same geographical areas (e.g. Tunisian and Algerian
belong to the same area, namely the Maghreb). This
is because ADs share much more with each other
than with MSA.3 In fact, a number of features and
variations within ADs seem to transcend regional
boundaries and effectively escape the most tradition-
ally accredited typology, which classifies the ADs into
six major dialectal areas, from East (Mashreq) to West
(Maghreb). A possible explanation resides into the

! Common phenomena are variations in pronunciation, as well
as morphological variations, where inflected or derived forms
vary according to location, or lexical variations. Furthermore, the
absence of standard spellings leads to interpersonal variation.

2See Ahmed et al. (2022) for a review on free Arabic corpora.

3For a study of the degree of similarity and dissimilarity
between MSA and ADs, and among ADs, see Kwaik et al. (2018).
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huge amount of migration, inter-dialectal contacts and
many waves of diffusion which have brought specific
linguistic features across the Arabic-speaking world
(Benkato, 2019; Magidow, 2021; Benkato, 2020).

The creation of annotated corpora from scratch
can be speed up by semi-automatic annotation using
machine learning tools (Gugliotta and Dinarelli,
2020). In the case of multiple levels of annotation
like in this work, a further benefit in using machine
learning techniques can be obtained by exploiting
Multi-Task (MT) learning, and in particular with
neural models. MT neural learning approaches
factorize information among learned tasks, improving
results on all of them compared to individual tasks
taken separately. Whether MT is performed in a
parallel or cascaded fashion, it allows for sharing
the representation of information of different tasks
at intermediate layers (Caruana, 1997). MT has been
proven to be particularly beneficial for ambiguous
data, considering its ability to reduce sparsity, and
helping to process complex patterns which involve
multiple features. This is the case, for example,
of POS-tagging (Rush et al., 2012; Sggaard and
Goldberg, 2016; Alonso and Plank, 2016; Bingel
and Sggaard, 2017; Hashimoto et al., 2016), which
is particularly relevant to the morphological richness
of Arabic, (as addressed by Inoue et al. (2017)) or
dialectal Arabic (Zalmout and Habash, 2019).

For all these reasons and with the goal of basing our
work particularly on AD, we found useful to exploit
two resources recently created for the processing of
Tunisian Arabic (Gugliotta and Dinarelli, 2022). The
first resource is a MT neural architecture (see Section
2.1), built to help in annotating on multiple levels
a Tunisian Arabizi Corpus. The second resource
is the corpus itself (see Section 2.2). Concerning
Arabizi, we must emphasize the spontaneous nature
of this Roman orthography, which originated in
digital environments where informal exchanges take
place. Spontaneity plays a main role in the degree
of encoding freedom left to native users, and this has
an impact on the performance of MT systems. Other
elements that play an influential part in MT learning
systems include the design of the architecture itself
and the order in which tasks are addressed. Beyond
few exceptions, much of the existing work on MT
learning systems focuses on learning one target task
and one, or more, accurately selected auxiliary tasks
(Changpinyo et al., 2018). There are various studies
on multi-task learning, but it is not clear when this
may be beneficial for all the tasks planned for the sys-
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tem, or when it may instead produce a phenomenon
known as negative transfer, that also depends on the
interrelations among the tasks (Ruder, 2017).* One of
the keys to investigate this issue concerns the degree
to which tasks are interrelated. A logical hypothesis
is that morphological tasks may help syntactic tasks.
With regard to the mentioned previous work on
multi-task annotation, summarized in Gugliotta and
Dinarelli (2022), the goal was to produce accurate
annotations while facilitating manual checking work.
Therefore, five levels of annotation were produced in
a cascaded chain, via a MT learning system without
delving, from a computational-linguistic point of
view, into the degree of task interrelation. In this work,
through exploiting these tools, we aim at finding
possible task relations, and possibly improve previous
results on each task by investigating such issue.

In order to explore this topic comprehensively, first
of all, in Section 2, we will describe the architecture
and the data on which we are relying for our study.
Secondly, in Section 3, we will present the main re-
lated works. In Section 4, we will present the adopted
methodology to address this issue. In Section 5, we
will outline the experiments performed, drawing atten-
tion to some emerging trends. In the same section, we
will discuss our results from a global point of view.
Finally in Section 6 we will conclude the article.

2 MT Architecture and Data Structure

Like deep learning in general, multi-task learning
is inspired by human learning. To learn new tasks,
humans often transfer knowledge gained from prior
related tasks. The possibility that certain cognitive
structures may be prerequisites or have a positive
or negative influence on the acquisition of new
knowledge has been discussed by many researchers in
the fields of didactics, pedagogy, cognitive linguistics,
and psycholinguistics (Piaget, 2003; Vygotsky and
Cole, 1978; Bransford and Johnson, 1972; Kole and
Healy, 2007; Gick and Holyoak, 1980). However, the
views of scholars are still too heterogeneous to explain
the mechanisms and processes operating during
human acts of comprehension and acquisition. Still
it is well established that appropriate prior knowledge
must be activated in order to be used effectively in
the acquisition process. In a similar manner, Ruder
(2017) motivates MT learning from the perspective
of machine learning, viewing it as a form of inductive
transfer. Indeed, the author explains that inductive

*See Section 3 for an outline of the existing work on MT
learning systems and tasks interrelations.
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transfer can help to improve a model by introducing
an inductive bias, leading the model to prefer some
assumptions over others. The inductive bias can be
introduced by auxiliary tasks. Auxiliary tasks in MT
learning can serve as conditions or suggestions for the
main task. At the same time, related tasks can rein-
force each other to form coherent predictions through
shared representations. This strategy often leads to
solutions that generalize better. However, according
to Ruder (2017), our understanding of the degree of
relationship or similarity between tasks is still limited,
and we need to study them more in depth to better
understand the generalization capabilities of MT
learning by better fruiting their potential. Thus, one
of the prerequisites of MT learning is the correlation
between different tasks and data (Zhang et al., 2022).

2.1 The MT Architecture

The MT neural architecture employed in this work is
an encoder-decoder system designed originally for the
Tunisian Arabish Corpus (TArC) annotation. The MT
system is able to instantiate as many decoders as the
number of levels of linguistic annotations employed
in the data, the different decoders operate in a cascade
fashion, and it has been recently released (Gugliotta
and Dinarelli, 2022). The MT system is designed to
train LSTM or Transformer models. For our experi-
ments we employed the LSTM model. As pointed out
in (Gugliotta and Dinarelli, 2022), Transformers are
in general preferred and very accurate for several NLP
problems, especially when dealing with very large
amount of data. However, they present limitations
when modelling tasks with structured outputs (Weiss
et al., 2018; Hahn, 2020). Since in our experiments
outputs are always, at least partially structured,
we employed mainly LSTM models. (Gugliotta
and Dinarelli, 2022) shows indeed a significant
performance gap between LSTM and Transformer
models in experiments involving the TArC corpus,
the same data we use in this work (please see the
next section, for data description). Whatever the used
model, the linguistic information that can be output
by the MT system are: Code-Switching classification,
normalization into CODA* (Habash et al., 2018),
tokenization, POS-tagging and lemmatisation.
Concerning the classification of code-switching,
it is provided at word level, in order to filter the
Arabizi text from the foreign words, which are
indeed classified as foreign. Table 1 presents the
classification (Class. in the table header), the CODA*
transliteration (CODA¥*), the tokenization (Token.),

156

the POS-tagging (POS) and the lemmatisation
(Lemma) of the following Arabizi sentence of TArC.

(1) Inchalah cycle ejjay wala eli ba3dou,
/n$alla cycle oz-zay walla olli batd-u/,
‘God willing next time, or the time after that’.

Arabizi | Class. CODA* Token. POS Lemma

Inchalah | Az.  allels ol alels o INTERS &l Gl )
cycle Fr. Fr. Fr. Fr. Fr.
ejjay Az. sl il DET+ADJ s
wala | Az Yy Yy coNJ Y,
eli Az. JJ\ M REL_PRON LSU\

ba3dou | Az o.,uu o+.,\.u ADV+ .,\...;

PRON_3MS
Table 1: Example of the annotation levels. "Az." means

"Arabizi", "Fr." means "foreing".

Each of these annotation level is processed by a
dedicated decoder. As for the Arabizi input, it is con-
verted into context-aware hidden representations by
the MT system’s encoder. Each decoder is equipped
with a number of attention mechanisms corresponding
to the number of preceding modules (including the
encoder). Hence, each decoder receives as input the
hidden state of the encoder together with the hidden
state of each previous decoder. Each decoder gener-
ates also its predicted output, which is used to learn
the corresponding task by computing a loss function
comparing the predicted output to the expected
output. The entire architecture is learned end-to-end
by calculating a global loss through the sum of each
individual loss (Gugliotta and Dinarelli, 2022).

2.2 The Data

The data we used for the study presented in this paper
are the TArC corpus (Gugliotta and Dinarelli, 2022)
and the MADAR corpus (Bouamor et al., 2018).
The first one contains 4,797 sentences produced
by Tunisian users in digital contexts such as blogs,
forums and social networks. These sentences are
encoded in Arabizi, the Latin encoding employed for
online written conversations. The MADAR corpus,
on the other hand, is a parallel corpus of several
Arabic dialects, including Tunisian (both from Tunis
and Sfax cities). In our previous work, we exploited
2,000 sentences of the MADAR corpus, by proving
their usefulness for the MT system learning (Gugliotta
and Dinarelli, 2022). Also for experiments in this
work we decided to use both corpora. In particular the
MADAR data are concatenated to the TArC training
data to create a single, bigger training set.
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3 Related Work

Intuitively determining the degree of similarity be-
tween tasks is still a common practice especially in the
design stages of MT architectures, when one does not
yet have data on which to rely otherwise (Worsham
and Kalita, 2020). In general, until a few years ago,
methods for identifying task relationships focused on
expert intuition. However, recent research increasingly
takes into account the fact that neural networks do not
need to operate on the same principles as human learn-
ing. More and more scholars, such as Alonso and
Plank (2016), are arguing that the selection of MT
learning tasks should be guided by the properties of
the data, not by the intuition of what a human per-
former might consider easy. In fact, they conduct
a number of studies showing that the best auxiliary
tasks are neither too easy to predict nor too difficult
to learn. In particular, for the mentioned study, they
use a state-of-the-art architecture based on biLSTM
models and evaluate its behavior on a motivated set
of main and auxiliary tasks. The performance of the
MT system is evaluated both by experimenting with
different combinations of main and auxiliary tasks
and by applying a frequency-based auxiliary task to
a set of languages, processing tasks and evaluating its
contribution. LSTM networks were also analyzed by
Reimers and Gurevych (2017) for a wide variety of se-
quence tagging tasks, in order to find LSTM network
architectures that can perform robustly on different
tasks. Five classical NLP tasks were chosen as bench-
mark tasks: POS tagging, Chunking, Named Entity
Recognition (NER), Entity Recognition and Event
Detection. Guo et al. (2018) addressed multitask and
curriculum learning to improve training of subsets of
multiple tasks, starting with smaller and simpler tasks
first. Zamir et al. (2018) computed an affinity matrix
between tasks based on whether the solution of one
task can be read easily enough by the representation
trained for another task. Their approach, being fully
computational and representation-based, avoids im-
posing prior (possibly incorrect) assumptions about
the relationships between tasks. In addition, Standley
et al. (2019), using the Taskonomy dataset (Zamir
et al., 2018), found that, unlike affinities between
transfer tasks, affinities between multiple tasks de-
pend strongly on a number of factors such as dataset
size and network capacity. A similar work to ours was
presented by Bingel and Sggaard (2017), who con-
ducted a study on ten traditional NLP tasks (including
POS tagging), comparing the performance of MT and
Single-Task (ST) learning, where hyperparameters of
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ST architectures are reused in the MT configuration.
Changpinyo et al. (2018) conducted extensive empir-
ical studies on eleven sequence labeling tasks. They
obtained interesting pairwise relationships that reveal
which tasks are beneficial or detrimental to each other.
Such information correlated with MT learning out-
comes using more than two tasks. They also studied
the selection of only advantageous tasks for joint train-
ing, showing that this approach, in general, improves
MT learning performance, and highlighting thus the
need to identify tasks to be learned jointly. Similar
experiments, but specific to the domain of question
answering, were performed by Vu et al. (2020) who
conducted an in-depth study of the relationships be-
tween various tasks (question answering and sequence
tagging) and proposed a task-embedding framework
to predict these relationships. Sun et al. (2020) sought
to enable adaptive sharing by learning which levels
are used by each task through model training. More
recently, Aribandi et al. (2021) proposed a massive
collection of various supervised NLP tasks in differ-
ent domains and task families in order to study the
effect of multi-task pre-training on the largest scale to
date and analyze the transfer of co-training between
common task families. The researchers addressed the
issue of inter-language transfer from high-resource
languages to low-resource languages. They presented
a model capable of automatically selecting the lan-
guage from which to transfer a given task, based on
inter-lingual criteria. Fifty et al. (2021) proposed a pro-
cedure for selecting subtasks based on task gradients.

4 The Adopted Methodology

During the annotation process of the TArC (Gugliotta
and Dinarelli, 2022), a specific order of linguistic an-
notation production has been set out. Starting from the
Arabizi as input, this specific order was: classification
(to filter the code-switching elements), transliteration
into CODA*, tokenization, POS-tagging and lemma-
tisation. This order of annotation was chosen based
on principles of both linguistic reasoning and empiri-
cal observation of MT system performances. Starting
from the premise that providing too much information
to an algorithm can slow it down and lead to inac-
curate results, it is important to think carefully about
what information is most relevant to a specific goal.
The ultimate goals of Gugliotta and Dinarelli (2022)
were 1. to produce precise annotation levels and at the
same time 2. to ease the work of manually checking
and correcting the annotations predicted by the archi-
tecture. Therefore, in Gugliotta and Dinarelli (2022),
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the chosen order of tasks was oriented toward simpli-
fying both the tasks involved in the semi-automatic
annotation (the automatic classification and the man-
ual correction). In fact, it was considered useful to
find a good compromise between proceeding in hier-
archical order, from the simplest to the most complex
annotation (observing the performance of the MT sys-
tem in annotation), while respecting the relationships
between the various levels of annotation based on
linguistic reasoning. Concerning the choice of pro-
cessing easy tasks first, it is possible to define what
is the easiest task among others for a model by ob-
serving its learning progress or the result precision
in case of classification tasks (Guo et al., 2018). For
example, as we noticed by observing experimental
results in Gugliotta and Dinarelli (2022), the task of
transliteration from Arabizi into CODA¥*, resulted to
be the most difficult task for the architecture. In our
opinion, this difficulty comes from the ambiguity of
Arabizi, being a spontaneous orthographic system. On
the other hand, it results more complicated to estab-
lish what task can be the most difficult for a human
annotator, because this depends on his specific previ-
ous experiences, which are hard to evaluate and are
in any case unlikely to match exactly the goal of the
annotation at hand. For manual checking of data, for
example, annotators will make use of their prior skills
and the annotation guidelines, and they will apply this
knowledge to the new task, gradually becoming faster
and more effective. In fact, we can consider them as
learners. As a result, if we apply the same logic as the
one used in language acquisition theories, the ease of
a task is closely related to the concept of support, in
terms of knowledge, that is made available to perform
the task.> This is to say that, for example during a
manual correction phase, an annotator may find easier
to correct various levels simultaneously, instead of
correcting them one-by-one. Two possible reasons are
(A.) the same error may have been transferred between
different annotation levels, so it is easier to correct
the various levels together. (B.) The presence of the
other levels can help the annotator to better understand
the error. The annotator will not only dispose of the
text semantics, but also of the other levels of annota-
tion (morpho-syntactic in the case of Gugliotta and
Dinarelli (2022)). Therefore, generalising the prob-

5Concerning human language acquisition knowledge there are
several theories, like for example the one called Zone of Proximal
Development (ZPD) (Vygotsky and Cole, 1978). The ZPD repre-
sents the interval between what a learner is able to do unsupported
and what he can achieve with support. Support may come from
someone else with wider knowledge or skills (namely the teacher).
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lem, we might conclude that the "simple-to-complex"
order can work as well for deep learning systems as
for human learners (including annotators). However,
as already mentioned in Section 3, we must consider
that what is possibly an auxiliary task for an annotator
does not help a MT learning system in the same way.
The experiments in the following section are aimed at
investigating this concern.

4.1 Experimental Procedure

We organized different groups of experiments with
the aim of identifying the best order of tasks to be
performed by the architecture, and this in order to
maximize the results on each of them. The first two
groups of experiments are a mixture of ST (Single-
Task) and MT (Multi-Task) strategies, organized into
an iterative procedure. The procedure starts with using
two annotation levels, one as input and the other as out-
put task, where all possible combinations of two levels
are tested to find the best order, results are shown in
the tables 2 and 3. The order is thus chosen based on
the best performing one. Performances on all tasks are
measured with Accuracy (see Gugliotta and Dinarelli
(2022)). Table 4 instead presents the grouping of par-
ticular intermediate experiments, in order to answer
specific task relation questions. The iterative proce-
dure continues using the annotation level detected as
the easiest to predict, measured with empirical results,
as the input to the system, and all the remaining an-
notation levels as output, both one at a time with ST
experiments and with specific combinations of two
or more annotation levels in MT experiments. This
allows to select again the easiest task based on the
empirical results. Results are given in the tables 5 and
6. We take care of using as much as possible Arabizi
or CODA* as input to the system since these are the
formats in which data may be naturally found, and
needing to be transliterated, into CODA* for Arabizi
and into Arabizi for CODA* (Gugliotta and Dinarelli,
2022), in addition to being annotated with the other
levels of the TArC corpus (Gugliotta and Dinarelli,
2020) used also in this work for our analyses. Consid-
ering the spontaneous nature of Arabizi and the small
amount of our data, having Arabizi text as input ex-
poses to the risk of transferring errors obtained on the
first task to the rest of the MT chain, hiding possibly
the task-relation potential. For this reason, we per-
formed two sets of experiments, one with Arabizi as
input and one with Arabic script as input, the latter fol-
lows a conventional orthography (CODA*) and thus
allows possibly to overcome the error transfer problem
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implied by the use of Arabizi as input. The other exper-
iments are based on MT learning. In fact, we want to
compare the results obtained with the ST strategy with
the same experiments performed in a MT setting. For
these sets of experiments, we test different MT chains,
that present different task orders, to observe which one
is giving the best results, again testing both Arabizi
(tables 7 and 10) and CODA* (tables 8 and 9) as input.

5 Results and Discussion

In this section we present the results of all our ex-
periments. In Section 5.1 we present the preliminary
experiments (mix of ST and MT strategies), while in
the section 5.2 we present the results of the MT exper-
iments. The experiments described in the Section 5.1,
refer to a procedure centred on the observation of the
best results of ST experiments, which then contribute
to the definition of a precise task order in MT experi-
ments. Therefore within this section, these MT exper-
iments, which respect the order deduced from the ST
results, will also be described. In order to provide a
comprehensive description of the results and highlight
the correlation between them, we will also globally
discuss the results at the end of the paper (Section 6).

5.1 Preliminary Experiments

Table 2 shows our results on the test sets of TArC
in the ST (Single-Task) experiment setting, using
Arabizi and CODA* as input to the model.5 We
defined these experiments as the Starting ST
experiments, considering them as the first stage to
define a task order for the MT architecture. When
the input was the Arabizi text we also performed the
classification task ((class.) in the table header), in
order to filter the code-switched tokens not to process.
In the column Arabizi input we thus report also the
classification accuracy for each experiment, in brack-
ets. Experiments are performed using both Arabizi
and CODA* as input since the system can be used in
some cases to transliterate Arabizi data into CODA*
encoding, like for the TArC corpus, in some cases
for transliterating CODA* encoded data into Arabizi,
like for the MADAR corpus (Gugliotta and Dinarelli,
2022), in addition to the other annotation levels when
these are available to train the model for doing so.
The ST tasks performed for these experiments are
the tokenization of the input, the Part-of-Speech tag-
ging, the lemmatisation and the transliteration of Ara-
bizi into CODA* (for the experiments having Arabizi

®Please see Gugliotta et al. (2020); Gugliotta and Dinarelli
(2022) for further details on the data and the architecture.

159

Arabizi input | CODA* input
Tasks

(class.)
Token. 80.0% (93.0%) 95.4%
POS 73.8% (92.5%) 54.5%
Lemma | 75.5% (92.8%) 89.5%
Translit. | 79.0% (92.8%) 67.2%

Table 2: Starting ST Experiments

as input), or of CODA¥* into Arabizi (in case of the
experiments having CODA* as input). These tasks are
reported in the table, in the column Tasks, with the re-
spective entries: Token., POS, Lemma and Translit..
Some results are in bold because they represent the
best among the experiments reported within the table.
As we can observe, both in the case of Arabizi and
CODA¥* as input, the easiest task seems to be the tok-
enization, on which the system respectively achieved
the accuracy of 80% and 95.4%. The former result
is not surprising observing that, when using Arabizi
as input, the transliteration task obtains one point less
(79%) than the tokenization task (80%), these seem
two very correlated annotation levels given the result
on the tokenization task when using CODA* as input
(95.4%). In fact, the tokenization implies the translit-
eration of the token, being both encoded in CODA*
(as shown in Table 1). It is also interesting to observe
the result on the classification task (93%) performed
together with the tokenization, using Arabizi as input.
Even if the difference is small, this is the best classi-
fication result. Thus, it seems that the classification
benefits from the information of the tokenization task.
It is also worth to highlight that both the tokenization
and the lemmatisation performed from a CODA* in-
put, obtain relatively high results, respectively 95.4%
and 89.5%. While results on the POS (54.5%) and the
transliteration into Arabizi (67.2%), using CODA* as
input, are the lowest results, also compared to results
obtained using Arabizi as input. Tokenisation and
lemmatisation involve simpler processes than POS-
tagging (identification of both the morphological class
and the features of the token). In addition, we should
consider that the CODA* conventional orthography
is also employed to encode the tokenization and the
lemmatisation levels. Indeed, these tasks result in easy
operations for the model having as input the text in
CODA*. This is not the case of the transliteration,
where the system must convert the Arabic-encoded
input into Latin-encoded information. In fact, it is
surprising that the transliteration into CODA* is still
obtaining a good result (79%) starting from an Arabizi
input. This can be due to the fact that, as previously
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mentioned, the Arabizi encoding is a spontaneous, am-
biguous script, while CODA* is a normalized encod-
ing. Consequently, transliterating an ambiguous script
into its normalization (i.e. many variations into one
encoding) results to be an easier task in comparison to
the opposite operation (CODA* into Arabizi, i.e., one
encoding into one of the many encoding possibilities).
Once assessed that the tokenization task is the
easiest using both Arabizi and CODA* as input, we
continued the iterative procedure by using the detected
easiest annotation level as input, and the other remain-
ing annotation levels as output, both one at a time and
all together in a MT learning setting. More precisely,
we first performed ST experiments using the tokeniza-
tion as input to the model, and alternatively POS and
lemmas as output. These results are shown in the first
two lines of Table 3, and they show that the easiest
task between POS tagging and lemmatization, when
using tokenization as input, is the lemmatization.

Input Tasks Accuracy
Token. POS 86.2%
Token. Lemma 92.4%
Token. | Lemma - POS | 92.8% - 87.6%
Token. | POS - Lemma | 87.3% - 92.6%

Table 3: Intermediate Experiments

By comparing the results of these two experiments,
we can confirm our previous consideration about
the fact that lemmatisation, in comparison to
POS-tagging, is in general a simpler process to be
performed starting from the token. The information
that most helps the lemmatisation of a token is its
morphological class. This information is contained
in the POS, and more precisely in what we can define
as the main part of the POS (namely only the morpho-
logical class, such as "verb", "noun", "adjective" etc.,
without its features, such as gender and number). The
prediction of the main POS is a much easier task than
the prediction of a POS with all the morphological fea-
tures. In fact, the lemmatisation task obtains 92.4% of
accuracy, 6.2 points more than the results on the POS
tagging (86.2%). In the same table we also report two
additional experiments that compare the combination
of the two tasks (POS and lemmatisation) in the two
possible orders, thus in a MT (Multi-Task) setting. We
can observe that the combination achieving the best
results is the first one (namely Lemma - POS), where
the model obtained 92.8% and 87.6% of accuracy
on the two tasks, respectively. While the margin
of improvement is small with respect to the other
possible order (POS - Lemma), this confirms that the
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lemmatization is the easiest task using tokenization as
input. Moreover it is interesting to see that in the two
MT experiments results are always better than those
obtained with ST experiments. This means that the
two tasks help each other, which is what we expect
in a MT learning setting. Given these results, we
considered useful to explore the question further by
means of additional experiments, shown in Table 4.

Input Tasks Accuracy

CODA* | Lemma-POS | 89.2% - 84.2%
CODA* | POS - Lemma | 85.9% - 90.5%
CODA* | Token. - POS | 95.3% - 85.2%
CODA* | POS - Token. | 85.6% - 95.2%

Table 4: Additional Experiments for Tasks Relations

These experiments present the grouping of partic-
ular intermediate annotation levels, using CODA* as
input to the system. The aim of the experiments was
to discover what task, between lemmatisation and
tokenization, helped more the POS task, and in which
order. For this reason we needed the tokenization not
to be the input for the model, and among Arabizi and
CODA* we preferred to have the input in CODA* in
order to avoid introducing a bias in these experiments
due to the errors depending on the Arabizi ambiguity.
If we had to guess which task helps POS prediction
more, we would have chosen tokenization rather than
lemmatisation. The former is in fact a morphological
task, as much as POS, while the latter is primarily
a lexical (but also morphological) task. However,
by observing the results, we can confirm what
already observed in Table 3, namely that it is the
lemmatisation the task helping more the POS tagging.
In fact, the experiment showing the best results on
POS is the second one, where the POS is followed
by the lemmatisation. This result on the specific
order (POS-Lemma) seems to be inconsistent with
what has just been stated by commenting on Table 3,
where slightly better results were obtained by keeping
the Lemma-POS order. However, what makes the
difference between the experiments in the tables 3 and
4 is the input. That is, when the input is the tokenized
text, the Lemma-POS and POS-Lemma order obtain
similar results (Table 3), whereas when the input is in
CODA* (Table 4) there is a considerable difference
in the two possible orders between POS and Lemma
(POS improves of 1.7 accuracy points, Lemma
improves of 1.3 points with the POS-Lemma order).
Instead, we have non-significant differences by invert-
ing the order between Token. and POS. Thus, it seems
that the system has more difficulties in extracting the
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Accuracies on tasks
Exp.ID | Token. Lemma POS Arabizi
I 95.4% - - -
I 953%  89.8% - -
11 96 % 90.7% 86.2% -
v 944% 889% 845% 67.8%

Table 5: Chain based on ST experiments - CODA* input

Accuracies on tasks
Exp.ID | Class. Token. Lemma POS CODA*
I 86.2% - - - -
I 93% 80% - - -
m 95% 80% 78.2% - -
v 94.1% 789%  71.5% 71.8% -
\% 942% 789% 1713% 78.6%  79.5%

Table 6: Chain based on ST experiments - Arabizi input

lemma from the CODA¥*, without the intermediate
step of POS tagging, which instead obtains better
results (85.9%) directly on the CODA*, than on the
lemma (84.2%), also helping to improve the results on
the lemmatisation, which rises by 1.3 points (90.5% vs
89.2%), if placed after the POS level. This is also evi-
dent if we compare these results with those obtained in
the ST experiment (CODA* - Lemmatization: 89.5%)
in Table 2. The results on lemmatisation improve (by
1 point) when it follows the POS task (90.5%), thus,
the two tasks (POS and lemmatisation) help each
other. Once these considerations have been made,
we can present the results in Table 5 and Table 6, that
present the experiments aiming at identifying the final
MT learning chain based on ST experiments, having
CODA* (Table 5), or Arabizi (Table 6) as input.
The progressive Roman numerals in the ‘Exp. ID’
columns of these tables indicate the sequential order
in which the experiments were performed. These
numerals will also be used to refer to the experiments
while discussing the results. Concerning these
experiments, both in the case of an input in Arabic
characters (CODA*) and in the case of an input in
spontaneous Latin orthography (Arabizi), it emerges
a tendency for improved results due to the presence
of auxiliary tasks. With regards to Table 5, we can
observe that thanks to the presence of the tokenization
task, the lemmatisation improves of 0.3 points at the
experiment II (second line of Table 5), in comparison
with the lemmatisation experiment as a ST in Table 2.
Observing the experiment III (Exp. from now on for
short) reported in Table 5, we can notice that thanks
to the presence of the POS task, the tokenization
task improves of 0.7 points with respect to the ST
experiment on tokenization, reported in Table 2.
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Also the lemmatisation task obtains better results,
improving by 0.9 points, thanks to the presence of the
POS task, at the Exp. III, in comparison with the Exp.
II in Table 5. Finally the transliteration task from
CODA* into Arabizi improves by 0.6 points, thanks
to the previous tasks (at the Exp. IV in Table 5, in
comparison to the transliteration as an ST experiment
in Table 2). However, by adding the transliteration to
the chain of tasks, the model is subject to much more
difficulty, as can be noticed at the Exp. IV of Table 5,
where all the previous tasks undergo the negative trans-
fer effect, due to the presence of the transliteration
into Arabizi.” From Table 6 we can draw very similar
observations. From the Exp. II, we can observe an
improvement of 6.8 points of the classification task, in
comparison with the Exp. I, thanks to the tokenization
task. On the next step (Exp. III), classification
continues to improve (by 2 points) thanks to the
lemmatisation task, which also improves by 2.7 points
(thanks to the tokenization) in comparison with the
ST experiment on lemmatisation in Table 2. Finally,
at the Exp. V, we can observe how, thanks to the
normalization of Arabizi into CODA*, POS-tagging
improves of almost one point (0.8), in comparison
with the previous step (Exp. IV) in Table 6. Also the
transliteration task obtains better results, 0.5 points
in comparison with the ST transliteration reported in
Table 2, thanks to the previous tasks. By observing
Table 6, the most difficult task for the model seems
to be the POS tagging. In fact, at the Exp. IV, while
the POS task improves by an impressive 4.8 points
(in comparison with the ST experiment in Table 2),
all the previous tasks lose about one point, compared
with the results of the previous step (Exp. III).

5.2 Multi-Task Experiments

In our multi-task system, as previously stated,
variables come into play, such as the factorization
of the information shared among the decoders, the
presence of attention mechanisms, etc. For this reason,
we decided to compare the results obtained from ST
experiments with those of the MT experiments. There-
fore, in the following tables we can observe different
combinations of tasks performed sequentially by the
MT architecture. The goal is to check whether or not
the ST task-chain matches with the MT task-chain
that gives better results than other combinations or
than the combinations that would seem logical from a
linguistic point of view (e.g.: Arabizi - Classification -
CODA* - Lemmatization - Tokenization - POS). Each

"This phenomenon has been mentioned in the section 1.
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line of the following tables represents an experiment
with all the tasks in a specific order. The order of
a task is specified in brackets as a footnote of the
corresponding accuracy result. When such note is not
present, the order of the task is the one corresponding
to the column of the table. For instance in the Exp. I
in Table 7, the task order is Class. - CODA* - Token. -
POS - Lemma, where the order of Class. and CODA*
is the one given by the corresponding column in the
table since their accuracy has no footnote; while for
Token., POS and Lemma the order is given by the in-
dex in footnote to their accuracy. This notation allows
to give several task orders in the same table keeping
the same table headers. We also keep the same
experiment identifier naming with roman cardinals as
in the previous tables, e.g. Exp. I mentioned above.
Table 7 presents the MT experiments with the
Arabizi text as input. For the experiments reported in
this table, the first tasks are always the classification
and the transliteration into CODA*. Concerning the
last two line of the table (lines VII and VIII), they
summarize the results of two experiments, where
the model receives the Arabizi input and processes
the tasks of lemmatisation and transliteration into
CODA* as a second and third task, respectively.

Accuracies on tasks
Exp.ID | Class. CODA* Lemma Token. POS
I 97.3 82.6 823(5) 8233 714
I 99 84.2 82.84) 8353 83.105
I 929 78.5 5424  759(5) 78(3)
v 94.3 78.3 7645) 7794 78.13)
\% 979 84.3 83.63) 8234 8235
VI 98.8 83.5 8243) 823(5) 8231
VII 98.5 83.7(3) 832) 834) 82.6(5
VIII 932 7783 786 76(5 7824

Table 7: Chain based on MT experiments - Arabizi input

At the end of the section 5.1, by discussing the
preliminary experiments, we stated that POS-tagging
is the most difficult task, together with the translit-
eration into Arabizi. In particular, we have deducted
this by looking at Table 6. In fact, we remind that
for these experiments we imposed a task order based
on ST experiments described in the section 4.1. We
also recall that, in Table 6 (experiments concerning
the MT-chain based on ST experiments) the highest
result obtained on POS tagging was 78.6%.

Concerning the Multi-Task (MT) experiments and
looking at Table 7, we can see that the highest result on
POS is 83.1%. We can also note that on all tasks, ex-
cept for lemmatisation, better results are achieved with
the Exp. II, where POS is the last task processed by the
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MT architecture. Thus, it seems that POS prediction
is benefiting of all the previous task information. The
POS results in the Exp. II (83.1%) are improved of
4.5 points in comparison with the best result of Table 6
(78.6%). At the Exp. 11, it is also interesting to ob-
serve how the lemmatisation task, processed between
tokenization and POS, contributes to the improvement
of both tokenization and POS, though it loses almost
one point (0.8) compared to its highest result, obtained
when lemmatisation is in the third position (see the
Exp. V). In fact, at the Exp. V in Table 7, we can see
that lemmatisation improves by 0.8 points if it follows
the transliteration task and if it is followed by the to-
kenization task. The difficulty introduced by the POS
task is evident from the tables 6, 7 and 3. In the latter
one we also observed the encouraging results obtained
on the lemmatisation task, using tokenization as input.

We also performed the experiments reported in
Table 8, in order to identify the best task sequence for
predicting Arabizi strings from CODA* strings. Con-
sidering that the input for these experiments is already
filtered by the foreign tokens, we did not perform the
classification task. Except for the transliteration into
Arabizi, which is always the last task, the order of the
tasks for each experiment are shown again through
footnotes with a number in brackets.

Accuracies on tasks
Exp.ID | Lemma Token. POS | Arabizi
I 88.93) 94.8(1) 84.1(2) 68
Il 88.92) 94.41) 84.503) 67.8
I 89.72 9513) 85.10) 68.5
v 89.43) 9472 84.6(1) 68.4
\% 89.7(1) 952) 84.703) 68.2
VI 89.11) 95.23) 852 68.4

Table 8: Chain based on MT experiments - CODA* input

Even in Table 8 we can observe that MT experi-
ments produced better results if compared to those
of the task sequence established with the ST logic in
Table 5. In fact, we defined the transliteration into
Arabizi as the most complex task starting from an
input in CODA*. In Table 5 the result obtained on
transliteration was 67.8%, while in Table 8 we can see
how in several experiments we obtained better results,
and in general on all tasks. The chain established
through the sequential logic of ST experiments,
shown again in Table 8 as Exp. II, actually appears
to be the worst combination for both tokenization and
transliteration. We note, on the other hand, that the
best over all tasks is the one that, in the Exp. III, sees
POS in the first position of the task chain. Again, like

™
N
o
N
-
Q
-




in Table 7, POS is separated from the rest of the tasks
by the intermediate presence of the lemmatisation
task, and followed by tokenization. It is very inter-
esting to observe that in Exp. III POS gets as much
as one point more than in the Exp. I of the same table,
where it was the second task, after the tokenization
task. We remind that according to the linguistic logic,
the tokenization being a morphological task, it should
support the morpho-syntactic tasks.

Finally, we performed experiments with different
task combinations, considering the possibility that an-
notations, such as lemmas or POS-tags, are introduc-
ing negative a bias for the task of CODA* transliter-
ation into Arabizi encoding, and that the classification
can instead help in it. These are reported in Table 9.
Concerning the experiments reported in the last two
lines of the table (lines VII and VIII), these treated the
lemmatisation as a second task, after the classification
(which is always the first task) and before the task of
transliteration into Arabizi. In fact, the latter is always
the second task performed during the previous exper-
iments reported in the same table (experiments 1-6).

Accuracies on tasks
Exp.ID | Class. Lemma Token. POS | Arabizi
I 97.2 88.865) 94.53) 83.6(4) | 68.802)
il 98.1 89.3@ 9533) 83.4() | 68.312
m 98.1 89.14) 952(5) 83.4(3) | 68.502)
v 974  88.655) 9474 83.33) | 68412
\% 97.8 88.93) 9524 84.3(5) | 68.72
A%t 97.5 89.23) 944(55) 8344 | 68.312
VI 97.5 89.32) 954)  83.6(5) | 68.7(3)
VIII 98.3 89.22) 954(5) 84.84) | 68.6(3)

Table 9: Other MT experiments to predict Arabizi

The goal of experiments reported in Table 10,
instead, is to predict the CODA* transliteration
from the Arabizi input. Thus, the transliteration
into CODA* is always the last task, while the
classification is always the first task.

Accuracies on tasks
Exp.ID | Class. Lemma Token. POS | CODA*

I 94.1 76.34) 7792 77.903) 78.1
I 94.2 7733) 7892 78.6(4) 79.5
I 94 7723) 7824 78.5(2) 78.2
v 93.8 76.3(4) 78.13) 78.12) 78

\Y 94 7722 7843) 78.514) 78.5
A%t 94.2 7732 7874 78.8(3) 78.7

Table 10: Other MT experiments to predict CODA*

In these last two tables, 9 and 10, we have reported,
for the sake of completeness, experiments with
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additional combinations of tasks. Both seem to
confirm the concept with which we would like to
conclude our analysis. Namely, specific task ordering
in a MT learning setting, in the case of a robust model
provided with attention mechanisms, matters up to
a certain point. In fact, looking at the last two tables,
where we aimed at improving transliteration into
Arabizi (Table 9) and CODA* (Table 10), we can
notice first that the tasks exhibit roughly always the
same accuracy values in all experiments. As a second
observation, two different strategies are adopted. In
Table 9 the transliteration task in Arabizi is always
in the second position (except for experiments VII
and VIII), while in Table 10 transliteration in CODA*
is always the last task. By comparing the results of
the strategy in Table 9 with those obtained on the
Arabizi transliteration task in Table 8 (where Arabizi
is always the last task), we can say that the strategy
of tackling Arabizi as the second task yields better
results, although the difference is small. We can
draw the same conclusion by looking at the results on
the transliteration task into CODA*, comparing the
results in Table 7 to those in Table 10. In the former,
transliteration is always addressed as the second task
(except in the experiments VII and VIII), and doing
so yields better results than those reported in Table 10,
where the transliteration task is always the last one.

6 Conclusions

In this work, we presented empirical analyses in order
to pinpoint the best approach for semi-automatic an-
notation of a dialectal Arabic corpus through a multi-
task neural architecture. The experiments performed
highlight a number of factors that may play a role
in the outcome of good data annotation. Among the
ones discussed are the interrelations between the tasks
processed by the architecture, the difficulty the archi-
tecture faces in performing the tasks and the impact
that determining specific orders of data annotation
may have on the results, especially if to infer the re-
lationship between tasks, we rely only on linguistic
intuitions. By observing the experiments performed
by this study, it clearly emerges the existence of rela-
tions between tasks, and these are especially evident
when observing ST experiments. In fact, it turned out
that morphological information does not necessarily
support morphological tasks (Table 4), whereas it sup-
ports, for example, lemmatisation. At the same time,
lemmatisation appears to play a key role in supporting
the POS task, which difficulty is evident from the
tables 6, 7 and 3. In the latter one we also observed
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the encouraging results obtained on the lemmatisation
task, using tokenization as input. The optimal choice
therefore is to isolate the POS task, leaving it as the
last task to be processed and preceding it by all sim-
ple tasks such as tokenization or lemmatisation. The
latter is probably more effective, as intermediate task
between tokenization and POS, in that it consists in
fewer operations to be performed by the model, which
is then able to generalize better on lemmatisation, espe-
cially once the tokenization is performed as a previous
task (see Table 3). In other words, the lemmatisation
task, positioned between tokenization and POS, can
provide a cushioning effect to the negative transfer
introduced by the POS task (see for example the POS
negative transfer effects on the tokenization at the Ex.
V in Table 7). We also remind that, in section 5.1, by
observing Table 4, we noted that: (1.) The best results
on the POS, having the input in CODA, are obtained
at the experiment where the POS is side-by-side with
the lemmatisation instead of the tokenization. (2.)
The accuracy on lemmatisation improves (by 1 point)
in comparison with the ST accuracy (Table 2). This
seems to mean that the reason why the lemmatisation
level succeeds in "absorbing" the negative transfer of
POS-tagging on the rest of the MT system, lies in two
reasons. The first is that lemmatisation, basically, is
an easy task (especially if based on CODA* transliter-
ation, as shown in the tables 2 and 5), and the second
is that the operations to perform POS-tagging are es-
sentially a prerequisite to those implemented to solve
the lemmatisation task. In fact, although POS-tagging
is a complex task, it does not affect the lemmatisation
results (as it does instead with the other tasks), actually
POS improves the lemmatisation by disambiguating
the string. In short, the two tasks are strongly related.
However, imposing specific orders on tasks, accord-
ing to such relations in ST learning logic has been
shown to be an uncertain strategy in comparison to
the MT strategy. Regarding the latter, we believe that
what really has an influence on the results in terms of
improvement of individual tasks is not so much the
relation between tasks, but the inherent difficulty of
tasks. In fact, there seems to be a tendency for general
improvement in results on the various tasks if the tasks
that require greater architectural capacity are tackled
at the initial positions in the chain of tasks.
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