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Abstract

Pre-trained Text-to-Text Language Models
(LMs), such as T5 or BART yield promising
results in the Knowledge Graph Question An-
swering (KGQA) task. However, the capac-
ity of the models is limited and the quality
decreases for questions with less popular en-
tities. In this paper, we present a novel ap-
proach which works on top of the pre-trained
Text-to-Text QA system to address this issue.
Our simple yet effective method performs fil-
tering and re-ranking of generated candidates
based on their types derived from Wikidata
instance_of property. This study demon-
strates the efficacy of our proposed method-
ology across three distinct one-hop KGQA
datasets. Additionally, our approach yields re-
sults comparable to other existing specialized
KGQA methods. In essence, this research en-
deavors to investigate the integration of closed-
book Text-to-Text QA models and KGQA.

1 Introduction

Information stored in Knowledge Graphs (KG),
such as Wikidata (Vrandecic and Krötzsch, 2014),
for general domain or some specific knowledge
graphs, e.g. for the medical domain (Huang et al.,
2021), can be used to answer questions in natural
language. Knowledge Graph Question Answering
(KGQA) methods provide not a simple string as an
answer, but instead an entity a KG.

Pre-trained Text-to-Text LMs, such as T5 (Raf-
fel et al., 2019) or BART (Lewis et al., 2020),
showed promising results on Question Answer-
ing (QA). Besides, recent studies have demon-
strated the potential of Text-to-Text models to ad-
dress Knowledge Graph Question Answering prob-
lems (Roberts et al., 2020; Sen et al., 2022).

While fine-tuning a Text-to-Text LM can signif-
icantly improve its performance, there are cases
where questions cannot be answered without ac-
cess to a knowledge graph, especially in case of
less popular entities (Mallen et al., 2022): not all

required knowledge can be “packed” into param-
eters of a neural model. However, even in such
cases, Text-to-Text models can generate plausible
answers that often belong to the same type as the
correct answer. For example, Text-to-Text answers
to the question “What is the place of birth of Philipp
Apian?” are not correct (e.g., T5 model produced
“Neuilly-sur-Seine” or “Freiburg im Breisgau” as
answers), but these wrong candidates are of the cor-
rect type. Namely, the correct type “city” can be
derived from the list of generated answers and used
to perform a local KG search around the question
entity “Philipp Apian” to derive the correct answer
“Ingolstadt”. Motivated by these observations, this
study presents a method for answer type predic-
tion utilizing the output of pre-trained Text-to-Text
language models.

The contributions of our study are as follows:
(1) A simple yet effective approach for improving
generative KGQA using candidate answer type se-
lection method based on instance_of properties
aggregated from diversified beamsearch. (2) An
open implementation of the method that is easily
applicable to pre-trained generative models.1

2 Related Work

Traditional KGQA methods can be classified into
two categories: retrieval-based and semantic pars-
ing. Retrieval-based methods involve vectorizing
the textual question and projecting it into a graph-
based vector space containing candidate entities
(Huang et al., 2019; Razzhigaev et al., 2023). Se-
mantic parsing approaches generate formal ques-
tion representations (e.g., SPARQL queries) to
query a KG for the answer. Retrieval-based ap-
proaches rely on computationally expensive sim-
ilarity searches using vector indices of millions
of candidate entities. Semantic parsing requires
maintaining a graph database capable of process-

1https://github.com/s-nlp/act
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ing SPARQL queries.
Recently, to address these shortcomings of exist-

ing methods, a third wave of approaches emerged
based on pre-trained Text-to-Text LMs such as T5
(Raffel et al., 2019) or BART (Lewis et al., 2020).
Given a question, these models generate a label of
the answer that can be directly linked to the entity
in a KG. These models are more computationally
convenient and they are described below.

The Text-To-Text Transfer Transformer (T5)
(Raffel et al., 2019) is effective for question an-
swering, as demonstrated by Roberts et al. (2020),
or as part of a retrieval pipeline (Izacard and Grave,
2021). Furthermore, it has been shown that training
T5 with Salient Span Masking (SSM) improves the
model’s performance on QA task. T5-ssm involves
tuning T5 as a language model, masking entities
instead of random tokens. T5-ssm-nq is a variant
of the T5-ssm that is additionally fine-tuned on the
NaturalQuestions (NQ) (Kwiatkowski et al., 2019)
dataset. BART, a Text-to-Text model trained as a
denoising autoencoder (Lewis et al., 2020), can
also be applied to KGQA task (Cao et al., 2022).

3 Answer Candidate Type Selection

This section presents our proposed approach, An-
swer Candidate Type (ACT) Selection. We pro-
pose a universal approach to selecting the cor-
rect answer in the KGQA task by using any pre-
trained sequence-to-sequence (seq2seq) model (in
our cases a Text-to-Text Language Model) to gen-
erate answer candidates and to infer the type of
expected answer. The answer candidate type se-
lection pipeline shown in Figures 1 and 2 consists
of four parts: the Text-to-Text model for candidate
generation, Answer Type Extractor, Entity Linker,
and the Candidate Scorer.

3.1 Initial Answer Candidate List Generation

To increase the diversity of the generated results,
we use Diverse Beam Search (Vijayakumar et al.,
2016) to generate an initial list of answer candi-
dates C. It often leads to a better exploration of the
search space by ensuring that alternative answers
are considered. We define the types of entities
using the Wikidata property instance_of (P31).
Note that an entity can be of multiple types. Fi-
nally, the initial list of answer candidates is used in
the Answer Candidate Typing and the Candidate
Scorer with the mined candidates.

´

Figure 1: Answer Candidate Type (ACT) Selection.

3.2 Answer Candidate Typing
We rank all types by their frequency in the initial
list of answer candidates. After that, we merge the
top-K most frequent types and similar types to the
final list T . Types similarity is calculated as a co-
sine similarity between Sentence-BERT (Reimers
and Gurevych, 2019) embeddings of respective la-
bels. The final types are defined as the ones where
similarity is greater than a threshold.

A similar aggregation method using hypernyms
(also known as “is-a” or “instance-of” relations)
was used in the past to label clusters of words
senses in distributional models (Biemann and Riedl,
2013; Panchenko et al., 2017): distributionally sim-
ilar words share common hypernym and “top” com-
mon hypernyms are surprisingly good labels for
sense clusters. The analogy in our method is that
Text-to-Text models appear to produce a list of
distributionally similar candidates.

3.3 Entity Linking
To enrich the list of candidates, we add all one-hop
neighbours of the entities found in the question.
For that we use the fine-tuned spaCy Named Entity
Recognition (NER)2 and the mGENRE (Cao et al.,
2021) entity linking model.

3.4 Candidates Scorer
Finally, we calculate four scores for each answer
candidate and rank them based on the weighted
sum of the scores. The scores are as follows:

(1) Type score represents the size of the inter-
section between the set of types extracted from the

2https://spacy.io. More details about fine-tuning of
the NER can be found in Appendix A.

https://spacy.io
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Figure 2: An example of the proposed Answer Candidate Type (ACT) Selection result.

answer candidates and the selected answer types.
It is weighted by the number of selected answer
types:

Stype =
|Candidates’ Types ∩ T |

|T |
.

(2) Forward one-hop neighbors score
Sneighbour is assigned 1 if the candidate is among
the neighbors of the question entities, and 0
otherwise.

(3) Text-to-Text answer candidate score is de-
termined by the rank of the candidate in the initial
list C generated by the Text-to-Text model divided
by the size of the list:

St2t =
C.index(Candidate)

|C|
.

(4) Question-Property Similarity score
Sproperty measures the cosine similarity be-
tween the embeddings of the relevant property
and the entire question. We employ Sentence-
BERT (Reimers and Gurevych, 2019) to encode
the question, following a similar approach used for
the Answer Candidate Type module.

The four scores are calculated for each entity
and then are combined to generate a final score that
determines the entity’s ranking. The answer with
the highest weighted sum of scores in the candidate
list is selected as the final answer:

Sfinal = Stype+Sneighbour+St2t+Sproperty.

4 Experiments

We fine-tuned the Text-to-Text and spaCy NER
models by using the entire training part of the re-
spective datasets and fitting the model for eight

epochs. The initial answer candidate lists were gen-
erated using Diverse Beam Search with 200 beams
and a diversity penalty of 0.1. The Answer Candi-
date Typing module utilized the top-3 types and a
similarity threshold of 0.6.

4.1 Data
We evaluate the ACT Selection on three Wiki-
data datasets containing one-hop questions.
SimpleQuestions-Wikidata (SQWD) (Diefenbach
et al., 2017) is a mapping of SimpleQuestions (Bor-
des et al., 2015) to Wikidata containing 21,957
questions. RuBQ (Korablinov and Braslavski,
2020; Rybin et al., 2021) is a KGQA dataset that
contains 2,910 Russian questions of different types
along with their English translations. Mintaka (Sen
et al., 2022) is a multilingual KGQA dataset com-
posed of 20,000 questions of different types. For
our experiments we took only generic questions,
whose entities are one hop away from the answers’
entities in Wikidata, which resulted in 1,757 En-
glish questions.

4.2 Evaluation
We hypothesize that even if a closed-book QA text-
to-text model returns an incorrect answer, the odds
are that it is of the correct type.

The present study involves the extraction of an-
swer types from Text-to-Text generated answers,
followed by a comparison with the ground-truth an-
swer types in the SQWD dataset. Our experimental
findings demonstrate that the fine-tuned T5-Large-
SSM model equipped with the ACT Selection can
accurately predict the correct answer type in 94%
of the cases, while only 61% of the candidate an-
swers share the same type as the correct answer.
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Model SQWD RuBQ en
QAnswer 33.31 32.30
KEQA TransE PTBG 48.89 33.80
ChatGPT 15.32 36.53
T5-Large-ssm (fine-tuned) 23.66 21.44
Ours: T5-Large-ssm (fine-tuned) 47.42 26.02
T5-11b-ssm-nq (zero-shot) 10.94 33.38
Ours: T5-11b-ssm-nq (zero-shot) 38.51 38.31

Table 1: Comparsion of the ACT Selection with
KGQA baselines in terms of Hit@1 for SimpleQuestion-
Wikidata (SQWD) with T5-Large-ssm fine-tuned on its
training part and T5-11b-ssm-nq in zero-shot mode.

These results have provided an impetus to leverage
this information to facilitate question-answering.

Figure 3: Average Hit@1 scores for the tuned models
on SQWD, RuBQ, and Mintaka datasets from Table 2.

We evaluate the performance of two commonly
used architecture types, T5 and BART. The pro-
posed approach consistently improves the results
of the Text-to-Text models on various datasets, as il-
lustrated in Figure 3. We compare the mean Hit@1
scores of the tuned Text-to-Text models with the
aforementioned datasets. Text-to-Text models were
fine-tuned on the train splits of SQWD and the full
train split of Mintaka datasets, and subsequently
evaluated on the test splits of SQWD, RuBQ, and
Mintaka using both tuned versions of the models.

As demonstrated in Table 2, the proposed ap-
proach consistently enhances the quality of KGQA
tasks across various Text-to-Text models. Further-
more, we conducted experiments to verify that the
proposed method can be employed with the Text-to-
Text models in a zero-shot learning manner, with-
out any fine-tuning. The benefits of the approach,
in terms of quality improvement, are more notice-
able when applied to smaller models. For example,
the T5-large model, with its 737 million parameters,

when paired with ACT Selection, delivers compa-
rable performance to the T5-11b model, which has
11 billion parameters.

In line with expectations, larger models gener-
ally yield superior results. Notably, T5 models
using the suggested method outperformed BART
models. Moreover, across all tested T5 and BART
models, implementing the ACT Selection markedly
enhanced the performance of the foundational Text-
to-Text model.

Table 1 showcases performance comparison
between our suggested method and prominent
KGQA systems, namely QAnswer (Diefenbach
et al., 2020), KEQA (Huang et al., 2019), and chat-
GPT.3 QAnswer is a multilingual rule-based sys-
tem that tranforms the question into a SPARQL
query. KEQA utilizes TransE embeddings of
200 dimensions, trained on Wikidata using the
Pytorch-BigGraph (PTBG) framework (Lerer et al.,
2019). ChatGPT is a conversational model that was
launched in late 2022 and has received worldwide
acclaim. Further details about evaluating ChatGPT
and other generative models through entity-linked
predictions can be found in appendix B. The tab-
ulated data reveals that our approach delivers out-
comes commensurate with those of state-of-the-art
(SOTA) systems.

4.3 Ablation Study

We conducted an ablation study (cf. Table 3) to
investigate the effects of the proposed scores on
the candidate set collection process. Our main goal
was to confirm that incorporating type information
enhances candidate selection. We observed that
methods relying solely on scores (such as Question-
Property Similarity score) were not as effective as
the ACT Selection approach.

Furthermore, we examined the necessity of ini-
tial candidates generated by the Text-to-Text model
and whether restricting to question entity neighbors
was sufficient. This investigation aimed to deter-
mine the added value of initial candidates in the
selection process.

4.4 Error Analysis

We showed above that the ACT Selection approach
fixed errors produced by the Text-to-Text LMs. We
evaluate this approach using a subset of questions
and predictions from the T5-Large-SSM model
for the SQWD dataset. Our focus is on questions

3https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt
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SimpleQuestions-Wikidata RuBQ (English) Mintaka (one-hop, English)
Tuned on → Zero-shot SQWD Mintaka Zero-shot SQWD Mintaka Zero-shot SQWD Mintaka
BART-base 0 16.54 7.08 0 5.93 3.72 0 2.06 9.12
Ours 30.38 42.60 30.70 9.50 11.65 11.72 4.70 5.88 10.29
BART-large 0 16.97 3.02 0 4.07 4.86 0 1.76 12.65
Ours 30.42 42.64 31.39 9.50 12.15 12.79 4.41 5.29 15.29
T5-base 0 21.26 6.19 0 6.22 6.93 0 4.41 8.24
Ours 30.47 43.13 34.60 9.44 14.44 16.58 4.71 8.53 10.59
T5-large 0 22.36 9.43 0 11.15 12.15 0 7.06 14.41
Ours 29.88 43.05 36.89 9.44 18.94 20.51 4.71 10.00 15.88
T5-large-ssm 0.57 23.66 5.92 0.42 21.44 23.87 0.50 19.71 27.65
Ours 23.39 47.42 36.54 9.72 26.02 27.88 6.76 18.53 28.24
T5-large-ssm-nq 5.12 22.52 4.34 18.87 17.80 19.23 17.65 14.12 23.24
Ours 35.09 43.88 36.39 27.52 25.38 26.38 22.94 14.12 25.59
T5-11b-ssm 1.81 — — 14.09 — — 20.88 — —
Ours 25.84 — — 20.94 — — 24.71 — —
T5-11b-ssm-nq 10.94 — — 33.38 — — 41.76 — —
Ours 38.51 — — 38.31 — — 45.00 — —

Table 2: Evaluation results on three one-hop KGQA datasets (Hit@1 scores): comparing Text-To-Text Language
Model with and without our proposed ACT Selection approach in zero-shot (without tuning for QA) or tuned on
SQWD or Mintaka.

Type score Forward one-hop
neighbours score

Text-to-Text LM
candidates score

Question-Property
Similarity score All scores

Only initial candidates
generated by Text-to-Text 2.51 31.73 27.04 31.82 35.89

Only question
neighbours candidates 5.07 4.84 4.52 29.86 30.06

Full answer
candidates set 2.81 5.46 27.04 30.75 47.42

Table 3: Ablation study of ACT Selection. Reporting Hit@1 at SQWD for T5-large-ssm fine-tuned on SQWD.

where the model’s top-1 prediction was incorrect,
but the ACT Selection approach extracted the cor-
rect answer.

The Text-to-Text model generated the correct
answer in only 58.4% of questions in the chosen
subset. However, our Entity Linking module was
able to correctly extract 99.11% of question entities
for this subset. The extraction of additional candi-
dates from the question entity neighbors played a
critical role in finding the correct answer.

5 Conclusion

We introduced a method for question answering
over knowledge graph based on post-processing
of beam-search outputs of a Text-to-Text model.
Namely, a simple aggregation of KG “instance-of”
relations is used to derive a likely type of the an-
swer. This simple technique consistently improves
performance of various Text-to-Text LMs favorably
comparing to both specialized KGQA methods and
ChatGPT with a carefully selected prompt and en-
tity linked output on three distinct English one-hop
KGQA datasets.

Our method may be also used to directly per-
form answer typing. In principle, it can be straight-
forwardly adapted to multilingual setup, but also
multi-hop questions. We find it promising to use
the method with larger pre-trained models to fur-
ther boost performance as our current experiments
show that the a quality growth as the model size
increased.

6 Limitations

The main limitation of the current study is that the
approach was only tested for one-hop questions.
In principle, one can, however, sample candidates
from graph from arbitrary subgraphs, e.g. second-
order ego-networks of entity found in question. At
the same time, improvements shown in this paper
may not nessesarily generalize to such setting and
need to be tested.

Another limitation is using diverse beam search,
which is a computationally more expensive process
as it requires larger beam sizes, usually.

Finally, requesting KG data can be a bottleneck
if one is using a public SPARQL endpoint with
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query limits. This limitation can be alleviated by
using an in-house private copy of a KG.

7 Ethical Considerations

Large pre-trained Text-to-Text models such as
those used in our work are trained on datasets
which may contain biased opinions. Therefore,
QA/KGQA systems built on top of such models
may transitively reflect such biases potentially gen-
erating stereotyped answers to the questions. As
a consequence, it is recommended in production,
not research settings, to use a special version of
debiased pre-trained neural models and/or other
technologies for the alleviation of the undesired
biases of LLMs.
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A Named Entity Recognition

According to the recent review of SOTA NER
(Vajjala and Balasubramaniam, 2022), top-3 ap-
proaches were chosen: spaCy4, Stanza5 and
SparkNLP6. Pre-rained NERs showed very poor
quality ranging from 64% to 88% of missing cases
for the SQWD data set. Among them, spaCy was
the best; therefore, the standard spaCy configu-
ration7 was chosen for further fine-tuning. This
pipeline requires two main pre-processing steps.
First, the span of the entity should be fed into the
algorithm. This span is predefined for Mintaka.
However, for SQWD and RuBQ only Wikidata IDs
of the entities are presented. Therefore, it was nec-
essary first to define labels of the entities and all
corresponding redirects. Next, these labels should
have been found in the initial sentence for the span
detection. Since for some of the entities there was
no direct match in the sentence, the fuzzy search8

was started. Second, spaCy requires the tag of
the entity label (e.g., PERSON for Elon Musk ,
ORG for Tesla - the so-called BIO type tagging)
for training, but in the initial data this label is miss-
ing. PERSON tag was chosen as the one for all
cases. Additional experiments with partial data tag-
ging (defining exact tag for each entity) were not
successful.

B Evaluation generative models on
KGQA problem

To link predicted answers with entities, we utilized
the full-text search engine provided by the Wiki-
data API9. For answers generated by ChatGPT, we
performed an additional step of removing the trail-
ing dot at the end of the prediction (e.g., changing
‘Yes.’ to ‘Yes’). For RuBQ dataset we just checked
that predicted entity is one of the possible answers.

For predicting answers in the KGQA style, we
experimented with different prompts for ChatGPT.
Specifically, we used the prompt ‘Answer as briefly
as possible without additional information.’ for
evaluating the SQWD dataset and ‘Answer as
briefly as possible. The answer should be ‘Yes’,
‘No’ or a number if I am asking for a quantity of
something, if possible, otherwise just a few words.’

4https://spacy.io
5https://stanfordnlp.github.io/stanza/
6https://nlp.johnsnowlabs.com
7https://spacy.io/usage/training/
8https://pypi.org/project/fuzzywuzzy/
9https://www.wikidata.org/w/api.php
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for the RuBQ dataset.

C Examples

In this section, we include figures that illustrate ex-
amples of the working pipeline. Figure 2 presents
the pipeline for the question "Who published neo
contra?" The Text-to-Text model generates a set
of answer candidates, such as "Avalon Hill," "Ac-
tivision," and "Sega." These candidates are used to
extract the type information, such as "video game
developer." This type information is then employed
in the Candidate Score module to rerank the final
set of candidates, ultimately identifying the correct
answer as "Konami."

Additionally, in Figures 4, 5, and 6, we provide
additional examples that demonstrate the extraction
of types and the calculation of scores within the
pipeline.
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Figure 4: Example question: The champions of what two leagues played in the first four Super Bowls?

Figure 5: Example question: Who published neo contra?
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Figure 6: Example question: What is the place of birth of Sam Edwards?


