
Proceedings of the 17th Linguistic Annotation Workshop (LAW-XVII), pages 19–30
July 13, 2023 ©2023 Association for Computational Linguistics

Difficulties in Handling Mathematical Expressions in Universal
Dependencies

Lauren Levine
Georgetown University

lel76@georgetown.edu

Abstract

In this paper, we give a brief survey of the
difficulties in handling the syntax of mathe-
matical expressions in Universal Dependen-
cies, focusing on examples from English lan-
guage corpora. We first examine the preva-
lence and current handling of mathematical
expressions in UD corpora. We then examine
several strategies for how to approach the han-
dling of syntactic dependencies for such ex-
pressions: as multi-word expressions, as a do-
main appropriate for code-switching, or as ap-
proximate to other types of natural language.
Ultimately, we argue that mathematical ex-
pressions should primarily be analyzed as nat-
ural language, and we offer recommendations
for the treatment of basic mathematical ex-
pressions as analogous to English natural lan-
guage.

1 Introduction

Universal Dependencies (UD, Nivre et al. 2016,
2020; de Marneffe et al. 2021) is a project
that aims to develop cross-linguistically consis-
tent guidelines for multiple annotation layers, in-
cluding syntactic dependency relations. Math-
ematical and numerical expressions comprise a
particularly challenging class of cases, which re-
quire special attention to handle. Thus far, work
on how to handle numerical expressions in UD
has included analysis on annotating date and time
cross-linguistically (Zeman, 2021), discussion of
numbered entities in nominal expressions (Schnei-
der and Zeldes, 2021), and discussion of different
types of numeral related expressions in UD cor-
pora of Uralic languages (Rueter et al., 2021).

However, there has been little discussion of how
mathematical expressions, such as equations and
other language which includes mathematical sym-
bols and operators, should be handled in UD. As
mathematical expressions are likely to appear as
little more than edge cases in many corpus gen-

res, this is understandable, but mathematical ex-
pressions can also feature prominently in corpora
related to academic and scientific domains, such
as the ACL Anthology Corpus (Rohatgi, 2022)
and the academic section of the Corpus of Con-
temporary American English (COCA) (Davies,
2010). Unfortunately, the amount of corpora built
for technical domains is limited, and the special-
ized nature of the language in such corpora has
been a barrier in annotating them with more com-
plex schemas, such as dependency relations. This
means that there is a large gap in availability for
annotated texts containing mathematical expres-
sions that can be leveraged by NLP systems.1

As a result, technical texts with mathematical
expressions can be viewed as a low-resource do-
main, and state-of-the-art systems trained on stan-
dard language will inevitably face a large drop in
performance when handling such out of domain
texts (Plank, 2016; Joshi et al., 2018). This is
particularly an issue for real world applications
of NLP technologies in technical domains, such
as text mining or document processing in indus-
trial engineering, where copious amounts of tech-
nical documents are generated by industry systems
(Dima et al., 2021).

Pushing for the annotation of domain specific
technical corpora will help to address this gap and
provide more resources for NLP systems attempt-
ing to handle technical language. This will first
require discussions on how to handle the annota-
tion of such technical language, including stan-
dards for the handling of mathematical expres-
sions. In this paper, we will first examine the
current state of mathematical expressions in UD
corpora, and then we will consider several possi-
ble approaches for handling such expressions. We

1While resources remain limited, we do note the re-
lease of a genre diverse UD test corpus, GENTLE, which
contains dependency annotations and has a genre sec-
tion for mathematical proofs: https://github.com/
UniversalDependencies/UD_English-GENTLE/

19

https://github.com/UniversalDependencies/UD_English-GENTLE/
https://github.com/UniversalDependencies/UD_English-GENTLE/

will then give recommendations on how to han-
dle the dependency relations for basic mathemati-
cal expressions, which we hope will encourage the
inclusion of more mathematical texts in future an-
notation work.

It should be noted that while many arguments
about syntactic analysis of mathematical expres-
sions apply cross-linguistically, the focus of this
paper is on mathematical expressions in English
corpora, as mathematical English is the basis of
most academic and professional STEM discourse,
making it a logical place to start.

2 Prevalence and Existing Treatment of
Mathematical Expressions in UD Data

In this section we will examine the prevalence
of mathematical expressions in Universal Depen-
dencies corpora (version 2.11),2 as well as the
distribution of dependency relations used to han-
dle such expressions. We will also compare the
prevalence of mathematical expressions in UD
corpora with the prevalence of mathematical ex-
pressions in a subsection of the ACL Anthol-
ogy Corpus, illustrating that expanding UD cov-
erage more broadly into academic and technical
domains would require a meaningful treatment of
such expressions.

2.1 Prevalence in UD and ACL Data

In order to estimate the prevalence of mathemati-
cal expressions in UD corpora, we created a regu-
lar expression to query sentences containing com-
binations of numerical values and Unicode math-
ematical operators and symbols (a more detailed
description of this query is provided in Appendix
A). To determine the accuracy of this query, its
performance was evaluated on a subsection of the
ACL Anthology Corpus (which provides the full-
text and metadata for papers and abstracts in the
ACL (Association of Computational Linguistics)
Anthology).3

From the 2021 papers in the ACL Anthol-
ogy Corpus, 125 documents were randomly se-
lected to be analyzed. The documents were sen-
tence split and tokenized using Trankit (Nguyen
et al., 2021),4 and "gold" mathematical expres-

2https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-4923

3https://github.com/shauryr/
ACL-anthology-corpus

4https://github.com/nlp-uoregon/
trankit

sions where identified using the "formula" tag an-
notations included in the xml format of the cor-
pus. After running our query on the ACL doc-
uments, the results were compared to the "gold"
from the "formula" tag annotations. The resulting
false positives and false negatives were then man-
ually adjudicated for the actual presence/absence
of mathematical expressions.

The performance of our query on this data sam-
ple was found to have a precision of 0.93, a recall
of 0.88, and an f-score of 0.90, which we believe is
accurate enough to give an estimate of the preva-
lence of mathematical expressions in UD corpora.
However, it is worth noting that because many of
the genres in the UD corpora are substantially dif-
ferent from the technical language in ACL papers,
there is likely to be a somewhat higher proportion
of false positives when we apply our query to the
UD data.

Applying our query to all of the available UD
corpora, we found 886 instances of sentences con-
taining mathematical expressions, which corre-
sponds of 0.05% of sentences in the UD corpora.
These instances are spread over a total of 51 dif-
ferent corpora in 43 different languages, meaning
that 20% of corpora and 31% of languages within
UD contain some type of mathematical expres-
sion. While this may still seem like a marginal
phenomenon, if we examine the prevalence of
mathematical expressions by genre, as shown in
Figure 1, we see that the proportion of sentences
containing mathematical expressions rises to over
0.1% for several genres, including academic, le-
gal, and medical. As data selected for UD co-
prora may purposely avoid difficult to annotate
non-standard language such as mathematical ex-
pressions, it stands to reason that the typical pro-
portion of mathematical expressions in these gen-
res is likely even higher.

In order to further illustrate the genre depen-
dent nature of the prevalence of mathematical ex-
pressions, we examined another subset of the ACL
Anthology Corpus. We again used Trankit to sen-
tence split and tokenize the 5847 paper documents
from 2021 (those with both abstracts and paper
bodies). Again using the "formula" tag annota-
tions from the xml format of the corpus to iden-
tify sentences and tokens with mathematical ex-
pressions, we calculated the frequency of mathe-
matical expressions in the data.

We found that 68% of the documents contained

20

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-4923
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-4923
https://github.com/shauryr/ACL-anthology-corpus
https://github.com/shauryr/ACL-anthology-corpus
https://github.com/nlp-uoregon/trankit
https://github.com/nlp-uoregon/trankit

Figure 1: Proportion of sentences containing mathe-
matical expressions for each genre category in UD.

some kind of mathematical expression, that 3.7%
of the sentences contained a mathematical expres-
sion, and that 4.5% of all tokens were contained
within mathematical expressions. The prevalence
of mathematical expressions in this data sample
shows that we will need a standardized method of
handling mathematical expressions if we want to
expand UD corpora to cover such academic, sci-
entific, and technical domains.

2.2 Frequencies for Mathematical Operators
and Dependency Relations

We will now turn our attention to how the mathe-
matical expressions we have identified in the UD
data are currently being handled in terms of de-
pendency relations. Searching the UD sentences
we previously determined to contain mathematical
expressions, we found that the expressions con-
tained 33 unique mathematical symbols/operators,
and we calculated the relative frequency of each of
these symbols. The relative frequencies of some
of these operators (those with relative frequency >
0.5%) are shown in Figure 2. In this Figure, we
see that these operators are primarily those for ba-
sic arithmetic ("+", "-", "/", "*"), basic predicate
relations ("=", "<", ">"), and parentheses ("(", ")").

Figure 3 shows the proportions of the depen-
dency relations from all of the mathematical op-
erators we observed in the previously identified
mathematical expressions. We see that by far the
most prominent relation is punct (punctuation),
with a proportion of approximately 72%, and that
cc (coordinating conjunction) is the next most fre-
quent relation at 7.5%. Though punct is a gener-
ally uninformative dependency relation, this may
not immediately strike us as an inappropriate han-
dling of the operators we observed, considering
that about 46% of them were parentheses.

Figure 2: Frequency proportions (> 0.5%) for operators
in UD mathematical expressions. (Green: Arithmetic
operators, Purple: Predicate operators, Blue: Brack-
ets.)

Figure 3: Dependency relation proportions (> 1%) for
operators in UD mathematical expressions.

However, looking at the relative frequencies of
the dependency relations for the individual oper-
ators, we found that the conjoining operator "+"
and the predicate operator "=" have punct at
proportions of 32% and 41% respectively (the
full cross table of mathematical operators and
their dependency relation proportions is included
in Appendix B). This demonstrates that in the
current handling of mathematical expressions in
UD, informative operators, such as "=", are fre-
quently not analyzed meaningfully, instead being
dismissed as syntactically uninformative punctua-
tion.

3 Difficulties Presented by Mathematical
Expressions

In this section, we will examine several types of
mathematical expressions that present difficulties
for analysis with Universal Dependencies.5 Ex-
amples of these types of expressions were taken

5A list of the Universal Dependency relations discussed
in this paper and their abbreviations can be found in
Appendix C. A full list of UD relations can be found
here: https://universaldependencies.org/u/
dep/index.html

21

https://universaldependencies.org/u/dep/index.html
https://universaldependencies.org/u/dep/index.html

Figure 4: Mathematical Expression without Predica-
tion (Source: GUM)

from The Georgetown University Multilayer Cor-
pus (GUM) (Zeldes, 2017).6 Additional examples
taken from the ACL Anthology Corpus, and the
academic section of COCA7 for each of the ex-
pression types discussed can be found in Appendix
D.

3.1 Expressions without Predication

First, we will discuss mathematical expressions
which lack predication. By this we mean expres-
sions that lack a relational operator like "=" or
"→", and as such could theoretically be evaluated
down to a single mathematical term. Such expres-
sions may be as simple as "3*5", but they can also
become substantially more complicated (see ad-
ditional examples in Appendix D.1). We single
out this type of expression for discussion because
it is a class of expression that can be thought of
as a constituent unit, functioning essentially as a
complex noun phrase. Such expressions may ap-
pear within a larger phrase of natural language, in
which case they frequently occupy a syntactic po-
sition similar to that of a noun phrase.

They may also appear as individual units that
can be combined to create more complicated
mathematical expressions, such as equations. Be-
cause these expressions seem to act as individual
units, it can be debated to what extent their internal
structure should be represented. The headedness
of an expression such as "8 - 6 / 2" is dubious,
but it is clear that the order of operations which
readers use to interpret the expression carries an
understanding of hierarchy that we would want to
include in a syntactic representation. Just as com-
plex noun phrases receive internal syntactic analy-
sis, we should also strive to provide an analysis to
the internal structure of mathematical expressions
without predication.

6https://github.com/amir-zeldes/gum
7https://www.english-corpora.org/coca/

Figure 5: Mathematical Equation (Source: GUM)

Keeping these points in mind, we consider Fig-
ure 4, which includes an example of a mathemat-
ical "unit" expression and accompanying UD an-
notation taken from the GUM corpus. We see that
this "unit" expression is used as a modifier to the
noun "bottles", and that there is a mix of numbers,
mathematical operators, and unit abbreviations.
The main relation in the mathematical expression
is handled with conj (which is reasonable), but
it is the units that serve as the conjoined elements
in the analysis rather than the numbers. The ex-
pression serves as an example of how in corpora
we may find mathematical expressions with inter-
nal elements that we may not consider to be truly
mathematical (such as units) and how they may
create complications, as it is not immediately clear
whether the numbers or the units should be pre-
ferred as the head in this example. Additionally,
in this analysis, the mathematical operator "x" is
dismissed as punctuation (in both POS and deprel)
and "5" is treated as a regular counting determiner,
which fails to capture how multiplication is overtly
indicated in the expression.

3.2 Equations

The second type of mathematical expression we
will consider is equations (see additional examples
in Appendix D.2). While equations are largely
composed of the sorts of predication lacking ex-
pressions that we discussed in the last section, they
also contain mathematical operators, such as "<",
">", and "=", which define relationships between
different expressions, and introduce a predicate
structure to the main expression.

We see an example of an equation and accompa-
nying UD annotation in Figure 5. In this example,
the "=" operator is taken to be the root of the ex-
pression, which makes sense as it is proposing a
relation between the elements to its left and to its
right, just as the verb "equals" does in natural lan-
guage. However, it is questionable whether or not
the nsubj and obj relations are appropriate for

22

https://github.com/amir-zeldes/gum
https://www.english-corpora.org/coca/

Figure 6: Math and Natural Language Mixed Equation
(Source: GUM)

the equals operator. We may consider the equals
relation in mathematics to be similar to that of the
verb "equals", which typically takes the xcomp
relation in UD analysis rather than obj. In fact,
we see an example of "=" being modeled in such a
manner in Figure 6, which we will discuss below.

Another point worth noting in this example is
that there is a tokenization issue where "u2" is sep-
arated as "u" and "2" without any indication of
how the two tokens were originally related, which
creates an ambiguity which was not present in the
original expression. Even knowing the intended
relation, it is unclear what single dependency rela-
tion could be used to express the "to the power of"
relation. While not directly part of the syntactic
analysis, tokenization is a task that will inevitably
have consequences on what options are available
during the syntactic analysis. It is particularly im-
portant to keep in mind for equations and other
mathematical expressions, which frequently have
nonstandard formatting which could prompt many
tokenization ambiguities and errors (further dis-
cussion of such issues can be found in Appendix
E).

3.3 Math and Natural Language Mixed
Expressions

Within corpora which are primarily natural lan-
guage, it is possible that mathematical expressions
may appear as an isolated block, entirely divorced
and alien from the rest of the text. However, it
is more frequent for such expressions to be inte-
grated into the natural language of the rest of the
document to various degrees. In fact, there are
many instances where segments of mathematical
expressions are so deeply integrated into the nat-
ural language of the surrounding text that the de-
cision of whether or not to call them mathemati-
cal expressions at all becomes uncertain. We will
refer to such instances as mixed expressions (see
additional examples in Appendix D.3).

One such example is shown in Figure 6. In

this example, we see mathematical operators being
used convey a definition, where all of the units be-
ing related are natural language terms. Again, we
see the addition operator being treated as a coor-
dinating conjunction, though, as previously noted,
this time the equals operation is treated in a syn-
tactically different manner than we saw in the ex-
ample in Figure 5. It is worth questioning whether
the equals operation in these two cases is the same,
in which case they should have the same analysis.

We also may question whether the units exam-
ple in Figure 4 is also an example of a mixed ex-
pression. The involvement of natural language el-
ements in both of these expressions illustrates that
the line between mathematical expressions and
natural language can be blurry.

4 Approaches for Handling
Mathematical Expressions

Now that we’ve examined several examples of the
types of mathematical expressions that can appear
in scientific and academically oriented corpora, we
will discuss various approaches we can take to an-
alyze these expressions with dependency relations.

4.1 Multi-word Expressions

Multi-word expressions (MWEs) are expressions
that are made up of multiple tokens that are con-
sidered to be syntactically idiosyncratic and can
be analyzed as a single unit (Sag et al., 2002).
At first glance, this may seem like a reasonable
way to consider mathematical expressions, which
frequently appear as analogous to a single nomi-
nal unit when they are integrated with natural lan-
guage. However, simply deciding to treat mathe-
matical expressions as analogous to MWEs would
not give an immediate solution. Previous work
on the handling of multi-word expressions in UD
has indicated that MWEs are not treated uniformly
across UD corpora, but are frequently analyzed
with the relations compound, fixed, and flat
(Kahane et al., 2017).

First, compound would be difficult to apply
to any complicated expression consisting of more
than a few terms. Additionally, compound im-
plies a right headedness (in English) that is not
representative of the structure of most mathemat-
ical expressions, many of which are composed
of relations such as multiplication and addition,
which are commutative in nature, defying the no-
tion of headedness.

23

Next, fixed is an analysis that works for
MWEs which are idiomatic set phrases that are not
open to general extension. However, mathemati-
cal expressions have endless variation through the
use of established operations. In short, the gen-
eral notion of a mathematical expression is pro-
ductive, so the application of fixed seems mis-
guided. While some internal parts of a mathemat-
ical expressions could still independently be con-
sidered to be fixed, this would need to be con-
sidered at the level of individual languages, since
many UD languages independently keep a closed
list of expressions that can make use of the fixed
relation.

Finally, flat completely gives up on the in-
tent to represent the internal complexities of math-
ematical expressions. It it an unsatisfying simpli-
fication, but it is not without its merits. First, it
requires minimal effort to implement and apply to
isolated mathematical expressions, and can work
as a hold over while more in depth standards for
analysis are developed. However, it will not be
able to account for grey areas where mathemati-
cal expressions or symbols are integrated into the
surrounding natural language.

4.2 Code-Switching

Code-switching refers to a process in which two
or more languages are switched between over the
course of a single communication (Myers-Scotton,
2017). In Universal Dependencies, when an in-
stance of code-switching is identified, the methods
of analysis can be completely switched over from
the standards of the first language to the standards
of a second language using the Foreign feature
and the Lang MISC attribute. As such, we could
consider math to be its own completely indepen-
dent language, like English or French, which de-
serves its own separate analysis, rather than trying
to incorporate its analysis into the scope of the nat-
ural language that surrounds it.

However, if the syntax of the language is un-
known, as would currently be the case with math-
ematical expressions, the UD guidelines recom-
mend that the flat or flat:foreign label
be used for all dependency relations in the code-
switched segment (Sanguinetti et al., 2022). Such
an analysis would be syntactically uninformative
and would still leave open the need for developing
UD standards to handle mathematical expressions.

Additionally, while there are some contexts

where prolonged use of mathematical expressions
may more strongly suggest that code-switching
is warranted, such as multi-line proofs or deriva-
tions, we would still need a way to handle the use
of mathematical operators and symbols integrated
with natural language. Such instances could
be considered as intra-sentential code-switching,
where the switching happens within a clause
or phrase, and the individual symbols could be
marked with Foreign, but we would still need
a means of determining the dependency relations
needed to connect these tokens with the rest of the
sentence.

Furthermore, treating math as a separate lan-
guage would open up questions of when a niche
domain can be considered independent enough to
merit being handled though code-switching. If
math can be its own language in UD, we might
also extend the same consideration to domains like
chemistry or computer programming which are
rife with specialized jargon.

4.3 Natural Language

To treat a mathematical expression as natural lan-
guage means to represent its internal structure as
completely as possible with the existing relations
of UD. We see evidence that mathematical expres-
sions should be treated as analogous to natural lan-
guage through the existence of mixed math and
natural language expressions, such as the exam-
ple in Figure 6, and through examples of mathe-
matical expressions being integrated into passages
of natural language. These examples show us that
the line of what should and should not be consid-
ered a mathematical expression is not always clear.
Because this line is not clear, code-switching or
MWEs alone would not be sufficient to handle
mathematical expressions or elements that are in-
tegrated with natural language. As such, it is
worthwhile to develop standards of how to treat
mathematical expressions in a manner analogous
to natural language.

The most intuitive strategy for analyzing math-
ematical expressions as natural language is to treat
the written expression the same as its spoken form.
As most mathematical expressions can be verbal-
ized in conversation, it stands to reason that we
should be able to syntactically analyze them as
language as well. Of course, when we verbalize
mathematical expressions there may be instances
where the words in the verbalized expression do

24

not map neatly onto the written symbols, or where
different speakers (particularly speakers of differ-
ent languages) may not verbalize things in same
way. Additionally, even once the expressions are
considered in their spoken forms, it may still not
be obvious which dependency relations should ap-
ply, as is often the case with technical, jargon filled
natural language. As such, it is worthwhile to
develop additional guidelines for the treatment of
mathematical expressions as natural language.

5 Preliminary Recommendations for
Analysis of Mathematical Operators as
Natural Language

In this section we offer some brief guidelines on
how to treat mathematical operators as analogous
to English natural language in the application of
dependency relations. As previously shown in
Figure 2, mathematical operators present in UD
corpora are primarily those for basic arithmetic,
predicate relations, and parentheses. As such,
these operators will be the focus of our recom-
mendations. Since functions are a fundamental
means of expressing relations in mathematics, we
also give brief recommendations for the treatment
of function application.

In these guidelines, we follow the view put for-
ward by Schneider and Zeldes, 2021 that the re-
lation nummod should be strictly used for quan-
tity modification, as opposed to being a more gen-
eral modifier to be used in any situation involving
numbers. As such, we generally treat free standing
numbers in mathematical expressions (e.g., "4" in
"x + 4") syntactically the same as we treat vari-
ables like "x": as nominal terms.

5.1 Predicate Operators (e.g., =, <, >)

If we want to handle mathematical operators in a
manner analogous to handling natural language,
we may start by considering how the operators
would be realized in spoken language. The pred-
icate operator "=" is pronounced as the verb
"equals" in spoken language, and it seems reason-
able to treat "=" similarly. As discussed in Sec-
tion 3.2, the verb "equals", is generally analyzed
with arguments taking the nsubj relation and the
xcomp relation. An example of such an analysis
is shown below in (1) for the expression "x = 1":

(1)

Similarly, we may consider that "<" is gener-
ally pronounced as "less than" when spoken aloud.
However, we must additionally take into account
that the natural language context surrounding the
operator will influence what syntactic analysis we
want to apply to it. For instance, in the example
"Let us consider x < 5", "x < 5" is itself a term
where "x" is the head and "< 5" is a modifying ex-
pression for the type of "x". In this example, we
can analyze "< 5" as an adnominal clause headed
by "5". The clause then functions as a modifier to
the leftmost term "x", and we give its head the re-
lation acl. "<" is then an extent modifer for the
nominal term "5", so we give it the relation obl.
The analysis for this example is shown in (2) be-
low:

(2)

We may also consider the example "We will
prove that x < 5", where "x < 5" is itself an equa-
tion with predication. In this instance, "<" must
be the predicate and serve as the head of "x < 5".
It follows that we may treat "x" as the nsubj of
the predicate, and because the predicate relation is
that of a comparative adjective, we may treat "5"
as an obl argument to "<". The analysis for this
example is shown in (3) below:

(3)

The ">" operator can be analyzed in a manner
analogous to the above examples.

5.2 Conjoining Operators (e.g., +, -, *, /)

Next, we will consider the operators for the math-
ematical operations of addition ("+"), subtraction
("-"), multiplication ("*"), and division ("/"). It is
worth noting here that some of these operations
may be represented in multiple forms, not all of

25

which will have the same syntactic analysis (e.g.,
in mathematical expressions, multiplication can be
implied by the adjacency of terms, as well as by
the use of the "*" or "x" operators). We primar-
ily consider these operations to be conjoining re-
lations, and as such, we link the terms to the left
and right of the operator with the conj relation,
and the operator itself can be labeled with the cc
relation. An example of this analysis is shown in
(4) for the expression "x + y":

(4)

One benefit of this analysis is that it allows us to
distinguish the scope of certain operations. For in-
stance, consider the expression "8 - 6 / 2", which
evaluates to 5. In accordance with the order of
operations for mathematical expressions, in which
division occurs before subtraction, the division by
2 should just be applied to the 6. We can express
that by making "2" a dependent of "6". This anal-
ysis is show below:

(5)

In contrast, consider the expression "(8 - 6) /
2", which used parentheses to force the subtraction
to occur first so the expression evaluates to 1 rather
than 5. We can express this difference by making
"2" a dependent of "8" rather than "6". The added
parentheses are treated as punctuation to the head.
This analysis is show below:

(6)

As previously mentioned, multiplication can be
implied by the adjacency of terms, and in such
cases, there is no operator to assign the cc rela-
tion. Even so, if it is two adjacent variable terms
(such as "xy"), we believe it is still appropriate to
apply the relation conj. However, if it is a coef-

ficient adjacent to a variable, as in "2x", then we
believe the coefficient can be treated as nummod
to the variable. This is because "2x" (pronounced
"two x") is generally interpreted as quantity mod-
ification on the number of "x", similar to how "5
bottles" is quantity modification on the number of
bottles.

While in this section we have treated basic
mathematical operators as conjoining relations,
we also note that it is possible to view them as in-
stances of more general function application (for
which we offer a recommended treatment in the
next section). While this is reasonable from a
semantic perspective, we believe that in the for-
mulation of mathematical expressions the verbal-
izations of these basic operators typically occupy
syntactic positions more similar to natural lan-
guage conjunctions (which themselves could be
modeled as simple functions if desired), and as
such can be handled using the conj and cc re-
lations in most instances.

5.3 Function Application
We will now consider how to analyze function ap-
plication in expressions such as "f(x)". This ex-
pression can be pronounced as "F of X", and so
we may analyze "f" as the head of the expression,
and "x" as a nominal extent modifier to the func-
tion using the nmod:npmod relation. The paren-
theses are treated as punctuation attached to "x".
This analysis is show below:

(7)

6 Conclusion

In this paper, we gave an high level overview of
the current treatment of mathematical expressions
in UD corpora, and considered various difficulties
that arise when attempting to handle mathematical
expressions with dependency relations by examin-
ing different types expressions attested in corpora
related to academic and scientific domains. We ar-
gued that in most cases mathematical expressions
should be treated in a manner analogous to natural
language, rather than being treated as multi-word
expressions with minimal internal structure, or as
instances of an entirely separate "language" that

26

would be handled via code-switching. As a part
of this argument, we provided guidelines for using
dependency relations to analyze basic mathemati-
cal expressions as natural language.

The main purpose of this paper is to raise aware-
ness of the problems presented by mathemati-
cal expressions, and present various alternative
philosophies for how to address them. We also
wish to highlight the current lack of UD resources
containing mathematical and technical texts. We
believe that the adoption of the philosophy to treat
mathematical expressions as natural language and
the further development of such guidelines will
help to facilitate the inclusion of such technical
texts in future UD corpora and expand the re-
sources available for the under resourced domain
of technical language.

Limitations

As previously mentioned, while many of our ar-
guments regarding syntactic analysis of mathe-
matical expressions can apply cross-linguistically,
this paper has primarily discussed how to analyze
mathematical expressions as analogous to English
natural language. As we argue that mathematical
expressions should be treated as natural language
in general (not just English), mathematical expres-
sions in non-English texts should be analyzed as
analogous to the primary natural language used in
that document. However, the recommendations in
this paper focus only on English language verbal-
ization of mathematical expressions.

Additionally, the guidelines offered here only
cover basic mathematical expressions, and more
substantial guidelines will need to be developed
in order to inform the annotation of texts contain-
ing more complicated mathematical expressions.
This paper also does not include annotations for a
significant amount of data, which would be useful
in demonstrating the validity of analyzing math-
ematical expressions as natural language. Future
work will need to include the further development
of guidelines and a demonstration of their applica-
tion on a substantial amount of data.

References

Mark Davies. 2010. The Corpus of Contemporary
American English as the first reliable monitor cor-
pus of English. Literary and Linguistic Computing,
25(4):447–464.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Alden Dima, Sarah Lukens, Melinda Hodkiewicz,
Thurston Sexton, and Michael P Brundage. 2021.
Adapting natural language processing for technical
text. Applied AI Letters, 2(3):e33.

Vidur Joshi, Matthew Peters, and Mark Hopkins. 2018.
Extending a parser to distant domains using a few
dozen partially annotated examples. arXiv preprint
arXiv:1805.06556.

Sylvain Kahane, Marine Courtin, and Kim Gerdes.
2017. Multi-word annotation in syntactic treebanks
- propositions for Universal Dependencies. In Pro-
ceedings of the 16th International Workshop on
Treebanks and Linguistic Theories, pages 181–189,
Prague, Czech Republic.

Carol Myers-Scotton. 2017. Code-switching. The
handbook of sociolinguistics, pages 217–237.

Minh Van Nguyen, Viet Dac Lai, Amir Pouran Ben
Veyseh, and Thien Huu Nguyen. 2021. Trankit: A
light-weight transformer-based toolkit for multilin-
gual natural language processing. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: System
Demonstrations.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC’16), pages 1659–1666, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Barbara Plank. 2016. What to do about non-standard
(or non-canonical) language in NLP. arXiv preprint
arXiv:1608.07836.

Shaurya Rohatgi. 2022. Acl anthology corpus with full
text. Github.

Jack Rueter, Niko Partanen, and Flammie A. Pirinen.
2021. Numerals and what counts. In Proceed-
ings of the Fifth Workshop on Universal Dependen-
cies (UDW, SyntaxFest 2021), pages 151–159, Sofia,
Bulgaria. Association for Computational Linguis-
tics.

27

https://doi.org/10.1093/llc/fqq018
https://doi.org/10.1093/llc/fqq018
https://doi.org/10.1093/llc/fqq018
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://aclanthology.org/W17-7622
https://aclanthology.org/W17-7622
https://aclanthology.org/L16-1262
https://aclanthology.org/L16-1262
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://github.com/shauryr/ACL-anthology-corpus
https://github.com/shauryr/ACL-anthology-corpus
https://aclanthology.org/2021.udw-1.13

Ivan A Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword
expressions: A pain in the neck for NLP. In Interna-
tional conference on intelligent text processing and
computational linguistics, pages 1–15. Springer.

Manuela Sanguinetti, Cristina Bosco, Lauren Cassidy,
Özlem Çetinoğlu, Alessandra Teresa Cignarella,
Teresa Lynn, Ines Rehbein, Josef Ruppenhofer,
Djamé Seddah, and Amir Zeldes. 2022. Treebank-
ing user-generated content: a UD based overview
of guidelines, corpora and unified recommendations.
Language Resources and Evaluation, pages 1–52.

Nathan Schneider and Amir Zeldes. 2021. Mis-
chievous nominal constructions in Universal Depen-
dencies. In Proceedings of the Fifth Workshop on
Universal Dependencies (UDW, SyntaxFest 2021),
pages 160–172, Sofia, Bulgaria. Association for
Computational Linguistics.

Amir Zeldes. 2017. The GUM corpus: creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

Daniel Zeman. 2021. Date and time in Universal
Dependencies. In Proceedings of the Fifth Work-
shop on Universal Dependencies (UDW, SyntaxFest
2021), pages 173–193, Sofia, Bulgaria. Association
for Computational Linguistics.

A Query to Identify Mathematical
Expressions

This section gives a description of the search crite-
ria in the query we used to identify mathematical
expression in UD corpora. Our query identified
sentences containing the at least one of follow-
ing combinations of numerical values and Unicode
mathematical operators and symbols:

1. At least 1 token that is included in one of the
following Unicode blocks:

• Mathematical Operators
• Supplemental Mathematical Operators
• Mathematical Alphanumeric Symbol

2. Or, at least 2 basic mathematical operators

3. Or, at least 1 number, 1 basic mathematical
operator, and 1 ambiguous mathematical op-
erator

where "basic mathematical operators" are de-
fined as the following set of symbols: +, ×, ÷, =, ±,
>=, <=, and "ambiguous mathematical operators"
are defined as the following set of symbols: -, /, <,
>, x, *, ˆ, (,).

Abbreviation Relation
acl clausal modifier of noun
cc coordinating conjunction
compound compound
conj conjunct
fixed fixed multiword expression
flat:foreign foreign words
nmod:npmod NP as adverbial modifier
nsubj nominal subject
nummod numeric modifier
obj object
obl oblique nominal
punct punctuation
xcomp open clausal complement

Table 1: Abbreviations of dependency relations dis-
cussed in this paper.

B Dependency Relation Proportions for
Mathematical Operators

Table 2: Dependency relation proportions for the
most frequent mathematical operators in Universal
Dependencies corpora (UD version 2.11, contains
243 treebanks, 138 languages).

C Dependency Relation Abbreviations

Table 1 lists the UD dependency relations dis-
cussed in this paper. The left column lists the de-
prel abbreviation used in the paper and the right
column gives a short description of the relation.

D Examples of Mathematical
Expressions in Corpora

This section gives additional examples of mathe-
matical expressions in corpora and includes dis-
cussion on notable aspects of each example.

28

https://aclanthology.org/2021.udw-1.14
https://aclanthology.org/2021.udw-1.14
https://aclanthology.org/2021.udw-1.14
https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.1007/s10579-016-9343-x
https://aclanthology.org/2021.udw-1.15
https://aclanthology.org/2021.udw-1.15

D.1 Expressions Lacking Predication
Examples taken from COCA:

(1)

(n + 1)

(2)

Square root of 37

(3)

1 + 2 + 4 + 8 + 16 + 32 + 64 cents

Examples (1) and (2) above may function as in-
dependent nominal phrases, while the mathemat-
ical expression in example (3) acts as a modifier
to the word "cents". Example (2) also includes
an expression composed primarily of word tokens
rather than symbols, which provides additional
motivation for a natural language based analysis.

D.2 Equations
Examples taken from the ACL Anthology Corpus:

(1)

λ v = log (D / D(v))

(2)

β = 1 + β 2 × C × E β 2 × C + E

(3)

γ = 1/1.3 = 0.77

While examples (1) and (2) show expressions
with a single predicate operator, example (3)
shows that it is possible to have multiple predi-
cate operators in a single expression. Also, we
note that because "x" indicates multiplication in
example (2), it is likely that "β" is squared rather
than multiplied by "2", but the formatting has in-
troduced ambiguity into the expression.

D.3 Mixed Expressions
Examples (1) and (2) taken from COCA. Example
(3) taken from the ACL Corpus:

(1)

The total number of productions (unin-
telligible + simplified + correct)

(2)

Global fee = hospital costs + hospital
profits + physician fees

(3)

king - man + woman = queen

The above examples show expressions that mix
mathematical operators and words to convey var-
ious kinds of definitions. Notably, in example (1)
we see parentheses serving a similar function to
the equals signs in the other two examples.

E Expressions Unfit for Syntactic
Analysis

We would also like to highlight that there are is-
sues regarding how mathematical expressions are
represented and tokenized in corpora, which need
to be figured out before syntactic analysis can be
applied. While searching for example mathemat-
ical expressions to use in this paper, we came
across numerous examples where the reformatting
done to import the equation into the corpus leaves
it mangled and unintelligible to the extent that at-
tempting to apply a syntactic analysis would be
meaningless.

Here are example equations taken from the the
ACL Anthology Corpus, which were heavily al-
tered upon being imported into the corpus. For the
sake of comparison, the original equations from
the corresponding ACL papers are included di-
rectly below each equation:

(1)

) , cos(1 2 1 2 1 Σ Σ Σ = = = × × = n i
n i n i bi ai bi ai B A

(2)

0 H : (|) (|) i i P t R p P t R = = 1 1 2
H : (|) (|) i i P t R p p P t R = ̸= =

The examples above illustrate that importing
complex mathematical expressions into corpora
without taking into account how the formatting
should be represented and how the expressions
should be tokenized can result in expressions that

29

cannot be interpreted and thus cannot be syntacti-
cally analyzed. While it is essential to have some
means of handling ambiguous or mangled expres-
sions in an analysis of mathematical expressions,
it will also be important to consider representation
and tokenization issues separately.

30

