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Abstract

High-quality labeled data is paramount to
the performance of modern machine learning
models. However, annotating data is a time-
consuming and costly process that requires
human experts to examine large collections
of raw data. For conversational agents in pro-
duction settings with access to large amounts
of user-agent conversations, the challenge
is to decide what data should be annotated
first. We consider the Natural Language Un-
derstanding (NLU) component of a conversa-
tional agent deployed in a real-world setup
with limited resources. We present an ac-
tive learning pipeline for offline detection of
classification errors that leverages two strong
classifiers. Then, we perform topic model-
ing on the potentially mis-classified samples
to ease data analysis and to reveal error pat-
terns. In our experiments, we show on a real-
world dataset that by using our method to
prioritize data annotation we reach 100% of
the performance annotating only 36% of the
data. Finally, we present an analysis of some
of the error patterns revealed and argue that
our pipeline is a valuable tool to detect critical
errors and reduce the workload of annotators.

1 Introduction

Modern machine learning methods rely heav-
ily on the availability of high-quality labeled
data (Ouyang et al., 2022; Schuhmann et al., 2022).
As a consequence, annotating large volumes of
data has become a priority across organizations.
However, data annotation is a time-consuming
and costly process: it requires, first, to train hu-
man experts who, then, have to manually exam-
ine large collections of raw data and assign labels.
Since assigning labels is often an ambiguous task,
it is a standard that each sample is labeled by mul-
tiple annotators and labels are assigned based on
inter-annotator agreement (Artstein, 2017). The
complexity of this process makes data annotation

a common bottleneck when it comes to deploying
data-driven systems that should operate reliably
in production environments.

A relevant example of these data-driven sys-
tems are conversational agents that interact di-
rectly with human users. These agents typically
have at least two components, one for Natural
Language Understanding (NLU) and another for
Dialogue Management (DM). The NLU compo-
nent extracts intents and entities from the user ut-
terance at each conversation turn, while the DM
component decides on the next action based on
the NLU output (Bocklisch et al., 2017). Once de-
ployed, these assistants can have access to large
amounts of raw data in the form of user-agent
conversations. At scale, the amount of data avail-
able for annotation may soon exceed the capacity
of the human annotators. The challenge then
becomes how to select samples for annotation.
On the NLU side, it is desirable to prioritize the
annotation of utterances whose intent was mis-
classified during inference in order to correct ex-
isting flaws in the agent. However, automatically
finding those utterances is challenging, since in-
tent mis-classifications do not necessarily result
in failed conversations and conversations can fail
due to the misbehavior of other components of
the digital assistant, not only due to the NLU.

In this work, we consider a real-world scenario
where an intent classifier needs to run with lim-
ited resources, specifically, in CPUs and with low
latency. This discards modern Large Language
Models (LLMs) as a valid option. Nevertheless,
LLMs can be used offline to detect potentially
mis-classified data. We present a simple yet effec-
tive method based on voting that leverages two
LLMs to detect problematic utterances. In partic-
ular, we compare the prediction of two LLMs with
the intent assigned by the production classifier
and if there is no unanimity between the three
intents, we mark the utterance as problematic to

55



prioritize its annotation and analysis. We embed
this method in an active learning pipeline consist-
ing of error detection, clustering and topic mod-
eling, followed by expert annotation. This way,
the human expert receives a curated set of prob-
lematic utterances clustered by topic, which facil-
itates the discovery of error patterns and greatly
reduces the required workload.

In our experiments, we simulate a real-world
environment, where an intent classifier is period-
ically exposed to new data that can be potentially
labeled and incorporated to the training data. We
evaluate on a held-out test set and show that on a
real-world dataset, an intent classification model
trained with data labeled following the priority
given by our pipeline can reach with 36% of the
train data the same performance as with 100%,
which represents a major reduction in annota-
tion costs. Furthermore, we show a qualitative
analysis of the error patterns discovered by our
method on two public datasets and argue that our
pipeline is a valuable tool to early-detect intent
classification errors that could be critical for the
operation of a conversational agent.

2 Related Work

Error Discovery: Error discovery strategies
in machine learning can be categorised into
machine-initiated (or, active learning) and
human-initiated. While human-initiated ap-
proaches put a significant load on humans (At-
tenberg and Provost, 2010; Attenberg et al., 2015),
machine initiated approaches are either based on
dialogue failure (Khaziev et al., 2022), disagree-
ment with the expectation (Bhardwaj et al., 2020,
2022), or confidence of the classifier (Lewis and
Catlett, 1994). To label individual data instances,
existing active learning strategies mainly lever-
age crowds (Yan et al., 2011; Yang et al., 2018) or
components of a machine learning system (Nushi
et al., 2017). Detecting feature blindness errors,
namely unknown unknowns, with active learn-
ing methods is hard, since these methods gener-
ally rely on the model’s training results (Attenberg
et al., 2015; Lakkaraju et al., 2017). To mitigate this
limitation, our error prediction workflow involves
different machine learning models, diversifying
in this way the type of errors discovered.

Interactive machine learning (iML): iML
is a growing field in machine learning that
has demonstrated its success in building well-

performing classifiers using fewer features (Fails
and Olsen Jr, 2003; Ware et al., 2001; Chen et al.,
2018). Moreover, it improves user’s trust and un-
derstanding of the system (Stumpf et al., 2009).
In this context, our approach stands out as we
provide a visualization of topic clusters to the an-
notators to facilitate their task.

3 Methodology

Our active learning pipeline consists of three
stages, intent classification, error detection and
topic modeling. The full pipeline is depicted in
Figure 1 as a block diagram.

Intent Classification This is the production
model that predicts the intent of the user utter-
ance. Due to the scalability constraints in terms
of latency and computing resources, this model
must have low inference time and run on CPUs.
Without loss of generality, in this work we employ
the Universal Sentence Encoder (USE) (Cer et al.,
2018) as embedder, followed by linear Support
Vector Classification (SVC). During live conversa-
tions, both the user utterance and the predicted
intent are stored and passed to the next stage of
the pipeline for offline error detection.

Error Detection We fine-tune two LLMs for in-
tent classification with the same training set used
to train the production classifier. Then, for each
utterance collected in production, we predict
their intent with the two LLMs and compare these
results with the intent predicted by the produc-
tion model. If there is disagreement between the
three intents we mark the utterance as problem-
atic. The LLMs used are DistilBERT (Sanh et al.,
2019) and DeBERTa-v3-base (He et al., 2021b,a)
since they differ significantly in size and pre-
training objectives, which diversifies the predic-
tions of hard-to-classify utterances.

Clustering and Topic Modeling We divide the
set of utterances marked as problematic in the
previous stage by the intent given in production.
Then for each intent, we perform clustering and
topic modeling following a similar approach to
BERTopic (Grootendorst, 2022) but with USE em-
beddings. We use UMAP (McInnes et al., 2018) for
dimensionality reduction, HDBSCAN (McInnes
et al., 2017) for clustering and c-TF-IDF for topic
modeling i.e. for generating topic keywords that
help the annotators to categorize the error type
within the cluster. We perform a random search
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Figure 1: Active learning pipeline: the utterances re-
ceived by the virtual assistant at production are passed
through an intent classifier, error detection and topic
modeling to create a curated dataset that is labeled by
human experts and integrated in the training data.

to select hyperparameters and pick the combina-
tion that minimizes the amount of data points
labeled as noise. Formally, we want to minimize
the proportion of data clustered with confidence
score smaller than 0.05.

For each intent, the topic modeling stage re-
turns a set of clusters of problematic utterances
with three topic words describing the cluster. This
is the final output of our pipeline which is then
given to the human experts for analysis and an-
notation. This way, the human experts receive
a curated and ordered set of potentially critical
utterances that can be quickly labeled and inte-
grated in the training set of the production model.

4 Experiments and Results

Here, we conduct a quantitative and a qualita-
tive evaluation. In our quantitative evaluation
we assess to what extent our pipeline reduces
the amount of labeled data needed to reach cer-
tain performance; and in the qualitative evalua-
tion we analyze discovered error patterns. We
run our experiments on two public datasets:
ATIS (Hemphill et al., 1990) and SNIPS (Coucke
et al., 2018); and an internal dataset (AUTO) con-
sisting of real-world data from the automotive
domain. ATIS is a dataset of queries about flight
information of 4,978 training samples and 893
test samples1. SNIPS is a dataset of interactions
between users and virtual assistants like Siri or
Alexa. We use the version with 26,000 utterances
and we set as label the joint fields “intent” and
“scenario”, which results in 64 classes.

1We use: https://github.com/microsoft/CNTK

4.1 Data Annotation

We simulate a real-world scenario where a pro-
duction model fpr od classifies the intent of a large
number of samples. This prediction is combined
with that of two other models fer r 1 and fer r 2 to
perform offline error detection. As explained in
Section 3, fpr od consists of USE for embedding
followed by linear SVC, while fer r 1 and fer r 2 are
DistilBERT and DeBERTa-base respectively.

To simulate our production setting for a given
dataset, we perform a 10-90 split of the training
data, where we use the 10% split to train the ini-
tial model. This corresponds to the first model
deployed in production, trained with a small
amount of initially available data. The remaining
90% of the train data simulates the data progres-
sively acquired in production. We follow an itera-
tive process with each iteration corresponding to
an annotation campaign where human experts
annotate a set of production samples. These sam-
ples are incorporated to the training data of fpr od ,
which is then re-trained with the expanded train-
ing set. At each iteration i , we denote the training
data as D tr ai n

i and the rest as Dr est
i . Furthermore,

we use the held-out test set D test to assess the
performance of the intent classification model at
each iteration.

In detail, each iteration i starts with training
the intent classification model fpr od and fine-
tuning the error detection models fer r 1 and fer r 2

with D tr ai n
i . At this point, to keep track of the

evolution of the performance of the model, we
evaluate fpr od on D test by computing the macro-
averaged F1 score. Then, we predict with the
three models the intent of 15%2 of Dr est

i . Those
samples for which the three models do not agree
on the prediction are added with their ground-
truth labels to D tr ai n

i+1 and removed from Dr est
i+1 ,

this simulates the annotation by human experts.
The process is repeated until no new data is
added to D tr ai n

i+1 .

In Table 2, we report for each dataset the macro
F1 score obtained by fpr od when training with
100% of the data as well as the percentage of data
needed to reach the same performance (within
a ±0.005 error) with our active learning pipeline
(AL). We also report the maximum F1 attained
with our pipeline and the percentage of train data
needed to reach it. The results shown are the

215% is an arbitrary amount to simulate incoming data.
Proportions like 5% or 10% would serve the same purpose.
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Dataset Topic Examples Ground Truth Predicted Intent

ATIS

flights, flight, Denver How much is a flight from Washington to Montreal flight airfare

flights, flight, Denver
What is the airfare for flights from Denver to Pittsburgh
on Delta airline

flight airfare

flights, flight, Denver List airlines that fly from Seattle to Salt Lake City flight airline

flights, flight, Denver
Please show me airlines with flights from Denver to
Boston with stop in Philadelphia

flight airline

SNIPS

events, calendar, today When is my next dentist appointment query_event_calendar delete_event_calendar
events, calendar, today Show up the events for me today query_event_calendar delete_event_calendar
events, calendar, today Tell me what is on my calendar for tomorrow query_event_calendar delete_event_calendar
meeting, hour, remind Remind me about the meeting tomorrow at six set_reminder notification_calendar
meeting, hour, remind Schedule a reminder one hour before the meeting set_reminder notification_calendar

Table 1: Examples of error patterns discovered per dataset by our pipeline.

Dataset
100%
Data

% Match
AL

Max
AL

% Max
AL

ATIS 0.699 25.6 0.725 26.6
SNIPS 0.745 54.8 0.745 54.8
AUTO 0.784 36.0 0.795 35.7

Table 2: Results of the data annotation experiments;
performance numbers are macro F1 scores. % Match
AL is the amount of data labeled by the active learning
(AL) pipeline that matches the 100% Data score; Max
AL is the maximum performance reached with AL and
% Match AL is the amount of data to get that score.

mean across five different splits of the data.

For the three datasets, the amount of data
needed to match the performance of the full train-
ing set with our pipeline (AL) is much smaller. In
particular, for ATIS we need only 25.6% of the
data, for SNIPS 54.8% and for AUTO 36.0%. Fur-
thermore, for ATIS and AUTO we outperform the
model trained with the full train set with only
26.6% and 35.7% of the data respectively. These
results demonstrate the large savings in terms of
data annotation that can be obtained with our
pipeline, which in turn can represent a major re-
duction in costs for an organization.

4.2 Error Analysis

Next, we conduct a qualitative analysis of the er-
ror patterns discovered by our pipeline, similar to
the analysis that would be performed by human
experts during error exploration. We report re-
sults for the two public datasets, ATIS and SNIPS.
For each dataset, we simulate an imperfect pro-
duction classifier by training fpr od on 50% of the
data. Then, we run intent classification, error
detection and topic modelling on the remaining
50% of the data, as well as, on the test set. We
manually analyze the clusters produced to under-
stand where the model is failing and in Table 1 we

report some patterns discovered in this way.

For ATIS, some utterances that should be clas-
sified as “flight” are mis-classified as “airfare”
or “airiline”, while for SNIPS, we see that in-
stead of querying the calendar, the model is mis-
understanding to delete events, and instead of
setting reminders it is adding notifications. We
argue that certain intent mis-classifications, such
as the ones shown here, can be critical for the
operation of a virtual assistant and should be de-
tected as early as possible.

The analysis shown in this section requires lit-
tle technical knowledge for the human experts,
since they only need to look at the generated clus-
ters and assess which ones represent a major risk.
This can greatly speed up the error analysis pro-
cess, helping in the early detection of critical er-
rors and in reducing the amount of time that the
annotators need to spend looking at the data.

5 Conclusion

In this work we have presented an active learning
pipeline for conversational agents which consists
of intent classification, unsupervised error detec-
tion and topic modeling. In the experiments, we
show that our approach helps in prioritizing data
for annotation: in our real-world dataset (AUTO)
we reach the same performance with 36% of the
data when selected by our pipeline as with 100%
without prioritization. Therefore, this method
can provide major savings for organizations with
limited annotation capabilities. Furthermore, we
argue that our approach helps to discover in-
tent classification errors that may be critical for
the correct operation of the dialogue agent and
which, if not detected on time, could jeopardize
the viability of the system. In future work, we plan
to extend our proposed pipeline to support also
named entity recognition.
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